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Abstract

This paper improves the existing criterion for proving confluence of a normal condi-
tional term rewriting system (CTRS) via the Şerbănuţă-Roşu transformation, a compu-
tationally equivalent transformation of CTRSs into unconditional term rewriting systems
(TRS), showing that a weakly left-linear normal CTRS is confluent if the transformed
TRS is confluent. Then, we discuss usefulness of the optimization of the Şerbănuţă-Roşu
transformation, which has informally been proposed in the literature.

1 Introduction

Conditional term rewriting is known to be much more complicated than unconditional term
rewriting in the sense of analyzing properties, e.g., operational termination [8], confluence [16],
reachability [4], and so on. A popular approach to the analysis of conditional term rewriting
systems (CTRS) is to transform a CTRS into an unconditional term rewriting system (TRS)
that is an overapproximation of the CTRS in terms of reduction. This approach enables us
to use techniques for the analysis of TRSs, which are well investigated in the literature. For
example, if the transformed TRS is terminating then the CTRS is operationally terminating [3].

There are two approaches to such transformations: unravelings [9, 10] proposed by Mar-
chiori (see, e.g., [5, 11]), and a transformation [17] proposed by Viry (see, e.g., [14, 5]). The
latest transformation based on Viry’s approach is a computationally equivalent transformation
proposed by Şerbănuţă and Roşu [14, 15], called the SR transformation. This converts a left-
linear confluent normal CTRS into a TRS which is computationally equivalent to the CTRS.
This means that the converted TRS can be used to exactly simulate reduction sequences of the
CTRS to normal forms — there is no reduction to from possible initial terms to normal forms,
which does not hold on the original CTRS. Another interesting use of the SR transformation is
to prove confluence of a left-linear normal CTRS: if the converted TRS is confluent on reachable
terms, then the CTRS is confluent [14]. However, as far as we know, there are no formal method
to prove confluence on reachable terms.

In this paper, we revisit the SR transformation from the viewpoint of proving confluence
of CTRSs, especially normal CTRSs. First, we improve the existing criterion [14] for proving
confluence of normal CTRSs via the SR transformation, showing that a weakly left-linear normal
CTRS is confluent if the transformed TRS is confluent on reachable terms. Then, by an example,
we show uselessness of the improved criterion for the case that we attempt to use confluence on
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arbitrary terms instead of confluence on reachable terms. Finally, we discuss usefulness of the
optimization of the SR transformation, which has informally been proposed in the literature [14].

2 The SR transformation for Normal CTRSs
In this section, we briefly recall the SR transformation [14] for normal CTRSs. For the sake
of readability, as in [14], we restrict our interest to normal 1-CTRSs, any rule of which has at
most one condition.

This paper assumes familiarity of readers with the basic notions and notations of term
rewriting [2, 13]. We only give the definition of normal CTRSs. Throughout the paper, we use
V as a countably infinite set of variables. An (oriented) conditional rewrite rule over a signature
F is a triple (l, r, c), denoted by l → r ⇐ c, such that the left-hand side l is a non-variable
term in T (F ,V), the right-hand side r is a term in T (F ,V), and the conditional part c is either
an empty sequence or a pair s � t of terms s and t over F . We may abbreviate it to l → r
if the conditional part is the empty sequence. A conditional term rewriting system (CTRS) is
a finite set R of conditional rewrite rules, and it is called a normal 1-CTRS if, for every rule
l→ r ⇐ s� t ∈ R, Var(l) ⊇ Var(r)∪Var(s) and the term t is a ground normal form w.r.t. the
underlying unconditional system Ru = {l → r | l → r ⇐ c ∈ R}. The sets of defined symbols
and constructors of R are denoted by DR and CR, respectively.

In the following, the word “conditional rule” is used for representing rules having exactly
one condition. We often denote a sequence oi, oi+1, . . . , oj of objects by oi..j . Moreover, for
the application of a mapping op to oi..j , we denote op(oi), . . . , op(oj) by op(oi..j), e.g., for a
sequence ti..j of terms and a substitution θ, we denote tiθ, . . . , tjθ by θ(ti..j).

