On the Church-Rosser Property for the Direct Sum of Term Rewriting Systems

Yoshihito TOYAMA
NTT Electrical Communications Laboratories
3-9-11 Midori-cho, Musashino-shi, Tokyo 180 Japan

Abstract

The direct sum of two term rewriting systems is the union of systems having disjoint sets of function symbols. It is shown that if two term rewriting systems both have the Church-Rosser property respectively then the direct sum of these systems also has this property.

1 Introduction

We consider properties of the direct sum system $R_{1} \oplus R_{2}$ obtained from two term rewriting systems R_{1} and R_{2} [3]. The first study on the direct sum system was conducted by Klop in [3] in order to consider the Church-Rosser property for combinatory reduction systems having nonlinear rewriting rules, which contain term rewriting systems as a special case. He showed that if R_{1} is a regular, i.e., linear and nonambiguous, system and R_{2} consists of the single nonlinear rule $D(x, x) \triangleright x$, then the direct sum $R_{1} \oplus R_{2}$ has the Church-Rosser property. He also showed in the same manner that if R_{2} consists of the nonlinear rules

$$
R_{2} \quad\left\{\begin{array}{l}
\operatorname{if}(T, x, y) \triangleright x \\
\operatorname{if}(F, x, y) \triangleright y \\
\operatorname{if}(z, x, x) \triangleright x
\end{array}\right.
$$

then the direct sum $R_{1} \oplus R_{2}$ also has the Church-Rosser property. This result gave a positive answer for an open problem suggested by O'Donnell [4].

Klop's work was done on combinatory reduction systems having the following restrictions: R_{1} is a regular (i.e., linear and nonambiguous) system, and R_{2} is a
nonlinear system having specific rules such as $D(x, x) \triangleright x$. In particular, the restriction on R_{1} plays an essential role in his proof of the Church-Rosser property of $R_{1} \oplus R_{2}$; hence his result cannot be applied to combinatory reduction systems (and term rewriting systems) without this restriction.

From Klop's work, we consider the conjecture that these restrictions can be completely removed from R_{1} and R_{2} in the framework of term rewriting systems [2], i.e., the direct sum of term rewriting systems R_{1} and R_{2}, independent of their properties such as linearity or ambiguity, always preserves their Church-Rosser property. In this paper we shall prove this conjecture: For any two term rewriting systems R_{1} and R_{2}, R_{1} and R_{2} have the Church-Rosser property iff $R_{1} \oplus R_{2}$ has this property.

2 Notations and Definitions

We explain notions of reduction systems and term rewriting systems, and give definitions for the following sections. We start from abstract reduction systems.

2.1 Reduction Systems

A reduction system is a structure $R=\langle A, \rightarrow\rangle$ consisting of some object set A and some binary relation \rightarrow on A (i.e., $\rightarrow \subset A \times A$), called a reduction relation. A reduction (starting with x_{0}) in R is a finite or infinite sequence $x_{0} \rightarrow x_{1} \rightarrow x_{2} \rightarrow \cdots$. The identity of elements of A (or syntactical equality) is denoted by $\equiv . \xrightarrow{*}$ is the transitive reflexive closure of $\rightarrow, \stackrel{\equiv}{\Longrightarrow}$ is the reflexive closure of \rightarrow, and $=$ is the equivalence relation generated by \rightarrow (i.e., the transitive reflexive symmetric closure of \rightarrow). If $x \in A$ is minimal with respect to \rightarrow, i.e., $\neg \exists y \in A[x \rightarrow y]$, then we say that x is a normal form, and let $N F \rightarrow$ or $N F$ be the set of normal forms. If $x \xrightarrow{*} y$ and $y \in N F$ then we say x has a normal form y and y is a normal form of x.

Definition. $R=\langle A, \rightarrow\rangle$ is strongly normalizing (denoted by $S N(R)$ or $S N(\rightarrow)$) iff every reduction in R terminates, i.e., there is no infinite sequence $x_{0} \rightarrow x_{1} \rightarrow$ $x_{2} \rightarrow \cdots$.

Definition. $R=\langle A, \rightarrow\rangle$ has the Church-Rosser property (denoted by $C R(R)$) iff $\forall x, y, z \in A[x \xrightarrow{*} y \wedge x \xrightarrow{*} z \Rightarrow \exists w \in A, y \xrightarrow{*} w \wedge z \xrightarrow{*} w]$.

We express this property with the diagram in Figure 1. In this sort of diagram, dashed arrows denote (existential) reductions depending on the (universal) reductions shown by full arrows.

Figure 1

The following properties are well known [1],[2].

Properties. Let R have the Church-Rosser property, then,
(1) the normal form of any element, if it exists, is unique,
(2) $\forall x, y \in A[x=y \Rightarrow \exists w \in A, x \xrightarrow{*} w \wedge y \xrightarrow{*} w]$.

2.2 Term Rewriting Systems

Next, we will explain term rewriting systems that are reduction systems having a term set as an object set A.

Let F be an enumerable set of function symbols denoted by f, g, h, \cdots, and let V be an enumerable set of variable symbols denoted by x, y, z, \cdots where $F \cap V=\phi$. By $T(F, V)$, we denote the set of terms constructed from F and V. An arity function ρ is a mapping from F to natural numbers \mathbf{N}, and if $\rho(f)=n$ then f is called an n-ary function symbol. In particular, a 0 -ary function symbol is called a constant.

The set $T(F, V)$ of terms on a function symbol set F is inductively defined as follows:
(1) $x \in T(F, V)$ if $x \in V$,
(2) $f \in T(F, V)$ if $f \in F$ and $\rho(f)=0$,
(3) $f\left(M_{1}, \ldots, M_{n}\right) \in T(F, V)$ if $f \in F, \rho(f)=n>0$, and $M_{1}, \ldots, M_{n} \in T(F, V)$.

We use T for $T(F, V)$ when F is clear in the context.
A substitution θ is a mapping from a term set T to T such that;
(1) $\theta(f)=f$ if $f \in F$ and $\theta(f)=0$,
(2) $\theta\left(f\left(M_{1}, \ldots, M_{n}\right)\right) \equiv f\left(\theta\left(M_{1}\right), \ldots, \theta\left(M_{n}\right)\right)$ if $f\left(M_{1}, \ldots, M_{n}\right) \in T$.

Thus, for term $M, \theta(M)$ is determined by its values on the variable symbols occurring in M. Following common usage, we write this as $M \theta$ instead of $\theta(M)$.

