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Abstract
The direct sum of two term rewriting systems is the union of systems

having disjoint sets of function symbols. It is shown that if two term rewriting
systems both have the Church-Rosser property respectively then the direct
sum of these systems also has this property.

1 Introduction

We consider properties of the direct sum system R1 ⊕ R2 obtained from two term
rewriting systems R1 and R2 [3]. The first study on the direct sum system was
conducted by Klop in [3] in order to consider the Church-Rosser property for com-
binatory reduction systems having nonlinear rewriting rules, which contain term
rewriting systems as a special case. He showed that if R1 is a regular, i.e., linear
and nonambiguous, system and R2 consists of the single nonlinear rule D(x, x) . x,
then the direct sum R1⊕R2 has the Church-Rosser property. He also showed in the
same manner that if R2 consists of the nonlinear rules

R2





if(T, x, y) . x
if(F, x, y) . y
if(z, x, x) . x

then the direct sum R1 ⊕ R2 also has the Church-Rosser property. This result
gave a positive answer for an open problem suggested by O’Donnell [4].

Klop’s work was done on combinatory reduction systems having the following
restrictions: R1 is a regular (i.e., linear and nonambiguous) system, and R2 is a
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nonlinear system having specific rules such as D(x, x) . x. In particular, the re-
striction on R1 plays an essential role in his proof of the Church-Rosser property of
R1⊕R2; hence his result cannot be applied to combinatory reduction systems (and
term rewriting systems) without this restriction.

From Klop’s work, we consider the conjecture that these restrictions can be com-
pletely removed from R1 and R2 in the framework of term rewriting systems [2], i.e.,
the direct sum of term rewriting systems R1 and R2, independent of their properties
such as linearity or ambiguity, always preserves their Church-Rosser property. In
this paper we shall prove this conjecture: For any two term rewriting systems R1

and R2, R1 and R2 have the Church-Rosser property iff R1 ⊕R2 has this property.

2 Notations and Definitions

We explain notions of reduction systems and term rewriting systems, and give defi-
nitions for the following sections. We start from abstract reduction systems.

2.1 Reduction Systems

A reduction system is a structure R = 〈A,→〉 consisting of some object set A
and some binary relation → on A (i.e., →⊂ A× A), called a reduction relation. A
reduction (starting with x0) in R is a finite or infinite sequence x0 → x1 → x2 → · · ·.
The identity of elements of A (or syntactical equality) is denoted by ≡.

∗→ is the
transitive reflexive closure of →,

≡→ is the reflexive closure of →, and = is the
equivalence relation generated by → (i.e., the transitive reflexive symmetric closure
of →). If x ∈ A is minimal with respect to →, i.e., ¬∃y ∈ A[x → y], then we say
that x is a normal form, and let NF→ or NF be the set of normal forms. If x

∗→ y
and y ∈ NF then we say x has a normal form y and y is a normal form of x.

Definition. R = 〈A,→〉 is strongly normalizing (denoted by SN(R) or SN(→)
) iff every reduction in R terminates, i.e., there is no infinite sequence x0 → x1 →
x2 → · · ·.

Definition. R = 〈A,→〉 has the Church-Rosser property (denoted by CR(R))
iff ∀x, y, z ∈ A[x

∗→ y ∧ x
∗→ z ⇒ ∃w ∈ A, y

∗→w ∧ z
∗→w].

We express this property with the diagram in Figure 1. In this sort of dia-
gram, dashed arrows denote (existential) reductions depending on the (universal)
reductions shown by full arrows.
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Figure 1

The following properties are well known [1],[2].

Properties. Let R have the Church-Rosser property, then,

(1) the normal form of any element, if it exists, is unique,

(2) ∀x, y ∈ A[x = y ⇒ ∃w ∈ A, x
∗→w ∧ y

∗→w].

2.2 Term Rewriting Systems

Next, we will explain term rewriting systems that are reduction systems having a
term set as an object set A.

Let F be an enumerable set of function symbols denoted by f, g, h, · · ·, and let V
be an enumerable set of variable symbols denoted by x, y, z, · · · where F ∩V = φ. By
T (F, V ), we denote the set of terms constructed from F and V . An arity function
ρ is a mapping from F to natural numbers N, and if ρ(f) = n then f is called an
n-ary function symbol. In particular, a 0-ary function symbol is called a constant.

