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1 Introduction

Confluence of term rewriting systems (TRSs) is undecidable, even for flat TRSs [MOJ06] or length-two
string rewrite systems [SW08]. Two decidable subclasses are known: right-linear and shallow TRSs by
tree automata techniques [GT05] and terminating TRSs [KB70]. Most of sufficient conditions are for
either terminating TRSs [KB70] (extended to TRSs with relative termination [HA11, KH12]) or left-
linear non-overlapping TRSs (and their extensions) [Ros73, Hue80, Toy87, Oos95, Oku98, OO97]. For
non-linear TRSs, a goal is RTA open problem 58 “strongly non-overlapping and right-linear TRSs are
confluent”. A best known result strengthens the right-linear assumption to simple-right-linear [TO95,
OOT95], which means that each rewrite rule is right-linear and no left-non-linear variables appear in
the right hand side. Other trials by depth-preserving conditions are found in [GOO98].

We have proposed a different methodology, called a reduction graph [SO10]. It has shown that
“weakly non-overlapping, shallow, and non-collapsing TRSs are confluent”. An original idea comes
from observation that, when non-E-overlapping, peak-elimination uses only “copies” of reductions in
an original rewrite sequences. Thus, if we focus on terms appearing in peak elimination, they are
finitely many. We regard a rewrite relation over these terms as a directed graph, and we construct
a confluent directed acyclic graph (DAG) in a bottom-up manner, in which the shallow assumption
works. The keys are, a connected convergent DAG always has a unique normal form (if it is finite),
and convergence is preserved if we add an arbitrary reduction starting from that normal form.

This paper briefly sketches that “non-E-overlapping and weakly-shallow TRSs are confluent” by
extending reduction graph in our previous work [SO10] by introducing constructor expansion. A term
is weakly shallow if each defined function symbol appears either at the root or in the ground subterms,
and a TRS is weakly shallow if the both sides of rules are weakly shallow. The non-E-overlapping
property is undecidable for weakly shallow TRSs [MOM12] and a decidable sufficient condition is the
strongly non-overlapping condition. A Turing machine can be simulated by a weakly shallow TRS
(p.27 in [Klo93]); thus the word problem is undecidable, in contrast to shallow TRSs [CHJ94].

Basic definitions and notations
We follow standard definitions and terminology of graphs and TRSs [BN98]. As notational con-

vention, V for a finite set (often of terms), F is a finite set of function symbols, D and C are the sets
of defined and constructor symbols in F , respectively. X is the set of variables. We use s, t, u, v, w for
terms, x, y for variables, p, q for positions, σ, θ for substitutions, `→ r for a rewrite rule, and R for a
TRS.

An abstract reduction system (ARS) is a directed graph G = 〈V,→〉 with →⊆ V × V . For
V ′, V ′′ ⊆ V , →|V ′×V ′′ =→∩ (V ′ × V ′′). We write VG and →G to emphasize G. An edge v → u is an
out-edge of v and an in-edge of u. A node v is →-normal if it has no out-edges. Let G = 〈V,→〉 and
G′ = 〈V ′,→′〉. The union G∪G′ is 〈V ∪V ′,→∪→′〉. We say G is finite if V is finite, G is convergent
if G is confluent and terminating, G′ includes G (denoted by G′ ⊇ G) if V ′ ⊇ V and →′ ⊇ →, and G′

weakly subsumes G (denoted by G′ w G) if V ′ ⊇ V and ↔′∗ ⊇ →.
We use sub(t) for the set of direct subterms of a term t defined as sub(t) = ∅ if t is a variable and

sub(t) = {t1, . . . , tn} if t = f(t1, . . . , tn). s
p→
R

t is a top reduction if p = ε. Otherwise, it is a non-top
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reduction, written as s
ε<→
R
t. We use T |f to denote the subset of T ⊆ T(F,X) and f ∈ F that consists

of the terms in T with the root symbol f . For F ′ ⊆ F , we use T |F ′ to denote ∪f∈F ′T |f .
A weakly shallow term is a term in which defined function symbols appear only either at the root

or in the ground subterms (i.e., p 6= ε and root(s|p) ∈ D imply that s|p is ground). A rewrite rule
`→ r is weakly shallow if ` and r are weakly shallow. A TRS is weakly shallow if each rewrite rule is
weakly shallow. We assume that a TRS has finitely many rewrite rules.