Consider an extra constant \square called a hole and the set $T(F \cup\{\square\}, V)$. Then $C \in T(F \cup\{\square\}, V)$ is called a context on F. We use the notation $C[, \ldots$,$] for the$ context containing n holes ($n \geq 0$), and if $N_{1}, \ldots, N_{n} \in T(F, V)$, then $C\left[N_{1}, \ldots, N_{n}\right]$ denotes the result of placing N_{1}, \ldots, N_{n} in the holes of $C[, \ldots$,$] from left to right.$ In particular, $C[$] denotes a context containing precisely one hole.
N is called a subterm of $M \equiv C[N]$. Let N be a subterm occurrence of M; then, we write $N \subseteq M$, and if $N \not \equiv M$, then we write $N \subset M$. If N_{1} and N_{2} are subterm occurences of M having no common symbol occurrences (i.e., $M \equiv C\left[N_{1}, N_{2}\right]$), then N_{1}, N_{2} are called disjoint (denoted by $N_{1} \perp N_{2}$).

A rewriting rule on T is a pair $\left\langle M_{l}, M_{r}\right\rangle$ of terms in T such that $M_{l} \notin V$ and any variable in M_{r} also occurs in M_{l}. The notation \triangleright denotes a set of rewriting rules on T and we write $M_{l} \triangleright M_{r}$ for $\left\langle M_{l}, M_{r}\right\rangle \in \triangleright$. A \rightarrow redex, or redex, is a term $M_{1} \theta$, where $M_{l} \triangleright M_{r}$, and in this case $M_{r} \theta$ is called a \rightarrow contractum, of $M_{l} \theta$. The set \triangleright of rewriting rules on T defines a reduction relation \rightarrow on T as follows:

$$
\begin{aligned}
& M \rightarrow N \text { iff } M \equiv C\left[M_{l} \theta\right], N \equiv C\left[M_{r} \theta\right], \text { and } M_{l} \triangleright M_{r} \\
& \quad \text { for some } M_{l}, M_{r}, C[], \text { and } \theta .
\end{aligned}
$$

When we want to specify the redex occurence $A \equiv M_{l} \theta$ of M in this reduction, write $M \xrightarrow{A} N$.

Definition. A term rewriting system R on T is a reduction system $R=\langle T, \rightarrow\rangle$ such that the reduction relation \rightarrow is defined by a set \triangleright of rewriting rules on T. If R has $M_{l} \triangleright M_{r}$, then we write $M_{l} \triangleright M_{r} \in R$.

If every variable in term M occurs only once, then M is called linear. We say that R is linear iff for any $M_{l} \triangleright M_{r} \in R, M_{l}$ is linear. R is called nonlinear if R is not linear.

Let $M \triangleright N$ and $P \triangleright Q$ be two rules in R. Then the two rules are overlapping iff
(1) if $M \triangleright N$ and $P \triangleright Q$ are different rules, then

$$
\exists M^{\prime} \subseteq M\left(M^{\prime} \notin V\right), \exists \theta_{1}, \exists \theta_{2}, M^{\prime} \theta_{1} \equiv P \theta_{2} ;
$$

(2) if $M \triangleright N$ and $P \triangleright Q$ are the same rule, then

$$
\exists M^{\prime} \subset M\left(M^{\prime} \notin V\right), \exists \theta_{1}, \exists \theta_{2}, M^{\prime} \theta_{1} \equiv P \theta_{2} .
$$

Note that in (2) we remove the case $M^{\prime} \equiv M$ which gives the trivial overlapping. We say that R is ambiguous iff R has overlapping rules. R is called nonambiguous if R is not ambiguous [2], [3].

Note that in this paper there are no limitations on R, thus, R may have nonlinear or ambiguous (i.e., overlapping) rewriting rules [2],[3].

2.3 Direct Sum Systems

Let F_{1} and F_{2} be disjoint sets of function symbols (i.e., $F_{1} \cap F_{2}=\phi$), then term rewriting systems R_{1} on $T\left(F_{1}, V\right)$ and R_{2} on $T\left(F_{2}, V\right)$ are called disjoint. Consider disjoint systems R_{1} and R_{2} having sets \triangleright_{1} and \triangleright_{2} of rewriting rules, respectively, then the direct sum system $R_{1} \oplus R_{2}$ is the term rewriting system on $T\left(F_{1} \cup F_{2}, V\right)$ having the set $\triangleright \cup \stackrel{\downarrow}{1}$ of rewriting rules. If R_{1} and R_{2} are term rewriting systems not satisfying the disjoint requirement for function symbols, then we take isomorphic copies R_{1}^{\prime} and R_{2}^{\prime} by replacing each function symbol f of F_{i} by $f^{i}(i=1,2)$, and use $R_{1}^{\prime} \oplus R_{2}^{\prime}$ instead of $R_{1} \oplus R_{2}$. For this reason, considering the direct sum $R_{1} \oplus R_{2}$, we may assume that R_{1} and R_{2} are always disjoint, i.e., $F_{1} \cap F_{2}=\phi$.

Note. The above direct sum is different from Klop's [3]: The direct sum of combinatory reduction systems (in which terms are written in combinator notation) is defined as the union of two systems with disjoint constant symbols, but with the same application function symbol. Klop pointed out that his direct sum does not preserve the Church-Rosser property.

It is trivial that if $C R\left(R_{1} \oplus R_{2}\right)$ then $C R\left(R_{1}\right)$ and $C R\left(R_{2}\right)$. Hence, in the following sections we shall prove $C R\left(R_{1} \oplus R_{2}\right)$, assuming that $C R\left(R_{1}\right)$ and $C R\left(R_{2}\right)$ where $R_{1}=\left\langle T\left(F_{1}, V\right), \overrightarrow{1}, R_{2}=\left\langle T\left(F_{2}, V\right), \underset{2}{\rightarrow}\right\rangle\right.$, and $R_{1} \oplus R_{2}=\left\langle T\left(F_{1} \cup F_{2}, V\right), \rightarrow\right\rangle$. Note that from here on the notation \rightarrow represents the reduction relation on $R_{1} \oplus R_{2}$.