The set T (F, V ) of terms on a function symbol set F is inductively defined as
follows:

(1) x ∈ T (F, V ) if x ∈ V ,

(2) f ∈ T (F, V ) if f ∈ F and ρ(f) = 0,

(3) f(M1, . . . , Mn) ∈ T (F, V ) if f ∈ F, ρ(f) = n > 0, and M1, . . . , Mn ∈ T (F, V ).
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We use T for T (F, V ) when F is clear in the context.
A substitution θ is a mapping from a term set T to T such that;

(1) θ(f) = f if f ∈ F and θ(f) = 0,

(2) θ(f(M1, . . . , Mn)) ≡ f(θ(M1), . . . , θ(Mn)) if f(M1, . . . , Mn) ∈ T .

Thus, for term M , θ(M) is determined by its values on the variable symbols
occurring in M . Following common usage, we write this as Mθ instead of θ(M).

Consider an extra constant called a hole and the set T (F ∪ { }, V ). Then
C ∈ T (F ∪ { }, V ) is called a context on F . We use the notation C[ , . . . , ] for the
context containing n holes (n ≥ 0), and if N1, . . . , Nn ∈ T (F, V ), then C[N1, . . . , Nn]
denotes the result of placing N1, . . . , Nn in the holes of C[ , . . . , ] from left to right.
In particular, C[ ] denotes a context containing precisely one hole.

N is called a subterm of M ≡ C[N ]. Let N be a subterm occurrence of M ; then,
we write N ⊆ M , and if N 6≡ M , then we write N ⊂ M . If N1 and N2 are subterm
occurences of M having no common symbol occurrences (i.e., M ≡ C[N1, N2]), then
N1, N2 are called disjoint (denoted by N1 ⊥ N2).

A rewriting rule on T is a pair 〈Ml,Mr〉 of terms in T such that Ml /∈ V and any
variable in Mr also occurs in Ml. The notation . denotes a set of rewriting rules
on T and we write Ml . Mr for 〈Ml,Mr〉 ∈ .. A →redex, or redex, is a term M1θ,
where Ml . Mr, and in this case Mrθ is called a →contractum, of Mlθ. The set . of
rewriting rules on T defines a reduction relation → on T as follows:

M → N iff M ≡ C[Mlθ], N ≡ C[Mrθ], and Ml . Mr

for some Ml,Mr, C[ ], and θ.

When we want to specify the redex occurence A ≡ Mlθ of M in this reduction,

write M
A→N .

Definition. A term rewriting system R on T is a reduction system R = 〈T,→〉
such that the reduction relation → is defined by a set . of rewriting rules on T . If
R has Ml . Mr, then we write Ml . Mr ∈ R.

If every variable in term M occurs only once, then M is called linear. We say
that R is linear iff for any Ml . Mr ∈ R, Ml is linear. R is called nonlinear if R is
not linear.

Let M . N and P . Q be two rules in R. Then the two rules are overlapping iff

(1) if M . N and P . Q are different rules, then

∃M ′ ⊆ M (M ′ /∈ V ),∃θ1, ∃θ2,M
′θ1 ≡ Pθ2;
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(2) if M . N and P . Q are the same rule, then

∃M ′ ⊂ M (M ′ /∈ V ),∃θ1, ∃θ2,M
′θ1 ≡ Pθ2.

Note that in (2) we remove the case M ′ ≡ M which gives the trivial overlapping.
We say that R is ambiguous iff R has overlapping rules. R is called nonambiguous
if R is not ambiguous [2],[3].

Note that in this paper there are no limitations on R, thus, R may have nonlinear
or ambiguous (i.e., overlapping) rewriting rules [2],[3].

2.3 Direct Sum Systems

Let F1 and F2 be disjoint sets of function symbols (i.e., F1 ∩ F2 = φ), then term
rewriting systems R1 on T (F1, V ) and R2 on T (F2, V ) are called disjoint. Consider
disjoint systems R1 and R2 having sets .

1
and .