Let `1 → r1, `2 → r2 ∈ R. If there exist substitutions θ1, θ2 for p ∈ PosX(`1) such that `1|pθ1 =

`2θ2 (resp. `1|pθ1
ε<↔
R

∗ `2θ2), (r1θ1, (`1θ1)[r2θ2]p) is a critical pair (resp. E-critical pair) except that

p = ε and the two rules are identical (up to renaming variables). A TRS R is overlapping (resp.
E-overlapping, strongly overlapping) if there exists a critical pair (resp. E-critical pair, critical pair
of linearizatoin of R). Note that when a TRS is left-linear, they are equivalent.

2 Extensions of convergent abstract reduction systems

Definition 2.1. For ARSs G1 = 〈V1,→1〉 and G2 = 〈V2,→2〉, we say that G1 ∪G2 is the hierarchical
combination of G2 with G1, denoted by G1 mG2, if →1 ⊆ (V1 \ V2)× V1.

Lemma 2.2. Let G1 m G2 be a convergent hierarchical combination of ARSs. If a convergent ARS
G3 weakly subsumes G2 and G1 mG3 is a hierarchical combination, then G1 mG3 is convergent.

Definition 2.3. Let G = 〈V,→〉 be a convergent ARS and v 6= v′. Let G′ be obtained by:
〈V ∪ {v′},→∪ {(v, v′)}〉 if v ∈ V is →-normal, and v′ 6∈ V
〈V,→∪ {(v, v′)}〉 if v ∈ V is →-normal, v′ ∈ V and v′ 6↔∗ v
〈V,→\ {(v′, v′′) | v′ → v′′} ∪ {(v, v′)}〉 if v ∈ V is →-normal, v′ ∈ V , and v′ ↔∗ v
〈V ∪ {v, v′},→∪ {(v, v′)}〉 if v 6∈ V
Undefined otherwise

We denote G′ by 〈V,→〉( (v → v′) if G′ is defined (i.e., the first four cases). We denote G( (v0 →
v1) ( (v1 → v2) ( · · ·( (vn−1 → vn) as G( (v0 → v1 → · · · → vn).

Proposition 2.4. Let G = 〈V,→〉 be a convergent ARS. Let v0, v1, . . . , vn satisfy vi 6= vj (for i 6= j),
and the following conditions:

i) if v0 ∈ V , then v0 is →-normal and vi ∈ V implies vi ↔∗ v0 for each i(< n),

ii) if v0 6∈ V , then v1, · · · , vn−1 6∈ V .

Then, G′ = G( (v0 → v1 → · · · → vn) is convergent, and satisfies G′ w G.

3 Reduction graphs

Definition 3.1 ([SO10]). A finite ARS G = 〈V,→〉 is an R-reduction graph if V ⊆ T(F,X) and
→ ⊆→

R
.

For an R-reduction graph G = 〈V,→〉, top-edges, inner-edges, and strict inner-edges are given as
ε→ = →∩ ε→

R
,
ε<→ = → ∩ ε<→

R
, and

6=ε→ = → \ ε→
R

, respectively. We use Gε, Gε<, and G6=ε to denote

〈V, ε→ 〉 〈V, ε<→ 〉, and 〈V, 6=ε→ 〉, respectively. Remark that an edge (s, t) ∈ → may be both
ε→ and

ε<→ ,

e.g., (f(a, a), f(b, a)) for R = {a → b, f(x, x) → f(b, a)}. For an R-reduction graph G = 〈V,→〉 and
F ′ ⊆ F , we represent G|F ′ = 〈V,→|F ′〉 where →|F ′ =→|V |F ′×V .
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Definition 3.2. Let G = 〈V,→〉 be an R-reduction graph. The direct-subterm reduction-graph

sub(G) of G is 〈sub(V ), sub(→)〉 where 〈sub(V ), sub(→)〉 = 〈
⋃
t∈V sub(t), {(si, ti) | f(s1, . . . , sn)

ε<→
f(t1, . . . , tn), si 6= ti}〉. An R-reduction graph G = 〈V,→〉 is subterm-closed if sub(V ) ⊆ V and

sub(
6=ε→ ) ⊆ ↔∗.