Definition. A root is a mapping from $T\left(F_{1} \cup F_{2}, V\right)$ to $F_{1} \cup F_{2} \cup V$ as follows: For $M \in T\left(F_{1} \cup F_{2}, V\right)$,

$$
\operatorname{root}(M)= \begin{cases}f & \text { if } M \equiv f\left(M_{1}, \ldots, M_{n}\right), \\ M & \text { if } M \text { is a constant or a variable } .\end{cases}
$$

Definition. Let $M \equiv C\left[B_{1}, \ldots, B_{n}\right] \in T\left(F_{1} \cup F_{2}, V\right)$ and $C \not \equiv \square$. Then write $M \equiv C \llbracket B_{1}, \ldots, B_{n} \rrbracket$ if $C[, \ldots$,$] is a context on F_{a}$ and $\forall i, \operatorname{root}\left(B_{i}\right) \in F_{b}(a, b \in$ $\{1,2\}$ and $a \neq b)$. Then the set $\operatorname{Part}(M)$ of the parted terms of $M \in T\left(F_{1} \cup F_{2}, V\right)$ is inductively defined as follows:

$$
\operatorname{Part}(M)= \begin{cases}\{M\} & \text { if } M \in T\left(F_{a}, V\right) \quad(a=1 \text { or } 2), \\ \bigcup_{i} \operatorname{Part}\left(B_{i}\right) \cup\{M\} & \text { if } M \equiv C \llbracket B_{1}, \ldots, B_{n} \rrbracket(n>0) .\end{cases}
$$

Definition. For a term $M \in T\left(F_{1} \cup F_{2}, V\right)$, the rank $r(M)$ of layers of contexts on F_{1} and F_{2} in M is inductively defined as follows:

$$
r(M)= \begin{cases}1 & \text { if } M \in T\left(F_{a}, V\right) \quad(a=1 \text { or } 2), \\ \max _{i}\left\{r\left(B_{i}\right)\right\}+1 & \text { if } M \equiv C \llbracket B_{1}, \ldots, B_{n} \rrbracket(n>0) .\end{cases}
$$

Example. Let a rewriting rule of R_{1} be $f(x) \triangleright f(f(x))$, and let a rewriting rule of R_{2} be $g(x, x) \triangleright x$, where $F_{1}=\{f\}, F_{2}=\{2\}, \rho(f)=1, \rho(g)=2$. Consider a term $M_{0} \equiv g(f(x), g(f(f(g(x, x))), f(x))) \in T\left(F_{1} \cup F_{2}, V\right)$. Note that M_{0} has a layer structure of contexts on F_{1} and F_{2} constructed by $g(\square, g(\square, \square))$ on F_{2}, $f(x), f(f(\square)), f(x)$ on F_{1}, and $g(x, x)$ on F_{2} from the outside. Then $\operatorname{Part}\left(M_{0}\right)=$ $\left\{M_{0}, f(x), f(f(g(x, x))), g(x, x)\right\}, \operatorname{root}\left(M_{0}\right)=g$. We can write $M \equiv C \llbracket f(x), f(f(g(x, x))), f(x) \rrbracket$ where $C[,,] \equiv g(\square, g(\square, \square))$.
$R_{1} \oplus R_{2}$ has the following reduction;

$$
\begin{aligned}
& M_{0} \equiv g(f(x), g(f(f(g(x, x))), f(x))) \\
\rightarrow & M_{1} \equiv g(f(x), g(f(f(x)), f(x))) \\
\rightarrow & M_{2} \equiv g(f(x), g(f(f(x)), f(f(x)))) \\
\rightarrow & M_{3} \equiv g(f(x), f(f(x))) \\
\rightarrow & M_{4} \equiv g(f(f(x)), f(f(x))) \\
\rightarrow & M_{5} \equiv f(f(x)) .
\end{aligned}
$$

Then $r\left(M_{0}\right)=3, r\left(M_{1}\right)=r\left(M_{2}\right)=r\left(M_{3}\right)=r\left(M_{4}\right)=2, r\left(M_{5}\right)=1$.

Lemma 2.1. If $M \rightarrow N$ then $r(M) \geq r(N)$.
Proof. It is easily obtained from the definitions of the direct sum $R_{1} \oplus R_{2}$. \square

3 Preserved Systems

A term $M \in T\left(F_{1} \cup F_{2}, V\right)$ has a layer structure of contexts on F_{1} and F_{2}, and this structure is modified through a reduction process in a direct sum system $R_{1} \oplus R_{2}$ on $T\left(F_{1} \cup F_{2}, V\right)$. If a reduction $M \rightarrow N$ results in the disappearance of some layer between two layers in the term M, then, by putting the two layers together, a new layer structure appears in the term N. If no middle layer in M disappears as a result of any reduction, then we say that the layer structure in M is preserved in the direct
sum system. In this section we will show that if two term rewriting systems have the Church-Rosser property, then terms with a certain restriction, viz. that their layer structure is preserved under reductions, also have the Church-Rosser property. Using this result, we will prove our conjecture in section 4.

The set of terms reduced from a term M by a reduction relation \rightarrow is denoted by $G_{\rightarrow}(M)=\{N \mid M \xrightarrow{*} N\}$.

Definition. A term M is root preserved (denoted by r-Pre (M)) iff $\operatorname{root}(M) \in F_{a} \Rightarrow \forall N \in G_{\rightarrow}(M), \operatorname{root}(N) \in F_{a}$, where $a \in\{1,2\}$.

Now we formalize the concept of preserved layer structure.
Definition. A term $M \equiv C \llbracket B_{1}, \ldots, B_{n} \rrbracket(n>0)$ is preserved iff M satisfies two conditions;
(1) $r-\operatorname{Pre}(M)$,
(2) $\forall i, B_{i}$ is preserved.

We write $\operatorname{Pre}(M)$ when M is preserved. Note that, by the definition, if $\operatorname{Pre}(M)$, then $\forall N \in G_{\rightarrow}(M), \operatorname{Pre}(N)$.

Let $M \xrightarrow{A} N$ and $M \equiv C \llbracket B_{1}, \ldots, B_{n} \rrbracket$. If the redex occurrence A occurs in some B_{j}, then we write $M \underset{i}{\rightarrow} N$; otherwise $M \underset{o}{\rightarrow} N . \vec{i}$ and $\underset{o}{ }$ are called an inner and an outer reduction, respectively.

Lemma 3.1. Let $\operatorname{Pre}(M)$ and $M \equiv C \llbracket B_{1}, \ldots, B_{n} \rrbracket$. Then,
(1) $M \underset{i}{\rightarrow} N \Rightarrow N \equiv C \llbracket C_{1}, \ldots, C_{n} \rrbracket$ where $\forall i, B_{i} \xlongequal{\equiv} C_{i}$;
(2) $M \underset{o}{\rightarrow} N \Rightarrow N \equiv C^{\prime} \llbracket B_{i_{1}}, \ldots, B_{i_{p}} \rrbracket\left(1 \leq i_{j} \leq n\right)$, where $C[, \ldots$,$] and C^{\prime}[, \ldots$, are contexts on the same set $F_{a} \quad(a=1$ or 2$)$.

Proof. It is immediately proved from $\operatorname{Pre}(M)$ and the definition of \vec{i}, \vec{o}.
We consider the term sequences; $\alpha=\left\langle A_{1}, \ldots, A_{n}\right\rangle$ and $\beta=\left\langle B_{1}, \ldots, B_{n}\right\rangle$ where $A_{i}, B_{i} \in T$. Then, we write $\alpha \propto \beta$ iff $\forall i, j\left[A_{i} \equiv A_{j} \Rightarrow B_{i} \equiv B_{j}\right]$. We define $\alpha \xrightarrow{*} \beta$ by $\forall i, A_{i} \xrightarrow{*} B_{i}$.

