
Normalization Equivalence of Rewrite Systems∗

Nao Hirokawa1, Aart Middeldorp2 and Christian Sternagel2

1 JAIST, Japan
hirokawa@jaist.ac.jp

2 University of Innsbruck, Austria
{aart.middeldorp|christian.sternagel}@uibk.ac.at

Abstract

Métivier (1983) proved that every confluent and terminating rewrite system can be
transformed into an equivalent canonical rewrite system. He also proved that equivalent
canonical rewrite systems which are compatible with the same reduction order are unique
up to variable renaming. In this note we present simple and formalized proofs of these
results. The latter result is generalized to the uniqueness of normalization equivalent
reduced rewrite systems.

1 Introduction

Consider the TRS R of combinatory logic with equality test, studied by Klop [3]:

Sxyz → xz(yz) Kxy → x Ix→ x Dxx→ E

The TRS R is reduced, but neither terminating nor confluent. One might ask: is there another
reduced TRS S that computes the same normal forms for every starting term? We refer to this
property as normalization equivalence of two TRSs. According to the main result of this note,
it turns out that R is unique up to variable renaming.

In the next section normalization equivalence is studied in an abstract setting. The concrete
results on term rewrite systems are presented in Section 3. Throughout this note, we assume
familiarity with basic notions and terminology of term rewriting.

All the proofs that are presented in the following have been formalized as part of IsaFoR1

(see theory Normalization_Equivalence).

2 Abstract Normalization Equivalence

First, we introduce the two notions of equivalence that will be studied in this note.

Definition 2.1. Two ARSs A and B are (conversion) equivalent if ↔∗A = ↔∗B. If →!
A = →!

B
we say that A and B are normalization equivalent.

The following example shows that the two equivalence notions defined above are different.

Example 2.2. The ARSs

A1 : a b B1 : a b

∗Supported by JSPS KAKENHI Grant Number 25730004 and the Austrian Science Fund (FWF) projects
I963 and J3202.

1http://cl-informatik.uibk.ac.at/software/ceta/

14 T. Aoto & D. Kesner (ed.); 3rd International Workshop on Confluence, pp. 14–18

http://cl-informatik.uibk.ac.at/software/ceta/


Normalization Equivalence of Rewrite Systems Hirokawa, Middeldorp, Sternagel

are conversion equivalent but not normalization equivalent. The ARSs

A2 : a b B2 : a b

are normalization equivalent but not conversion equivalent.

The easy proof (by induction on the length of conversions) of the following result is omitted.

Lemma 2.3. Normalization equivalent terminating ARSs are equivalent.

Note that the termination assumption can be weakened to weak normalization. However, the
present version suffices to prove the following lemma that we employ in our proof of Métivier’s
transformation result (Theorem 3.7).

Lemma 2.4. Let A and B be ARSs such that→B ⊆ →+
A and NF(B) ⊆ NF(A). If A is complete

then B is complete and normalization equivalent to A.

Proof. From the inclusion →B ⊆ →+
A we infer that B is terminating. Moreover, →∗B ⊆ →∗A

and, since NF(B) ⊆ NF(A), also →!
B ⊆ →!

A. For the reverse inclusion we reason as follows. Let
a→!

A b. Because B is terminating, a→!
B c for some c ∈ NF(B). So a→!

A c and thus b = c from
the confluence of A. It follows that A and B are normalization equivalent. It remains to show
that B is locally confluent. This follows from the sequence of inclusions

B← · →B ⊆ +
A← · →

+
A ⊆ →

∗
A · ∗A← ⊆ →!

A · !
A← ⊆ →!

B · !
B←

where we use the inclusion →B ⊆ →+
A, the confluence of A, the termination of A, and the

normalization equivalence of A and B.

In the above lemma, completeness can be weakened to semi-completeness (i.e., the combi-
nation of confluence and weak normalization), which is not true for Theorem 3.7 as shown by
Gramlich [1]. Again, the present version suffices for our purposes.

3 Normalization Equivalence

In this section we study normalization equivalence for TRSs.

