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1 Introduction

Confluence of term rewriting systems (TRSs) is undecidable, even for flat TRSs [MOJ06] or length-two
string rewrite systems [SW08]. Two decidable subclasses are known: right-linear and shallow TRSs by
tree automata techniques [GT05] and terminating TRSs [KB70]. Most of sufficient conditions are for
either terminating TRSs [KB70] (extended to TRSs with relative termination [HATIl [KH12]) or left-
linear non-overlapping TRSs (and their extensions) [Ros73), [Hue80, [Toy87], [00s95], [Oku98, [O0O97]. For
non-linear TRSs, a goal is RTA open problem 58 “strongly non-overlapping and right-linear TRSs are
confluent”. A best known result strengthens the right-linear assumption to simple-right-linear [TO95]
0O0T95], which means that each rewrite rule is right-linear and no left-non-linear variables appear in
the right hand side. Other trials by depth-preserving conditions are found in [GOO98].

We have proposed a different methodology, called a reduction graph [SO10]. It has shown that
“weakly non-overlapping, shallow, and non-collapsing TRSs are confluent’. An original idea comes
from observation that, when non- F-overlapping, peak-elimination uses only “copies’ of reductions in
an original rewrite sequences. Thus, if we focus on terms appearing in peak elimination, they are
finitely many. We regard a rewrite relation over these terms as a directed graph, and we construct
a confluent directed acyclic graph (DAG) in a bottom-up manner, in which the shallow assumption
works. The keys are, a connected convergent DAG always has a unique normal form (if it is finite),
and convergence is preserved if we add an arbitrary reduction starting from that normal form.

This paper briefly sketches that “non-E-overlapping and weakly-shallow TRSs are confluent” by
extending reduction graph in our previous work [SO10] by introducing constructor expansion. A term
is weakly shallow if each defined function symbol appears either at the root or in the ground subterms,
and a TRS is weakly shallow if the both sides of rules are weakly shallow. The non-E-overlapping
property is undecidable for weakly shallow TRSs [MOM12] and a decidable sufficient condition is the
strongly non-overlapping condition. A Turing machine can be simulated by a weakly shallow TRS
(p-27 in [Kl093]); thus the word problem is undecidable, in contrast to shallow TRSs [CHJ94].

Basic definitions and notations

We follow standard definitions and terminology of graphs and TRSs [BNOS]. As notational con-
vention, V for a finite set (often of terms), F is a finite set of function symbols, D and C' are the sets
of defined and constructor symbols in F', respectively. X is the set of variables. We use s, ¢, u, v, w for
terms, z,y for variables, p, ¢ for positions, o, 8 for substitutions, ¢ — r for a rewrite rule, and R for a
TRS.

An abstract reduction system (ARS) is a directed graph G = (V,—) with -C V x V. For
VIV CV, =lyixyr = =NV x V). We write Vi and —¢ to emphasize G. An edge v — u is an
out-edge of v and an in-edge of u. A node v is —-normal if it has no out-edges. Let G = (V, —) and
G' = (V’,—='). The union GUG" is (VUV’, —»U—="). We say G is finite if V is finite, G is convergent
if G is confluent and terminating, G’ includes G (denoted by G’ D G) if V/ 2 V and =’ O —, and G/
weakly subsumes G (denoted by G' I G) if V' DV and +™* D —.

We use sub(t) for the set of direct subterms of a term t defined as sub(t) = ) if ¢ is a variable and

sub(t) = {t1,...,tn} if t = f(t1,...,tn). % t is a top reduction if p = . Otherwise, it is a non-top

34 T. Aoto & D. Kesner (ed.); 3rd International Workshop on Confluence, pp. 34



Non-E-overlapping and weakly shallow TRSs are confluent Sakai, Oyamaguchi, and Ogawa

reduction, written as s EE>< t. We use T'|; to denote the subset of T' C T(F, X) and f € F that consists

of the terms in T with the root symbol f. For F' C F', we use T'|p+ to denote Usep T|y.

A weakly shallow term is a term in which defined function symbols appear only either at the root
or in the ground subterms (i.e., p # € and root(s|,) € D imply that s|, is ground). A rewrite rule
¢ — r is weakly shallow if ¢ and r are weakly shallow. A TRS is weakly shallow if each rewrite rule is
weakly shallow. We assume that a TRS has finitely many rewrite rules.

Let ¢4 — 71,2 — 79 € R. If there exist substitutions 6,6, for p € Posx (¢1) such that ¢;|,61 =

0305 (resp. £1]p01 § ¥ 0302), (1161, (€1601)[r202],) is a critical pair (vesp. E-critical pair) except that

p = € and the two rules are identical (up to renaming variables). A TRS R is overlapping (resp.
E-overlapping, strongly overlapping) if there exists a critical pair (resp. E-critical pair, critical pair
of linearizatoin of R). Note that when a TRS is left-linear, they are equivalent.

2 Extensions of convergent abstract reduction systems

Definition 2.1. For ARSs G; = (V1, —1) and Gy = (Va, —9), we say that G1 UGy is the hierarchical
combination of Go with G1, denoted by Gy > Ga, if —1 C (V1 \ Vo) x V1.