We extend the above notations to terms. Let $M \equiv C \llbracket A_{1}, \ldots, A_{n} \rrbracket, N \equiv C \llbracket B_{1}, \ldots, B_{n} \rrbracket$, $\alpha=\left\langle A_{1}, \ldots, A_{n}\right\rangle, \beta=\left\langle B_{1}, \ldots, B_{n}\right\rangle$. Then write $M \propto N$ if $\alpha \propto \beta$.

We use the relation \propto to deal with nonlinear rewriting rules. For example, let the reduction $f\left(A_{1}, A_{2}, A_{3}, A_{4}\right) \xrightarrow{*} g\left(A_{1}\right)$ be obtained by using the nonlinear rule $f(x, x, y, y) \triangleright g(x)$. Then, we can obtain the reduction $f\left(B_{1}, B_{2}, B_{3}, B_{4}\right) \xrightarrow{*} g\left(B_{1}\right)$ by
the same rule if $\left\langle A_{1}, A_{2}, A_{3}, A_{4}\right\rangle \propto\left\langle B_{1}, B_{2}, B_{3}, B_{4}\right\rangle$. This leads us to the following lemma.

Lemma 3.2. Let $\operatorname{Pre}(M), M \propto N$. If $M \underset{o}{\rightarrow} M^{\prime}$, then $\exists N^{\prime}, N \underset{o}{\rightarrow} N^{\prime} \wedge M^{\prime} \propto N^{\prime}$.
Proof. Let $M \equiv C \llbracket A_{1}, \ldots, A_{n} \rrbracket, N \equiv C \llbracket B_{1}, \ldots, B_{n} \rrbracket$. Then the left side of the rewriting rule used in $M \underset{o}{\rightarrow} M^{\prime}$ occurs in context $C[, \ldots$,$] . Since M \propto N$ we can apply this rule to N in the same way, and obtain $N \underset{o}{\rightarrow} N^{\prime}$. By Lemma 3.1(2), it is clear that $M^{\prime} \propto N^{\prime}$.

Lemma 3.3. Let $\operatorname{Pre}(M), M \underset{o}{\rightarrow} P, M \underset{i}{*} N, M \propto N$. Then there is a term Q satisfying the diagram in Figure 2, that is,
$\forall M, N, P \in T[M \underset{i}{*} N \wedge M \underset{i}{*} P \wedge M \propto N \Rightarrow \exists Q \in T, N \underset{i}{*} Q \wedge P \underset{i}{*} Q \wedge P \propto Q]$.
Proof. By Lemma 3.2 we obtain a term Q such that $P \propto Q$ and $N \underset{o}{\rightarrow} Q$. Using $M \underset{o}{\rightarrow} P, M \underset{i}{*} N$ and Lemma 3.1(1), (2), we obtain $P \xrightarrow[i]{*} Q$.

Figure 2
Lemma 3.4. Let $\operatorname{Pre}(M), M \underset{i}{*} N, M \underset{o}{*} P, M \propto N$. Then we can obtain a term Q satisfying Figure 3.

Figure 3
Proof. Using lemma 3.3, the diagram in Figure 4 can be made.

Figure 4
We define the local Church-Rosser property at a term M.
Definition. Let $R=\langle T, \rightarrow\rangle$ be a reduction system and let $M \in T$. Then M is Church-Rosser for \rightarrow (denoted by $C R_{\rightarrow}(M)$ or $C R(M)$) iff
$\forall N, P \in T[M \xrightarrow{*} N \wedge M \xrightarrow{*} P \Rightarrow \exists Q \in T, N \xrightarrow{*} Q \wedge P \xrightarrow{*} Q]$.
Note that $\forall M \in T, C R(M)$ iff $C R(R)$.
We define $M \downarrow N$ by $\exists Q \in T, M \xrightarrow{*} Q \wedge N \xrightarrow{*} Q$.

Lemma 3.5. Let $\alpha=\left\langle A_{1}, \ldots, A_{n}\right\rangle$ and $\forall i, C R\left(A_{i}\right)$. Then $\exists \beta=\left\langle B_{1}, \ldots, B_{n}\right\rangle\left[\alpha \xrightarrow{*} \beta \wedge \forall i, j\left[A_{i} \downarrow A_{j} \Rightarrow B_{i} \equiv B_{j}\right]\right]$.

Proof. Using $C R\left(A_{k}\right)$, it can be shown that $A_{i} \downarrow A_{k} \wedge A_{k} \downarrow A_{j} \Rightarrow A_{i} \downarrow A_{j}$. Hence \downarrow is an equivalence relation and it partitions $\left\{A_{1}, \ldots, A_{n}\right\}$ in the equivalence class C_{1}, \ldots, C_{m}. Using the Church-Rosser property for each A_{i}, we can take a term B_{p} for each equivalence class $C_{p}=\left\{A_{p_{1}}, \ldots, A_{p_{q}}\right\}$ as the diagram in Figure 5. Take $B_{p_{1}} \equiv, \ldots, \equiv B_{p_{q}} \equiv B_{p}$.

Figure 5
Lemma 3.6. Let $\alpha=\left\langle A_{1}, \ldots, A_{n}\right\rangle \xrightarrow{*} \beta=\left\langle B_{1}, \ldots, B_{n}\right\rangle$ and $\forall i, C R\left(A_{i}\right)$. Then $A_{i} \downarrow A_{j}$ iff $B_{i} \downarrow B_{j}$.

Proof. By the Church-Rosser property for each A_{i}, it is obvious.
Lemma 3.7. Let $\alpha=\left\langle A_{1}, \ldots, A_{n}\right\rangle, \forall i, C R\left(A_{i}\right)$, and $\alpha \xrightarrow{*} \beta, \alpha \xrightarrow{*} \gamma$. Then we
can obtain δ satisfying Figure 6 , where $\beta \propto \gamma$ and $\delta \propto \gamma$.

Figure 6
Proof. Let $\beta=\left\langle B_{1}, \ldots, B_{n}\right\rangle, \gamma=\left\langle C_{1}, \ldots, C_{n}\right\rangle$. By $\forall i, C R\left(A_{i}\right)$, we have a term $\delta^{\prime}=\left\langle D_{1}^{\prime}, \ldots, D_{n}^{\prime}\right\rangle$ such that $\beta \xrightarrow{*} \delta^{\prime}$ and $\gamma \xrightarrow{*} \delta^{\prime}$. Using Lemma 3.5 for δ^{\prime}, we obtain $\delta=\left\langle D_{1}, \ldots, D_{n}\right\rangle$ such that $\delta^{\prime} \xrightarrow{*} \delta$ and $D_{i}^{\prime} \downarrow D_{j}^{\prime} \Rightarrow D_{i} \downarrow D_{j}$. Then, by Lemma 3.6, $A_{i} \downarrow A_{j} \Longleftrightarrow D_{i}^{\prime} \downarrow D_{j}^{\prime}$, hence $A_{i} \downarrow A_{j} \Rightarrow D_{i} \equiv D_{j}$. Next we show $\beta \propto \delta$. If $B_{i} \equiv B_{j}$, then $A_{i} \downarrow A_{i}$, and, thus $D_{i} \equiv D_{j}$, hence $\beta \propto \delta$. Similarly we can prove $\gamma \propto \delta$.