Before transforming a CTRS R, we extend the signature of R as follows: we leave construc-
tors of R without any change; the arity of an n-ary defined symbol f is expanded to n + m
where f has m conditional rules in R, and we replace f by f with the arity n + m; a fresh
constant ⊥ and a fresh unary symbol 〈·〉 are introduced. We denote the extended signature by
F : F = {c | c ∈ CR} ∪ {f | f ∈ DR} ∪ {⊥, 〈·〉}. We introduce the mapping ext(·) to extend
the arguments of defined symbols by applying to terms inductively as follows: ext(x) = x for
x ∈ V; ext(c(t1..n)) = c(ext(t1..n)) for c/n ∈ CR; ext(f(t1..n)) = f(ext(t1..n), z1..m) for f/n ∈
DR where arityF (f) = n+m and z1, . . . , zm are fresh variables. The expanded arguments of f
are used for evaluating the corresponding conditions, and the fresh constant ⊥ is introduced to
the expanded arguments of defined symbols, which does not store any evaluation. We define a
mapping · from T (F ,V) to T (F ,V), which extends the arguments of defined symbols and puts
⊥ to all the expanded arguments by applying to terms inductively as follows: x = x for x ∈ V;
c(t1..n) = c(t1..n) for c ∈ CR; f(t1..n) = f(t1..n,⊥, . . . ,⊥) for f ∈ DR.

The SR transformation [14] is formally defined as follows.

Definition 1 (SR). Let f/n ∈ DR that has m conditional rules in R. Then, SR(f(w1..n)→ r)
= { f(ext(w1..n), z1..m)→ 〈r〉 } and, for the i-th conditional rule of f,

SR(f(w1..n)→ ri ⇐ si� ti)=

{
f(w′

1..n, z1..i−1,⊥, zi+1..m)→ f(w′
1..n, z1..i−1, 〈si〉, zi+1..m),

f(w′
1..n, z1..i−1, 〈ti〉, zi+1..m)→〈ri〉

}
where z1, . . . , zm are fresh variables, and w′j = ext(wj) for all 1 ≤ j ≤ n. The set of auxiliary
rules is defined as follows:

Raux = { 〈〈x〉〉 → 〈x〉 } ∪ { c(x1..i−1, 〈xi〉,xi+1..n)→ 〈c(x1..n)〉 | c/n ∈ CR, 1 ≤ i ≤ n }
∪{ f(x1..i−1, 〈xi〉,xi+1..n, z1..m)→ 〈f(x1..n,⊥, . . . ,⊥)〉 | f/n ∈ DR, 1 ≤ i ≤ n }

where z1, . . . , zm are fresh variables. The transformation SR is defined as follows: SR(R) =⋃
ρ∈R SR(ρ)∪Raux . Note that SR(R) is a TRS over F . The backtranslation mapping ·̂ for · is
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defined as follows: x̂ = x for x ∈ V; ̂c(t′1..n) = c(t̂′1..n) for c ∈ CR; ̂f(t′1..n,u1..m) = f(t̂′1..n)

for f ∈ DR; 〈̂t′〉 = t̂′. A term t′ in T (F ,V) is called reachable if there exists a term s ∈ T (F ,V)
such that 〈s〉 →∗SR(R) t

′. We say that SR (and also SR(R)) is sound for (reduction of) R if,

for all terms s in T (F ,V) and terms t′ ∈ T (F ,V), 〈s〉 →∗SR(R) t
′ implies s →∗R t̂′.

Note that ·̂ is not defined for ⊥, but ·̂ is a total function for reachable terms and their structural
subterms [14].

SR is complete for all normal CTRSs [14], i.e., for all terms s and t in T (F ,V), s →∗R t
implies 〈s〉 →∗SR(R) 〈t〉. On the other hand, SR is not sound for all normal CTRSs [14]. The

first rule in Raux removes the nest of 〈·〉, the second rule is used for shifting 〈·〉 upward, and
the third rules are used for both shifting 〈·〉 upward and resetting the evaluation of conditions
at the expanded arguments of f (see [14] for the detail of the role of 〈·〉 and its rules).