Lemma 2.2. Let G1 > G4 be a convergent hierarchical combination of ARSs. If a convergent ARS
Gs weakly subsumes Gy and G1 > G3 is a hierarchical combination, then Gy > Gs is convergent.

Definition 2.3. Let G = (V, —) be a convergent ARS and v # v’. Let G’ be obtained by:

(Vu{v'}, = uU{(v,v)}) if v eV is —-normal, and v' € V

(V.= U{(v,v)}) if v eVis —-normal, v € V and v/ ¢* v
(V,=\{(",v") | v = v"}U{(v,v")}) ifv €V is »-normal, v’ € V, and v’ <* v
(VU{v,v'}, = U{(v,0")}) ifogV

Undefined otherwise

We denote G’ by (V, =) — (v — v') if G’ is defined (i.e., the first four cases). We denote G —o (vg —
v1) —o (V1 = vg) —o -+ —o (U1 = Uy) a8 G —o (Vg = V1 —> -+ — V).

Proposition 2.4. Let G = (V,—) be a convergent ARS. Let vo,v1, ..., vy, satisfy v; # v; (fori# j),
and the following conditions:

i) if vg € V, then vy is —-normal and v; € V implies v; <> vy for each i(< n),
it) ifvg €V, then vy, -+ ,v,_1 € V.

Then, G' = G — (vg — v1 = -+ = vy,) is convergent, and satisfies G' J G.

3 Reduction graphs

Definition 3.1 ([SOI10]). A finite ARS G = (V,—) is an R-reduction graph if V. C T(F,X) and
— C ? .

For an R-reduction graph G = (V, =), top-edges, inner-edges, and strict inner-edges are given as

5 =50 %, S =95n ?, and ia ==\ %), respectively. We use G¢, G°<, and G7° to denote

(V,5 (V,€—<> ), and (V] 7 ), respectively. Remark that an edge (s,t) € — may be both < and 5,
e

)
o (f(a,a), f(b,a)) for R = {a — b, f(z,z) = f(b,a)}. For an R-reduction graph G = (V,—) and
F' C F, we represent G|p: = (V, =|p/) where —|p = =y, xv-

35



Non-E-overlapping and weakly shallow TRSs are confluent Sakai, Oyamaguchi, and Ogawa

Definition 3.2. Let G = (V,—) be an R-reduction graph. The direct-subterm reduction-graph
sub(G) of G is (sub(V'),sub(—)) where (sub(V),sub(—)) = (U,cy sub(), {(si,t:) | f(s1,---,8n) 5
flt1, ...y tn), si # ti}). An R-reduction graph G = (V,—) is subterm-closed if sub(V) C V and
sub(is) C &%

Lemma 3.3. Let G = (V,—) be a subterm-closed R-reduction graph. Assume that p € Pos(s) for a
term s and s[t], <+* s[t'],, in which any reductions do not occur above p. Then t <>* t'.

Definition 3.4. Let G = (V, —) be an R-reduction graph and F’ (C F'). The F'-monotonic extension
is

_ Vi = {f(s1,--,82) | fEF, s1,...,8, €V},
Mp(G) = (V1,—1) for {_1)1 _ {(f(-l--s---),f(-nt-u))leV1><V1\s—>t}.

When G is subterm-closed, an C-expansion Mc(G) is the hierarchical combination G|p > Mc(G)
(= G|p U Mc(G)). The k-times application of M¢ to G is denoted by mk (G).
Example 3.5. As a running example, we use a TRS Ry = {f(z, g(z)) — ¢3(z), ¢ — g(

c
{9} and D = {c, f}. Consider a subterm-closed Rs-reduction graph G' = ({c, g(c), g*(c)}
For easy description, we also denote as G = {¢ — g(c), g?(¢)}. Then, Mc(G) = {g(c) = ¢

_— 3
Mc(G) = {e = g(e) = g%(c), g*(c)}, Mo™(G) = {e— g(c) = g%(c) = ¢°(c) = g*(0), g°(0)}-
Lemma 3.6. For a subterm-closed R-reduction graph G and m > k > 0, (1) G C Ek(G

(2) Ek(G) is subterm-closed, (3) mk(G) is convergent, if G is convergent, and (4) Fck(G) C
Mc (G).

~—

4 Constructor expansion

In Section[d and[f] given an R-reduction graph G, we show how to inductively construct a convergent
and subterm-closed R-reduction graph G4 with Gy C G4. Note that Section [5| assumes that a TRS R
is non- E-overlapping and weakly shallow. Throughout these sections, we fix the notations.

e Given an R-reduction graph Gy = (Vy, —) as an input.

e G = (V,—) is used to denote a convergent and subterm-closed R-reduction graph that weakly
subsumes sub(Gyp) (by induction hypothesis).

e Gy = (V4,—1) denotes a convergent R-reduction graph with Mr(G) C Gy (by Lemma [4.1).

Go, = (Va,,—2,) denotes MF(FCZ(G)) for ¢ > 0.