Lemma 3.8. Let $M \equiv C \llbracket A_{1}, \ldots, A_{n} \rrbracket, \operatorname{Pre}(M), \forall i, C R\left(A_{i}\right)$. Then we have the diagram in Figure 7, where $N \propto Q, P \propto Q$.

Figure 7

Proof. Since $\operatorname{Pre}(M)$, we obtain $N \equiv C \llbracket B_{1}, \ldots, B_{n} \rrbracket, P \equiv C \llbracket C_{1}, \ldots, C_{n} \rrbracket$, where $\alpha=\left\langle A_{1}, \ldots, A_{n}\right\rangle \xrightarrow{*} \beta=\left\langle B_{1}, \ldots, B_{n}\right\rangle, \alpha=\left\langle A_{1}, \ldots, A_{n}\right\rangle \xrightarrow{*} \gamma=\left\langle C_{1}, \ldots, C_{n}\right\rangle$. Using Lemma 3.7, we can obtain $\delta=\left\langle D_{1}, \ldots, D_{n}\right\rangle$ such that $\beta \xrightarrow{*} \delta, \gamma \xrightarrow{*} \delta, \beta \propto \delta$ and $\gamma \propto \delta$. Therefore, take $Q \equiv C \llbracket D_{1}, \ldots, D_{n} \rrbracket$.

Lemma 3.9. If $\operatorname{Pre}(M)$, then $C R_{\vec{o}}(M)$, that is, M is Church-Rosser for $\underset{o}{\rightarrow}$ (Figure 8).

Figure 8
Proof. Let $\operatorname{root}(M) \in F_{a} \quad(a=1$ or 2$)$. Then, since $\operatorname{Pre}(M)$, the outermost part of any term in $G_{\rightarrow}(M)$ is always a context on F_{a}. Thus $\underset{o}{ }$ is determined by only R_{a}. Hence Church-Rosser for $\underset{o}{ }$ is obvious by $C R\left(R_{a}\right)$.

Theorem 3.1. If $\operatorname{Pre}(M)$, then $C R(M)$.
Proof. By induction on the rank $r(M)$ of layers in M. The case $r(M)=1$ is trivial since $M \in T\left(F_{a}, V\right)$ and $C R\left(R_{a}\right) \quad(a=1$ or 2$)$; therefore, suppose $r(M)=$ $n>1, M \equiv C \llbracket A_{1}, \ldots, A_{m} \rrbracket$.

Claim: We obtain the diagram in Figure 9.

Figure 9
Proof of the claim. By the induction hypothesis, we obtain $\forall i, C R\left(A_{i}\right)$. Using Lemmas 3.8, 3.4 and 3.9 for (1), (2) and (3), respectively, we can obtain the diagram in Figure 10, where $M^{\prime} \propto Q^{\prime}$ and $M^{\prime \prime} \propto Q^{\prime}$.

Figure 10
Now we will show $C R(M)$. Note that any reduction $M \xrightarrow{*} M^{\prime}$ takes the form of $M \underset{i}{*} \xrightarrow[o]{*} M_{1} \xrightarrow[i]{*} \xrightarrow[o]{*} M_{2} \xrightarrow[i]{*} \xrightarrow[o]{*} \cdots \xrightarrow[i]{\rightarrow} \xrightarrow[o]{*} M^{\prime}$.
Let $M \xrightarrow{*} N, M \xrightarrow{*} P$. By splitting $\xrightarrow{*}$ into $\xrightarrow[i]{*} \xrightarrow[o]{*}$ and using the claim, one can draw the diagram in Figure 11. Hence $C R(M)$.

Figure 11
Let $M \xrightarrow{A} N$ where A is a redex occurrence. Then write $M \xrightarrow[p]{ } N$ if A occurs in a preserved subterm of M, otherwise write $M \underset{n p}{ } N$.

Theorem 3.2. Let $M \equiv C \llbracket A_{1}, \ldots, A_{n} \rrbracket$, $\forall i, \operatorname{Pre}\left(A_{i}\right)$. Then $C R(M)$.
Proof. If $\operatorname{Pre}(M)$, immediate by Theorem 3.1. Hence, suppose $\neg \operatorname{Pre}(M)$. Then one can prove the diagrams (1), (2) and (3) in Figure 12, where $M \propto N$ in (1) and $N \propto Q, P \propto Q$ in (2), in the same way as for Lemmas 3.4, 3.8 and 3.9, respectively, by replacing \vec{i}, \vec{o} with $\vec{p}, \overrightarrow{n p}$. Using an analogy to the proof in Theorem 3.1, first, one can obtain the diagram in Figure 13 from the diagrams (1), (2), (3) in Figure 12, and secondly, splitting $\xrightarrow{*}$ into $\underset{p}{\stackrel{*}{\rightarrow}} \underset{n p}{*}$, one can show $C R(M)$.

Figure 12

Figure 13
Note. Though $\neg \operatorname{Pre}(M)$, the above proof is similar to the proof of Theorem 3.1 in which we assumed $\operatorname{Pre}(M)$. This analogy comes from the fact that in Theorem 3.2 a non-preserved context in a term M only occurs at the outermost part of layer structure. However, if some non-preserved context occurs in the middle part, then one cannot prove $C R(M)$ by the analogous method to Theorem 3.1. In the next section we shall consider this case.

4 The Church-Rosser Property for the Direct Sum

In this section we will show that if $C R\left(R_{1}\right)$ and $C R\left(R_{2}\right)$, then $C R\left(R_{1} \oplus R_{2}\right)$. This is done by proving $C R(M)$ for any term M by using parallel deletion reduction which deletes the layers of the non-preserve contexts occurring in M. First we shall introduce the following deletion reduction.