Definition 3.1. A variable substitution is a substitution from V to V. A renaming is a bijective
variable substitution. A term s is a variant of a term t if s = tσ for some renaming σ. If `→ r
is a rewrite rule and σ is a renaming then the rewrite rule `σ → rσ is a variant of ` → r. A
TRS is said to be variant-free if it does not contain rewrite rules that are variants of each other.

TRSs are usually assumed to be variant-free. We make the same assumption, but see
Example 3.6 below.

Given terms s and t, we write s
.
= t if sσ = t and s = tτ for some substitutions σ and τ .

The following result is folklore; the proof has recently been formalized [2].

Lemma 3.2. Two terms s and t are variants if and only if s
.
= t.

Definition 3.3. Two TRSs R1 and R2 over the same signature F are called literally similar,
denoted by R1

.
= R2, if every rewrite rule in R1 has a variant in R2 and vice-versa.

15



Normalization Equivalence of Rewrite Systems Hirokawa, Middeldorp, Sternagel

Definition 3.4. A TRS R is left-reduced if ` ∈ NF(R \ {` → r}) for every rewrite rule ` → r
in R. We say that R is right-reduced if r ∈ NF(R) for every rewrite rule `→ r in R. A reduced
TRS is left- and right-reduced. A reduced complete TRS is called canonical.

Theorem 3.7 below states that we can always eliminate redundancy in a complete TRS.
This is achieved by the two-stage transformation defined below.

Definition 3.5. Given a complete TRS R, the TRSs Ṙ and R̈ are defined as follows:

Ṙ = {`→ r↓R | `→ r ∈ R}
R̈ = {`→ r ∈ Ṙ | ` ∈ NF(Ṙ \ {`→ r})}

The TRS Ṙ is obtained from R by normalizing the right-hand sides. To obtain R̈ we remove
the rules of Ṙ whose left-hand sides are reducible with another rule of Ṙ.

Example 3.6. Consider the TRS R1 consisting of the four rules

f(x)→ a f(y)→ b a→ c b→ c

Then the first transformation yields Ṙ1

f(x)→ c f(y)→ c a→ c b→ c

and the second one R̈1

a→ c b→ c

Note that R̈1 is not equivalent to R1. This is caused by the fact that the result of the first
transformation is no longer variant-free.

The proof of the following theorem depends on the implicit assumption that TRSs are always
variant-free. However, even for variant-free R, Ṙ does not necessarily have this property (as
shown by Example 3.6 above). Thus, in our formalization, we explicitly remove variants of
rules as part of the Ṙ transformation.

Theorem 3.7. If R is a complete TRS then R̈ is a normalization and conversion equivalent
canonical TRS.

The proof by Métivier [4, Theorem 7] is hard to reconstruct. The proof in [5, Exercise 7.4.7]
involves 13 steps with lots of redundancy. The proof below uses induction on the well-founded
encompassment order ·B and has been formalized. Since subsumption as well as encompassment
have not been part of IsaFoR before, we had to amend this situation. See theory Encompassment

for details.

Proof. LetR be a complete TRS. The inclusions R̈ ⊆ Ṙ ⊆ →+
R are obvious from the definitions.

Since R and Ṙ have the same left-hand sides, their normal forms coincide. We show that
NF(R̈) ⊆ NF(Ṙ). To this end we show that ` /∈ NF(R̈) whenever ` → r ∈ Ṙ by induction on
` with respect to the well-founded order ·B. If ` → r ∈ R̈ then ` /∈ NF(R̈) trivially holds. So
suppose ` → r /∈ R̈. By definition of R̈, ` /∈ NF(Ṙ \ {` → r}). So there exists a rewrite rule
`′ → r′ ∈ Ṙ different from `→ r such that ` ·D `′. We distinguish two cases.

• If ` ·B `′ then we obtain `′ /∈ NF(R̈) from the induction hypothesis and hence ` /∈ NF(R̈)
as desired.

16



Normalization Equivalence of Rewrite Systems Hirokawa, Middeldorp, Sternagel

• If `
.
= `′ then by Lemma 3.2 there exists a renaming σ such that ` = `′σ. Since Ṙ is

right-reduced by construction, r and r′ are normal forms of Ṙ. The same holds for r′σ
because normal forms are closed under renaming. We have r Ṙ← ` = `′σ →Ṙ r′σ. Since

Ṙ is confluent as a consequence of Lemma 2.4, r = r′σ. Hence `′ → r′ is a variant of
`→ r, contradicting the assumption that TRSs are variant-free.