Lemma 3.3. Let G = 〈V,→〉 be a subterm-closed R-reduction graph. Assume that p ∈ Pos(s) for a
term s and s[t]p ↔∗ s[t′]p, in which any reductions do not occur above p. Then t↔∗ t′.
Definition 3.4. Let G = 〈V,→〉 be an R-reduction graph and F ′ (⊆ F ). The F ′-monotonic extension
is

MF ′(G) = 〈V1,→1〉 for

{
V1 = {f(s1, . . . , sn) | f ∈ F ′, s1, . . . , sn ∈ V },
→1 = {(f(· · · s · · · ), f(· · · t · · · )) ∈ V1 × V1 | s→ t}.

When G is subterm-closed, an C-expansion MC(G) is the hierarchical combination G|D m MC(G)

(= G|D ∪MC(G)). The k-times application of MC to G is denoted by MC
k
(G).

Example 3.5. As a running example, we use a TRS R2 = {f(x, g(x))→ g3(x), c→ g(c) } with C =
{g} and D = {c, f}. Consider a subterm-closed R2-reduction graph G = 〈{c, g(c), g2(c)}, {(c, g(c))}〉.
For easy description, we also denote asG = {c→ g(c), g2(c)}. Then, MC(G) = {g(c)→ g2(c), g3(c)},
MC(G) = {c→ g(c)→ g2(c), g3(c)}, MC

3
(G) = {c→ g(c)→ g2(c)→ g3(c)→ g4(c), g5(c)}.

Lemma 3.6. For a subterm-closed R-reduction graph G and m > k ≥ 0, (1) G v MC
k
(G),

(2) MC
k
(G) is subterm-closed, (3) MC

k
(G) is convergent, if G is convergent, and (4) MC

k
(G) v

MC
m

(G).

4 Constructor expansion

In Section 4 and 5, given an R-reduction graph G0, we show how to inductively construct a convergent
and subterm-closed R-reduction graph G4 with G0 v G4. Note that Section 5 assumes that a TRS R
is non-E-overlapping and weakly shallow. Throughout these sections, we fix the notations.

• Given an R-reduction graph G0 = 〈V0,→0〉 as an input.

• G = 〈V,→〉 is used to denote a convergent and subterm-closed R-reduction graph that weakly
subsumes sub(G0) (by induction hypothesis).

• G1 = 〈V1,→1〉 denotes a convergent R-reduction graph with MF (G) v G1 (by Lemma 4.1).

• G2i = 〈V2i ,→2i〉 denotes MF (MC
i
(G)) for i ≥ 0.

• T denotes a subgraph of (Gε0∪Gε)\(Gε<0 ∪Gε<) such that T modulo↔∗1 is acyclic and preserves
connectivity of (Gε0 ∪Gε) \ (Gε<0 ∪Gε<) modulo ↔∗1.

• We repeatedly expand G1 (by Lemma 5.1 and 5.2) by adding edges of T from nodes with
out-edges only to sink order, and construct a convergent and subterm-closed G4 with G0 v G4.

If Gi = 〈Vi,→i〉 is convergent, we refer the normal form (in Gi) of a term u(∈ Vi) by u↓i.
Lemma 4.1. For a convergent and subterm-closed R-reduction graph G, there exist k (≥ 0) and an
R-reduction graph G1 satisfying the following conditions: i) G1 is convergent, and consists of non-top
edges, ii) G1 v G2k , iii) u↔∗2i v implies u↔∗1 v for each u, v ∈ V1 and i (≥ 0), and iv) MF (G) v G1.

Example 4.2. Consider R2 in Example 3.5. Let G0 = {f(g(c), c) ← f(c, c) → f(c, g(c))
ε→ g3(c)}.

The subterm graph sub(G0) is equal to G in Example 3.5, and is convergent and subterm-closed.
Then, Lemma 4.1 starts from MF (G), which is displayed by the solid arrows in Figure 1. An example
of G1 is constructed by augmenting the dashed edges with k = 1.
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c f(c, c) → f(g(c), c) f(g2(c), c)

→̇ ↓ ↓ ↓

g(c) f(c, g(c)) → f(g(c), g(c)) 99K f(g2(c), g(c))
↓
99K

g2(c) f(c, g2(c)) → f(g(c), g2(c)) 99K f(g2(c), g2(c))99K ‖
g3(c) →̇ g4(c) →̇ g5(c) ←̇ f(g2(c), g2(c))