Let a term $M_{\tilde{C}} \in T\left(F_{1} \cup F_{2}, V\right)$ be not preserved. Then there is a term $N \in$ $\operatorname{Part}(M): N \equiv \tilde{C} \llbracket B_{1}, \ldots, B_{n} \rrbracket, \neg \operatorname{Pre}(N), \forall i, \operatorname{Pre}\left(B_{i}\right)$. Since N is not preserved, one has $N^{\prime}: N \xrightarrow{*} N^{\prime}, \operatorname{root}(N) \in F_{a}, \operatorname{root}(N) \in F_{a} \quad(a=1$ or 2$)$. Then the deletion reduction $\underset{d}{ }$ is defined by replacing N occurring in M by N^{\prime} as follows:
$M \underset{d}{\rightarrow} \stackrel{M^{\prime}}{M^{\prime}} \Rightarrow M \equiv C[N], M^{\prime} \equiv C\left[N^{\prime}\right]$,
where N and N^{\prime} are the above terms.

different $\underset{d}{ }$ redex occurrences in M, then it is trivial from the definition that N_{1}, N_{2} are disjoint, that is, $N_{1} \perp N_{2}$. Note that $M \in N F_{\vec{d}}$ iff $\operatorname{Pre}(M)$.

Definition. The maximum depth $d(M)$ of $\underset{d}{\text { redex occurrences in } M \text { is defined }}$ by the following:

$$
d(M)=\left\{\begin{array}{lll}
0 & \text { if } \quad \operatorname{Pre}(M), \\
1 & \text { if } \quad \neg \operatorname{Pre}(M) \text { and } M \text { is } \rightarrow \text { redex, } \\
\max _{i}\left\{d\left(B_{i}\right)\right\}+1 & \text { if } \neg \operatorname{Pre}(M), M \text { is not } \underset{d}{\rightarrow} \text { redex, } \\
& & \text { and } M \equiv C \llbracket B_{1}, \ldots, B_{n} \rrbracket \quad(n>0) .
\end{array}\right.
$$

Lemma 4.1. Let $M \equiv C\left[B_{1}, \ldots, B_{n}\right]$ and $C \in T\left(F_{a} \cup\{\square\}, V\right)(a=1$ or 2$)$, then $d(M) \leq \max _{i}\left\{d\left(B_{i}\right)\right\}+1$.

Proof. It is immediately proved from the definition of $d(M)$.
Lemma 4.2. If $M \rightarrow N$ then $d(M) \geq d(N)$.
Proof. We will prove the lemma by induction on $d(M)$. The case $d(M) \leq 1$ is trivial from the definition. Assume the lemma for $d(M)<k(k>1)$, then we will show the case $d(M)=k$. Let $M \equiv C \llbracket B_{1}, \ldots, B_{n} \rrbracket(n>0)$ and $M \xrightarrow{A} N$.

Case 1. $\exists k, A \subseteq B_{k}$.
Then $N \equiv C\left[B_{1}, \ldots, B_{k-1}, B_{k}^{\prime}, B_{k+1}, \ldots, B_{n}\right]$ where $B_{k} \xrightarrow{A} B_{k}^{\prime}$. We can obtain $d\left(B_{k}\right) \geq d\left(B_{k}^{\prime}\right)$ by using the induction hypothesis. Hence by Lemma 4.1,

$$
\begin{aligned}
d(M) & =\max _{i}\left\{d\left(B_{i}\right)\right\}+1 \\
& \geq \max \left\{d\left(B_{1}\right), \ldots, d\left(B_{k-1}\right), d\left(B_{k}^{\prime}\right), d\left(B_{k+1}\right), \ldots, d\left(B_{n}\right)\right\}+1 \\
& \geq d(N)
\end{aligned}
$$

Case 2. Not Case 1.
Then $N \equiv C^{\prime}\left[B_{i_{1}}, \ldots, B_{i_{s}}\right]$ where $1 \leq i_{j} \leq n$ and $C^{\prime} \in T\left(F_{a} \cup \square, V\right)(a=1$ or 2$)$. If $s=0$ then it is clear from $d(N)=1$ or 0 that $d(M) \leq d(N)$. If $s>0$ then

$$
\begin{aligned}
d(M) & =\max _{i}\left\{d\left(B_{i}\right)\right\}+1 \\
& \leq \max _{j}\left\{d\left(B_{i_{j}}\right)\right\}+1 \\
& \leq d(N)
\end{aligned}
$$

for both $C^{\prime} \not \equiv \square$ and $C^{\prime} \not \equiv \square \square \square$

Let N_{1}, \ldots, N_{n} be all the $\underset{d}{\rightarrow}$ redex occurrences in M having depth $d(M)$. Note that $N_{i} \perp N_{j}(i=j)$. Then the parallel deletion reduction $\underset{p d}{\rightarrow}$ is defined by replacing each $\underset{d}{\rightarrow}$ redex occurrence N_{i} by N_{i}^{\prime} such that $N_{i} \underset{d}{ } N_{i}^{\prime}$ at one step, or,
$M \underset{p d}{\rightarrow} N \Longleftrightarrow M \equiv C\left[N_{1}, \ldots, N_{n}\right], N \equiv C\left[N_{1}^{\prime}, \ldots, N_{n}^{\prime}\right]$.
We say that the above N_{1}, \ldots, N_{n} are $\underset{p d}{ }$ redex occurrences. It is clear that $N F_{\overrightarrow{p d}}=N F_{\vec{d}}$. By the definition of parallel deletion reduction, one can easily prove that if $M \underset{p d}{\rightarrow} M^{\prime}$ then $d(M)>d\left(M^{\prime}\right)$. Hence, every parallel deletion reduction terminates, that is, $S N(\underset{p d}{\rightarrow})$.

Lemma 4.3. Let $M \equiv C \llbracket A_{1}, \ldots, A_{n} \rrbracket \xrightarrow{M} C\left[A_{i_{1}}, \ldots, A_{i_{p}}\right]$ where $1 \leq i_{j} \leq n$, and let $\left\langle A_{1}, \ldots, A_{n}\right\rangle \propto\left\langle B_{1}, \ldots, B_{n}\right\rangle$. Then one has a reduction $N \equiv C\left[B_{1}, \ldots, B_{n}\right] \xrightarrow{N}$ $C^{\prime}\left[B_{i_{1}}, \ldots, B_{i_{p}}\right]$.

Proof. The left side of the rewriting rule used in the reduction \xrightarrow{M} occurs in context $C[, \ldots$,$] . Hence, one can apply this rewriting rule to \mathrm{N}$ in the same way as for Lemma 3.2.

Lemma 4.4. Let $d(M)>1, M \equiv C\left[M_{1}, \ldots, M_{m}\right] \xrightarrow{M} C^{\prime}\left[M_{i_{1}}, \ldots, M_{i_{p}}\right] \quad\left(1 \leq i_{j} \leq\right.$ m), where M_{1}, \ldots, M_{m} are all the $\underset{p d}{ }$ redex occurrences in M. Let $\left\langle M_{1}, \ldots, M_{m}\right\rangle \propto$ $\left\langle M_{1}^{\prime}, \ldots, M_{m}^{\prime}\right\rangle$. Then one has a reduction $M^{\prime} \equiv C\left[M_{1}^{\prime}, \ldots, M_{m}^{\prime}\right] \xrightarrow{M^{\prime}} C\left[M_{i_{1}}^{\prime}, \ldots, M_{i_{p}}^{\prime}\right]$.