Example 2. Consider the following normal CTRS, a variant of the one in [14]:

R1 = { e(0)→ true, e(s(x))→ true⇐ e(x) � false, e(s(x))→ false⇐ e(x) � true }
R1 is transformed by SR as follows:

SR(R1) =


e(0, z1, z2)→ 〈true〉,

e(s(x),⊥, z2)→ e(s(x), 〈e(x,⊥,⊥)〉, z2), e(s(x), 〈false〉, z2)→ 〈true〉,
e(s(x), z1,⊥)→ e(s(x), z1, 〈e(x,⊥,⊥)〉), e(s(x), z1, 〈true〉)→ 〈false〉,

〈〈x〉〉 → 〈x〉, s(〈x〉)→ 〈s(x)〉, e(〈x〉, z1, z2)→ 〈e(x,⊥,⊥)〉


SR(R1) is confluent on reachable terms, but SR(R1) is not confluent.

3 Proving Confluence of CTRSs via the Transformation
It has been shown that if SR(R) is left-linear and confluent on reachable terms, then R is
confluent [14]. Note that by definition, R is left-linear iff so is SR(R). As described in [14], in
this claim, left-linearity is assumed in order to ensure soundness. Here, we give a proof so as
to relax the left-linearity to soundness.

Theorem 3. If SR(R) is sound for R and confluent on reachable terms, then R is confluent.

Proof. Let s, t1, and t2 be terms in T (F ,V) such that t1 ←∗R s →∗R t2. It follows from
completeness of SR that 〈t1〉 ←∗SR(R) 〈s〉 →

∗
SR(R) 〈t2〉. Since SR(R) is confluent on reachable

terms, there exists a term u′ ∈ T (F ,V) such that 〈t1〉 →∗SR(R) u
′ ←∗SR(R) 〈t2〉. It follows from

soundness of SR(R) that t1 →∗R û′ ←∗R t2. Therefore, R is confluent.

Theorem 3 means that soundness conditions of SR are very useful in proving confluence of
normal CTRSs. A normal CTRS R is called weakly left-linear [6] if every conditional rewrite
rule having at least one condition is left-linear, and for every unconditional rule, any non-linear
variable in the left-hand side does not occur in the right-hand side. Note that a left-linear
CTRS is weakly left-linear. Note also that R is weakly left-linear iff so is SR(R). It has been
shown that SR is sound for weakly left-linear normal CTRSs [12]. Thus, Theorem 3 provides
us a new sufficient condition for confluence of normal CTRSs.

Theorem 4. A weakly left-linear normal CTRS R is confluent if SR(R) is confluent on reach-
able terms.

It would be difficult to directly prove that SR(R) is confluent on reachable terms. A trivial
sufficient condition for the property is confluence on arbitrary terms.

Lemma 5. SR(R) is confluent on reachable terms if SR(R) is confluent.
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Due to Lemma 5, to prove confluence of R, instead of proving confluence on reachable terms,
we try to prove confluence of SR(R). Unfortunately, this approach looks impractical.

Example 6. As described in Example 2, SR(R1) is not confluent. Since R1 is a basic example
of normal CTRSs, the combination of Theorem 4 and Lemma 5 looks unpractical.

It is often that critical pairs between rules in SR(R) \Raux and Raux are not joinable. For
this reason, confluence of SR(R) is too severe to prove termination of R, and thus, SR is not
so useful to prove confluence of normal CTRSs.

Let us consider a direct proof for confluence on reachable terms again. When SR(R) is
terminating, it would be sufficient to prove that any critical pair is joinable if an instance of the
critical peak is reachable. For example, to prove confluence of SR(R1) on reachable terms, it
would be sufficient to prove that any instance of e(s(x), 〈false〉, 〈true〉) is not reachable. However,
it is in general undecidable whether a term is reachable.

Instead of such unreachability, an optimization has already been discussed in [14]. We recall
the optimization via the following example.