From Lemma 2.4 we infer that the TRSs Ṙ and R̈ are complete and normalization equivalent to
R. The TRS R̈ is right-reduced because R̈ ⊆ Ṙ and Ṙ is right-reduced. From NF(R̈) = NF(Ṙ)
we easily infer that R̈ is left-reduced. It follows that R̈ is canonical. It remains to show that R̈
is not only normalization equivalent but also (conversion) equivalent toR. This is an immediate
consequence of Lemma 2.3.

For our next result we need the following technical lemma.

Lemma 3.8. Let R be a right-reduced TRS and let s be a reducible term which is minimal with
respect to ·B. If s→+

R t then s→ t is a variant of a rule in R

Proof. Let ` → r be the rewrite rule that is used in the first step from s to t. So s ·D `.
By assumption, s ·B ` does not hold and thus s

.
= `. According to Lemma 3.2 there exists a

renaming σ such that s = `σ. We have s→R rσ →∗R t. Because R is right-reduced, r ∈ NF(R).
Since normal forms are closed under renaming, also rσ ∈ NF(R) and thus rσ = t. It follows
that s→ t is a variant of `→ r.

In our formalization, the above proof is the first spot where we actually need that R satisfies
the variable condition (more precisely, right-hand sides of rules do not introduce fresh variables).

The next result is the main result of this note.

Theorem 3.9. Normalization equivalent reduced TRSs are unique up to literal similarity.

Proof. Let R and S be normalization equivalent reduced TRSs. Suppose `→ r ∈ R. Because
R is right-reduced, r ∈ NF(R) and thus ` 6= r. Hence ` →+

S r by normalization equivalence.
Because R is left-reduced, ` is a minimal (with respect to ·B) R-reducible term. Another
application of normalization equivalence yields that ` is minimal S-reducible. Hence `→ r is a
variant of a rule in S by Lemma 3.8.

We show that the corresponding result of Métivier [4, Theorem 8] is an easy consequence
of Theorem 3.9. Here a TRS R is said to be compatible with a reduction order > if ` > r for
every rewrite rule `→ r of R.

Theorem 3.10. Let R and S be equivalent canonical TRSs. If R and S are compatible with
the same reduction order then R .

= S.

Proof. Suppose R and S are compatible with the reduction order >. We show that→!
R ⊆ →!

S .
Let s →!

R t. We show that t ∈ NF(S). Let u be the unique S-normal form of t. We have
t →!

S u and thus t ↔∗R u because R and S are equivalent. Since t ∈ NF(R), we have u →!
R t.

If t 6= u then both t > u (as t→!
S u) and u > t (as u→!

R t), which is impossible. Hence t = u
and thus t ∈ NF(S). Together with s↔∗S t, which follows from the equivalence of R and S, we
conclude that s→!

S t. We obtain →!
S ⊆ →!

R by symmetry. Hence R and S are normalization
equivalent and the result follows from Theorem 3.9.

17



Normalization Equivalence of Rewrite Systems Hirokawa, Middeldorp, Sternagel

References

[1] B. Gramlich. On interreduction of semi-complete term rewriting systems. Theoretical Computer
Science, 258(1-2):435–451, 2001. doi:10.1016/S0304-3975(00)00030-X.

[2] N. Hirokawa, A. Middeldorp, and C. Sternagel. A new and formalized proof of abstract completion.
In Proc. 5th International Conference on Interactive Theorem Proving, volume 8558 of Lecture
Notes in Computer Science, 2014. To appear.

[3] J.W. Klop. Combinatory Reduction Systems. PhD thesis, Utrecht University, 1980.

[4] Y. Métivier. About the rewriting systems produced by the Knuth-Bendix completion algorithm.
Information Processing Letters, 16(1):31–34, 1983. doi:10.1016/0020-0190(83)90009-1.

[5] Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 2003.

18

http://dx.doi.org/10.1016/S0304-3975(00)00030-X
http://dx.doi.org/10.1016/0020-0190(83)90009-1

	Introduction
	Abstract Normalization Equivalence
	Normalization Equivalence