Proof. Let $M \equiv \tilde{C} \llbracket A_{1}, \ldots, A_{n} \rrbracket$, then $\forall i, \exists j, M_{i} \subseteq A_{j}$, and, thus, by replacing each M_{i} in A_{j} with M_{i}, to make A_{j}, one can obtain $M^{\prime} \equiv \tilde{C}\left[A_{1}^{\prime}, \ldots, A_{n}^{\prime}\right]$. Now it is evident from $\left\langle M_{1}, \ldots, M_{m}\right\rangle \propto\left\langle M_{1}^{\prime}, \ldots, M_{m}^{\prime}\right\rangle$, that $\left\langle A_{1}, \ldots, A_{n}\right\rangle \propto\left\langle A_{1}^{\prime}, \ldots, A_{n}^{\prime}\right\rangle$. Hence Lemma 4.3 applies.

Lemma 4.5. Let $d(M)>1, M \equiv C\left[M_{1}, \ldots, M_{m}\right] \xrightarrow{M} C^{\prime}\left[M_{i_{1}}, \ldots, M_{i_{p}}\right]\left(1 \leq i_{j} \leq\right.$ m), where M_{1}, \ldots, M_{m} are all the $\underset{p d}{ }$ redex occurrences in M. Let $\left\langle M_{1}, \ldots, M_{m}\right\rangle$ $\xrightarrow{*}\left\langle M_{1}^{\prime}, \ldots, M_{m}^{\prime}\right\rangle$. Then one can obtain a term sequence $\left\langle M_{1}^{\prime \prime}, \ldots, M_{m}^{\prime \prime}\right\rangle$ such that $\left\langle M_{1}^{\prime}, \ldots, M_{m}^{\prime}\right\rangle \xrightarrow{*}\left\langle M_{1}^{\prime \prime}, \ldots, M_{m}^{\prime \prime}\right\rangle$ and $M^{\prime} \equiv C\left[M_{1}^{\prime \prime}, \ldots, M_{m}^{\prime \prime}\right] \xrightarrow{M^{\prime}} C^{\prime}\left[M_{i_{1}}^{\prime \prime}, \ldots, M_{i_{p}}^{\prime \prime}\right]$.

Proof. In order to prove the lemma by using Lemma 4.4, we only need to find a $\left\langle M_{1}^{\prime \prime}, \ldots, M_{m}^{\prime \prime}\right\rangle$ such that $\left\langle M_{1}, \ldots, M_{m}\right\rangle \propto\left\langle M_{1}^{\prime \prime}, \ldots, M_{m}^{\prime \prime}\right\rangle$. Since M_{1}, \ldots, M_{m} are $\overrightarrow{p d}$ redex occurrences, we obtain $\forall i, C R\left(M_{i}\right)$ by Theorem 3.2. Therefore, we obtain this $\left\langle M_{1}^{\prime \prime}, \ldots, M_{m}^{\prime \prime}\right\rangle$ by Lemma 3.7, taking $\alpha=\left\langle M_{1}, \ldots, M_{m}\right\rangle, \beta=\gamma=\left\langle M_{1}^{\prime}, \ldots, M_{m}^{\prime}\right\rangle$ and $\delta=\left\langle M_{1}^{\prime \prime}, \ldots, M_{m}^{\prime \prime}\right\rangle$.

Lemma 4.6. Let $M \rightarrow N, M \underset{p d}{\rightarrow} P, d(M)=d(N)$. Then one has the diagram in Figure 14. Note that $d(M)>d(S)$.

Figure 14
Proof. Let $M \xrightarrow{A} N$. The possible relative positions of the redex occurrence A and all of the $\underset{p d}{\rightarrow}$ redex occurrences in M, say M_{1}, \ldots, M_{m}, are given in the following cases.

Case 1. $\forall i, A \perp M_{i}$.
Then

$$
\begin{aligned}
M & \equiv C\left[M_{1}, \ldots, M_{r}, A, M_{r+1}, \ldots, M_{m}\right] \\
N & \equiv C\left[M_{1}, \ldots, M_{r}, B, M_{r+1}, \ldots, M_{m}\right], \\
P & \equiv C\left[P_{1}, \ldots, P_{r}, A, P_{r+1}, \ldots, P_{m}\right],
\end{aligned}
$$

where $A \rightarrow \underset{A}{\rightarrow} B$ and $\forall i, M_{i} \underset{d}{\rightarrow} P_{i}$. Since all of the $\underset{p d}{ }$ redex occurrences in N are also M_{1}, \ldots, M_{m} (this follows by $d(A) \geq d(B) ; A$-contraction cannot create deeper \vec{d} redex occurrences, in particular no $\underset{p d}{\rightarrow}$ redex occurrences), we can take
$Q \equiv C\left[P_{1}, \ldots, P_{r}, B, P_{r+1}, \ldots, P_{m}\right]$.
Let $S \equiv Q$, then $P \xrightarrow{*} S$ and $Q \xrightarrow{*} S$.
Case 2. $\exists r, A \subseteq M_{r}$.
Then

$$
\begin{aligned}
M & \equiv C\left[M_{1}, \ldots, M_{r-1}, M_{r}, M_{r+1}, \ldots, M_{m}\right], \\
N & \equiv C\left[M_{1}, \ldots, M_{r-1}, N_{r}, M_{r+1}, \ldots, M_{m}\right], \\
P & \equiv C\left[P_{1}, \ldots, P_{r-1}, P_{r}, P_{r+1}, \ldots, P_{m}\right],
\end{aligned}
$$

where $M_{r} \xrightarrow{A} N_{r}$, and $\forall i, M_{i} \xrightarrow[d]{ } P_{i}$. Since each $M_{i}(i \neq r)$ is also a $\underset{p d}{ }$ redex occurrence in N, by using $\underset{p d}{\rightarrow}$ for N, one obtains
$Q \equiv C\left[P_{1}, \ldots, P_{r-1}, Q_{r}, P_{r+1}, \ldots, P_{m}\right]$,
where $N_{r} \underset{d}{\equiv} Q_{r}$, whether N_{r} is a $\underset{p d}{\rightarrow}$ redex occurrence or not (in N). By Theorem 3.2, $C R\left(M_{r}\right)$; therefore, there is a term S_{r} such that $P_{r} \xrightarrow{*} S_{r}, Q_{r} \xrightarrow{*} S_{r}$. Therefore, take
$S \equiv C\left[P_{1}, \ldots, P_{r-1}, S_{r}, P_{r+1}, \ldots, P_{m}\right]$.
Case 3. $\exists j, M_{j} \subset A$.
Let $M_{r}, \ldots, M_{k}(r \leq k)$ be all the $\underset{p d}{\rightarrow}$ redex occurrences in M occurring in A. Then they are also $\underset{p d}{\rightarrow}$ redex occurrences in A. Let $A \equiv D\left[M_{r}, \ldots, M_{k}\right] \xrightarrow{A} D^{\prime}\left[M_{i_{1}}, \ldots, M_{i_{p}}\right]$ $\left(r \leq i_{j} \leq k\right)$.