T denotes a subgraph of (G§UG®)\ (G§~UG*<) such that T modulo <7 is acyclic and preserves
connectivity of (G§ U G*) \ (G§< U G*<) modulo .

e We repeatedly expand Gp (by Lemma and by adding edges of T from nodes with
out-edges only to sink order, and construct a convergent and subterm-closed G4 with Gy C G4.
If G; = (V;,—;) is convergent, we refer the normal form (in G;) of a term u(€ V;) by ul,;.

Lemma 4.1. For a convergent and subterm-closed R-reduction graph G, there exist k (> 0) and an
R-reduction graph G1 satisfying the following conditions: i) Gy is convergent, and consists of non-top
edges, ii) G1 T Go, , iii) u <3 v implies u <7 v for each u,v € Vi and i (> 0), and ) Mp(G) C G;.
Example 4.2. Consider Ry in Example Let Go = {f(g(c),c) + f(c,c) = flc,g(c)) = ¢3(c)}.

The subterm graph sub(Gy) is equal to G in Example and is convergent and subterm-closed.
Then, Lemma starts from Mp(G), which is displayed by the solid arrows in Figure[l} An example
of G1 is constructed by augmenting the dashed edges with k = 1.
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c fle) = flge),0) fg*(e),¢)
L + N 1

g(f) fle,g(e)) —  flgle),g(c)) --» f(gg(c‘),g(C))
PO P <[5 0) - f<g?<cfl,g2<c>>
RO Y O R I ON-0)

Figure 1: G4 (dot arrows) and G; (dashed arrows) starting from Gg (solid arrows) in Example

5 Merging top edges to the direct-subterm graph

Let G1 = (Vi,—1) and Ty = (Vp,, — p,) be R-reduction graphs with Vz, € Vy. The component graph,
denoted by T1 /Gy, of Th with Gy, is the graph (V, —) having connected components of G as nodes
and =7, /g, as edges such that V' = {[U]HT |veVitand = /g, = {([U]HT’ [v] s{) | (u,v) € =}

If clear from the context, we simply denote [v] instead of [v] o

Lemma 5.1. Let G be a convergent subterm-closed R-reduction graph, G1 = (Vi,—1), and k as in
Lemma. Let —g,—1r C Vi x Vi such that —-g = QS, —r = QT, 3(;2 (U pUe)s,

and

v) The component graph (S UT)/G1 is acyclic, where out-edges are at most one for each node.
Moreover, if [u]<_>x{ has an in-edge in T /Gy then it has no edges in S/G1.

vi) u is —1-normal for each (u,v) € S.

If T # 0, there is a tuple (S, T', G}, k') such that |T| > |T'| and the conditions i) to vi), (1) <>} C
1 and (2) (¢ pUs o)* C (¢ p U o/ U< 10)* hold. We denote it by (S,T,G1, k) F (S, T, Gy, k).

A convergent reduction graph G4 = (Vy, —4) with Gy C G4 is obtained from S = ¢, T (after

F in Lemma is preprocessed), and G; by repeated applications of ;, k., and . below. For
(o,ro) € T, there are h > k and a substitution 6 with (¢o)l; = uo(%)< N < 3,)“1(? N5, ) (?

N <5, Jun = £0.

(S,T7G1,k‘) l_l (S,T,G117h) by Gll = Gl —o (’LL() — = un)
Let (S,T,Gyi,h) b, (S, T,Gy, k) for w € Vi such that w is — ;-normal, and w <—>§k, r6.

(S, T, Gy, k') Fe (S, T, G1r k') for 8" = SU{(€0,70)} and T' = T \ {(fo,70)}.

Lemma 5.2. Let Gy = (Vy,—0) be an R-reduction graph. Then, there exists a convergent and
subterm-closed R-reduction graph G4 with Go C Gy.

Example 5.3. Let us consider to apply Lemmal5.2]on Gy in Example[d.2] First, we take a convergent
subterm-closed Rs-reduction graph that weakly subsumes sub(Gg). This graph is essentially the same
as G in Example [3.5] containing some garbage. For simplicity, we use G in Example [3.5] As in

Example we obtain Gy and k = 1. Let T = (G5 U G?°) \ (G§< U G*<), where G§ and G* have the
only edges f(c, g(c)) = g®(c) and ¢ — g(c), respectively.
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The conversion F is applied twice, correspondmg to two edges in T. The edge ¢ — g(c) in T is
simply moved to S. For the edge f(c g(c)) = ¢*(c) in T, F; adds f(g3(c), g°(c )) ( f(g%(e), g ( ))
to G1. k. adds ¢®(c) — g*(c) — ¢°(c) to Gy and 1ncreases k to 3. k. adds f(g%(c),g%(c)) — g°(c)

to S. They are denoted by dotted arrows. Since MC(MC (@)) is {g(c) = ¢*(c) = -+ — g*(c ) —

g°(c), ¢%()}, G4 = (SUGi|p) > MC(M702(G)) is as in Figure [1} in which some garbage nodes are
not presented.

Main Theorem Non-E-overlapping and weakly-shallow TRSs are confluent.
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