Figure 1: G4 (dot arrows) and G1 (dashed arrows) starting from G0 (solid arrows) in Example 3.5

5 Merging top edges to the direct-subterm graph

Let G1 = 〈V1,→1〉 and T1 = 〈VT1 ,→ T1
〉 be R-reduction graphs with VT1 ⊆ V1. The component graph,

denoted by T1/G1, of T1 with G1, is the graph 〈V,→〉 having connected components of G1 as nodes
and→T1/G1

as edges such that V = {[v]↔ ∗1 | v ∈ V1} and→T1/G1
= {([u]↔ ∗1 , [v]↔ ∗1) | (u, v) ∈ →T1

}.

If clear from the context, we simply denote [v] instead of [v]↔ ∗1 .

Lemma 5.1. Let G be a convergent subterm-closed R-reduction graph, G1 = 〈V1,→1〉, and k as in

Lemma 4.1. Let →S ,→T ⊆ V1 × V1 such that →S =
ε→ S, →T =

ε→ T ,
ε→G⊆ (↔ S ∪ ↔ T ∪ ↔ 1)ε,

and

v) The component graph (S ∪ T )/G1 is acyclic, where out-edges are at most one for each node.
Moreover, if [u]↔ ∗1 has an in-edge in T/G1 then it has no edges in S/G1.

vi) u is →1-normal for each (u, v) ∈ S.

If T 6= ∅, there is a tuple (S′, T ′, G′1, k
′) such that |T | > |T ′| and the conditions i) to vi), (1) ↔ ∗1 ⊆

↔ ∗1′ and (2) (↔ T ∪↔ S)∗ ⊆ (↔ T ′∪↔ S′∪↔ 1′)
∗ hold. We denote it by (S, T,G1, k) ` (S′, T ′, G′1, k

′).

A convergent reduction graph G4 = 〈V4,→4〉 with G0 v G4 is obtained from S = φ, T (after
` in Lemma 5.1 is preprocessed), and G1 by repeated applications of `l, `r, and `e below. For

(`σ, rσ) ∈ T , there are h ≥ k and a substitution θ with (`σ)↓1 = u0(
ε<→
R
∩ ↔ ∗2h)u1(

ε<→
R
∩ ↔ ∗2h) · · · (ε<→

R

∩ ↔ ∗2h)un = `θ.

Let


(S, T,G1, k) `l (S, T,G1l , h) by G1l = G1 ( (u0 → · · · → un).

(S, T,G1l , h) `r (S, T,G1′ , k
′) for w ∈ V1 such that w is → 1l -normal, and w ↔ ∗2k′ rθ.

(S, T,G1′ , k
′) `e (S′, T ′, G1′ , k

′) for S′ = S ∪ {(`θ, rθ)} and T ′ = T \ {(`σ, rσ)}.

Lemma 5.2. Let G0 = 〈V0,→0〉 be an R-reduction graph. Then, there exists a convergent and
subterm-closed R-reduction graph G4 with G0 v G4.

Example 5.3. Let us consider to apply Lemma 5.2 on G0 in Example 4.2. First, we take a convergent
subterm-closed R2-reduction graph that weakly subsumes sub(G0). This graph is essentially the same
as G in Example 3.5, containing some garbage. For simplicity, we use G in Example 3.5. As in
Example 4.2, we obtain G1 and k = 1. Let T = (Gε0 ∪Gε) \ (Gε<0 ∪Gε<), where Gε0 and Gε have the
only edges f(c, g(c))→ g3(c) and c→ g(c), respectively.
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The conversion ` is applied twice, corresponding to two edges in T . The edge c → g(c) in T is
simply moved to S. For the edge f(c, g(c)) → g3(c) in T , `l adds f(g2(c), g2(c)) → f(g2(c), g3(c))
to G1. `r adds g3(c) → g4(c) → g5(c) to G1 and increases k to 3. `e adds f(g2(c), g3(c)) → g5(c)

to S. They are denoted by dotted arrows. Since MC(MC
3
(G)) is {g(c) → g3(c) → · · · → g4(c) →

g5(c), g6(c)}, G4 = (S ∪ G1|D) mMC(MC
2
(G)) is as in Figure 1, in which some garbage nodes are

not presented.

Main Theorem Non-E-overlapping and weakly-shallow TRSs are confluent.
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