Then

$$
\begin{aligned}
M & \equiv C\left[M_{1}, \ldots, M_{r-1}, D\left[M_{r}, \ldots, M_{k}\right], M_{k+1}, \ldots, M_{m}\right] \\
N & \equiv C\left[M_{1}, \ldots, M_{r-1}, D^{\prime}\left[M_{i_{1}}, \ldots, M_{i_{p}}\right], M_{k+1}, \ldots, M_{m}\right], \\
P & \equiv C\left[P_{1}, \ldots, P_{r-1}, D\left[P_{r}, \ldots, P_{k}\right], P_{k+1}, \ldots, P_{m}\right],
\end{aligned}
$$

where $\forall i, M_{i} \underset{d}{\rightarrow} P_{i}$. Since $M_{1}, \ldots, M_{r-1}, M_{k+1}, \ldots, M_{m}$ are also $\underset{p d}{ }$ redex occurrences in N, whether $M_{i_{1}}, \ldots, M_{i_{p}}$ are $\underset{p d}{ }$ redex occurrences or not (in N), one can obtain
$Q \equiv C\left[P_{1}, \ldots, P_{r-1}, D^{\prime}\left[Q_{i_{1}}, \ldots, Q_{i_{p}}\right], P_{k+1}, \ldots, P_{m}\right]$,
where $\forall j, M_{i_{j}} \underset{d}{\Longrightarrow} Q_{i_{j}}$. Now, by using Lemma 4.5, one can show for the subterm $D\left[P_{r}, \ldots, P_{k}\right]$ in P that there is a sequence $\left\langle P_{r}^{\prime}, \ldots, P_{k}^{\prime}\right\rangle$ such that $\left\langle P_{r}, \ldots, P_{k}\right\rangle \xrightarrow{*}\left\langle P_{r}^{\prime}, \ldots, P_{k}^{\prime}\right\rangle$ and $D\left[P_{r}^{\prime}, \ldots, P_{k}^{\prime}\right] \rightarrow D^{\prime}\left[P_{i_{1}}^{\prime}, \ldots, P_{i_{p}}^{\prime}\right]$. Take
$P^{\prime} \equiv C\left[P_{1}, \ldots, P_{r-1}, D^{\prime}\left[P_{i_{1}}^{\prime}, \ldots, P_{i_{p}}^{\prime}\right], P_{k+1}, \ldots, P_{m}\right] ;$
then one can have $P \xrightarrow{*} P^{\prime}$. Since $\forall j, C R\left(M_{i_{j}}\right)$, for each j there is $S_{i_{j}}$ such that $P_{i_{j}}^{\prime} \xrightarrow{*} S_{i_{j}}, Q_{i_{j}} \xrightarrow{*} S_{i_{j}}$. Therefore, take
$S \equiv C\left[P_{1}, \ldots, P_{r-1}, D^{\prime}\left[S_{i_{1}}, \ldots, S_{i_{p}}\right], P_{k+1}, \ldots, P_{m}\right]$.
Lemma 4.7. Let $M \rightarrow N, M \underset{p d}{\rightarrow} P, d(M)>d(N)$, then one has the diagram in Figure 15. Note that $d(M)>d(S)$.

Figure 15
Proof. One can obtain a term S in the same way as for Case 2 and Case 3 in the proof of Lemma 4.6.

Theorem 4.1. $R_{1} \oplus R_{2}$ has the Church-Rosser property, that is, we have the diagram in Figure 16.

Figure 16
Proof. We will prove $C R(M)$ by induction on $d(M)$. The case $d(M)=0$ is trivial from Theorem 3.1. Assume $C R(M)$ for $d(M)<n(n>0)$. Then we will show the following claim.

Claim. One has the diagram in Figure 17 for the case $d(M) \leq n$.

Figure 17
Proof of the Claim. Let $M \xrightarrow{m} N$, where \xrightarrow{m} denotes a reduction of $m(m \geq 0)$ steps. Then we prove the claim by induction on m. The case $m=0$ is trivial. Assume the claim for $m-1(m>0)$. We will show the diagram for m. Let $M \rightarrow A \xrightarrow{m-1} N$.

Case 1. $d(M)=d(A)$. We can obtain the diagram in Figure 18, proving diagram(1) by using Lemma 4.6, diagram(2) by using the induction hypothesis for the claim, and diagram(3) by using the induction hypothesis for the theorem, that is, $C R(B)$, since $d(M)>d(B)$.

Figure 18
Case 2. $d(M)>d(A)$. We can obtain the diagram in Figure 19, proving diagram(1) by using Lemma 4.7, and diagram(2) by using the induction hypothesis for the theorem, that is, $C R(A)$.

Figure 19
Now we will prove $C R(M)$ for $d(M)=n$. The diagram in Figure 20 can be obtained, where diagram(1) and diagram(2) are shown by the claim and the induction hypothesis, that is, $C R(A)$, respectively.

Figure 20
Corollary 4.1. $C R\left(R_{1}\right) \wedge C R\left(R_{2}\right) \Longleftrightarrow C R\left(R_{1} \oplus R_{2}\right)$.
Proof. \Leftarrow is trivial, and \Rightarrow is proved by Theorem 4.1.

ferences

[1] Barendregt,H.P.:" The lambda calculus, its syntax and semantics", NorthHolland (1981).
[2] Huet,G.:" Confluent reductions: abstract properties and applications to term rewriting systems", J.ACM, Vol. 27 (Oct.1980), pp.797-821.
[3] Klop,J.W.:" Combinatory reduction systems", Dissertation, Univ. of Utrecht (1980).
[4] O'Donnell,M.:" Computing in systems described by equations", Lecture Notes in Comput. Sci. Vol.58, Springer-Verlag (1977).
[5] Rosen,B.K.:" Tree-manipulating systems and Church-Rosser theorems", J.ACM, Vol 20 (Jan.1973), pp.160-187.
[6] Staples,J.:" Church-Rosser theorem for replacement systems", Lecture Notes
in Mathematics 450, Springer (1975), pp.291-307.
[7] Toyama,Y.:" On commutativity of term rewriting systems ", Trans. IECE Japan, J66-D, 12 (1983) pp.1370-1375, in Japanese.