Example 7. Consider R1 in Example 2 again. The overlapping rules e(s(x))→ true⇐ e(x) �
false and e(s(x)) → false ⇐ e(x) � true have the same initial terms e(x) of conditions to be
evaluated. For this reason, we do not need two extra arguments of e, and then SR(R1) is
optimized as follows, where we denote the optimization of SR by SRopt :

SRopt(R1) =

{
e(0, z)→ 〈true〉, e(s(x),⊥)→ e(s(x), 〈e(x,⊥)〉),

e(s(x), 〈false〉)→ 〈true〉, e(s(x), 〈true〉)→ 〈false〉, . . .

}
SRopt(R1) is still not confluent since there are two critical pairs which are not joinable:
(e(〈s(x)〉, 〈false〉), 〈true〉) and (e(〈s(x)〉, 〈true〉), 〈false〉). As described in [14], the introduced
unary symbol 〈·〉 and its related rules are not necessary for constructor CTRSs in the sense of
soundness. Then, by removing them from SR(R1), we obtain the following orthogonal TRS:

{ e(0, z)→ true, e(s(x),⊥)→ e(s(x), e(x,⊥)), e(s(x), false)→ true, e(s(x), true)→ false }
Note that the resulting TRS above is equivalent to that obtained by [1]. Therefore, from
Theorem 4 and Lemma 5, R1 is confluent.

The optimization is useful in proving confluence of R2, but it is not always successful.

Example 8. Consider the following constructor normal CTRS, a variant of R1:

R2 =

{
e(0)→ true, e(s(x))→ true⇐ o(x) � true, e(s(x))→ false⇐ e(x) � true,
o(0)→ false, o(s(x))→ true⇐ e(x) � true, o(s(x))→ false⇐ o(x) � true

}
ForR2, SRopt does not differ from SR, i.e., SR(R2) = SRopt(R2) even when 〈·〉 is not introduced.
SR(R2) with/without 〈·〉 is not confluent, and thus, useful to prove confluence of R2.

Finally, we consider the case of non-constructor-based CTRSs.

Example 9. Consider the following normal CTRS over the signature {0, s, ◦, true, false} [14]:

R3 =

◦(x, ◦(y, l))→ ◦(y, ◦(x, l))⇐ x < y � true,
0 < 0→ false, 0 < s(0)→ true, 0 < s(s(x))→ 0 < s(x),

s(0) < 0→ false, s(s(x)) < 0→ s(x) < 0, s(x) < s(y)→ x < y


R3 is operationally terminating and the critical pair (◦(x, ◦(z, ◦(y, l)), ◦(y, ◦(x, ◦(z, l))))⇐ y <
z � true, x < y � true is joinable. Thus, R3 is confluent. The CTRS R3 is transformed by SR
into the following TRS: SR(R3) = SRopt(R3) = { ◦(x, ◦(y, l, c),⊥) → ◦(x, ◦(y, l, c), 〈x<y〉),
◦(x, ◦(y, l, c), 〈true〉)→ 〈◦(y, ◦(x, l,⊥))〉, . . . }. SR(R3) is not confluent because there is some
critical pairs which are not joinable, e.g., (〈◦(x, ◦(y, l, c),⊥)〉, 〈◦(y, ◦(x, l,⊥))〉). Notice that
◦(〈x〉, l, z1)→ 〈◦(x, l,⊥)〉 ∈ SR(R3).
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4 Conclusion
In this paper, we showed that a weakly left-linear normal CTRS is confluent if the transformed
TRS is confluent (on reachable terms). Then, by an example, we showed uselessness of the
improved criterion for the case that we attempt to use confluence on arbitrary terms instead
of confluence on reachable terms. Finally, we discussed usefulness of the optimization of the
SR transformation. We will make an experiment to evaluate usefulness of the optimization in
terms of proving confluence of CTRSs. The discussion is not a sufficient evidence for usefulness
of the optimization, and thus, we will formalize the optimization, adapt the claims which hold
on SR to the optimization, and compare the optimization with that of unravelings [7]. We will
also develop a more practical method to prove confluence of a CTRS by using critical pairs of
the transformed TRS.
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