2
of rewriting rules, respectively,

then the direct sum system R1 ⊕ R2 is the term rewriting system on T (F1 ∪ F2, V )
having the set .

1
∪ .

2
of rewriting rules. If R1 and R2 are term rewriting systems not

satisfying the disjoint requirement for function symbols, then we take isomorphic
copies R′

1 and R′
2 by replacing each function symbol f of Fi by f i (i = 1, 2), and use

R′
1 ⊕ R′

2 instead of R1 ⊕ R2. For this reason, considering the direct sum R1 ⊕ R2,
we may assume that R1 and R2 are always disjoint, i.e., F1 ∩ F2 = φ.

Note. The above direct sum is different from Klop’s [3]: The direct sum of
combinatory reduction systems (in which terms are written in combinator notation)
is defined as the union of two systems with disjoint constant symbols, but with the
same application function symbol. Klop pointed out that his direct sum does not
preserve the Church-Rosser property.

It is trivial that if CR(R1 ⊕ R2) then CR(R1) and CR(R2). Hence, in the
following sections we shall prove CR(R1⊕R2), assuming that CR(R1) and CR(R2)
where R1 = 〈T (F1, V ),→

1
〉, R2 = 〈T (F2, V ),→

2
〉, and R1⊕R2 = 〈T (F1 ∪F2, V ),→〉.

Note that from here on the notation → represents the reduction relation on R1⊕R2.

Definition. A root is a mapping from T (F1 ∪ F2, V ) to F1 ∪ F2 ∪ V as follows:
For M ∈ T (F1 ∪ F2, V ),

root(M) =

{
f if M ≡ f(M1, . . . , Mn),
M if M is a constant or a variable.

Definition. Let M ≡ C[B1, . . . , Bn] ∈ T (F1 ∪ F2, V ) and C 6≡ . Then write
M ≡ C[[B1, . . . , Bn]] if C[ , . . . , ] is a context on Fa and ∀i, root(Bi) ∈ Fb (a, b ∈
{1, 2}and a 6= b). Then the set Part(M) of the parted terms of M ∈ T (F1 ∪ F2, V )
is inductively defined as follows:

5



Part(M) =

{
{M} if M ∈ T (Fa, V ) (a = 1 or 2),⋃

i Part(Bi) ∪ {M} if M ≡ C[[B1, . . . , Bn]] (n > 0).

Definition. For a term M ∈ T (F1 ∪ F2, V ), the rank r(M) of layers of contexts
on F1 and F2 in M is inductively defined as follows:

r(M) =

{
1 if M ∈ T (Fa, V ) (a = 1 or 2),
maxi{r(Bi)}+ 1 if M ≡ C[[B1, . . . , Bn]] (n > 0).

Example. Let a rewriting rule of R1 be f(x) . f(f(x)), and let a rewriting
rule of R2 be g(x, x) . x, where F1 = {f}, F2 = {2}, ρ(f) = 1, ρ(g) = 2. Con-
sider a term M0 ≡ g(f(x), g(f(f(g(x, x))), f(x))) ∈ T (F1 ∪ F2, V ). Note that M0

has a layer structure of contexts on F1 and F2 constructed by g( , g( , )) on F2,
f(x), f(f( )), f(x) on F1, and g(x, x) on F2 from the outside. Then Part(M0) =
{M0, f(x), f(f(g(x, x))), g(x, x)}, root(M0) = g. We can write M ≡ C[[f(x), f(f(g(x, x))), f(x)]]
where C[ , , ] ≡ g( , g( , )).

R1 ⊕R2 has the following reduction;

M0 ≡ g(f(x), g(f(f(g(x, x))), f(x)))

→ M1 ≡ g(f(x), g(f(f(x)), f(x)))

→ M2 ≡ g(f(x), g(f(f(x)), f(f(x))))

→ M3 ≡ g(f(x), f(f(x)))

→ M4 ≡ g(f(f(x)), f(f(x)))

→ M5 ≡ f(f(x)).

Then r(M0) = 3, r(M1) = r(M2) = r(M3) = r(M4) = 2, r(M5) = 1.

Lemma 2.1. If M → N then r(M) ≥ r(N).

Proof. It is easily obtained from the definitions of the direct sum R1 ⊕R2.

3 Preserved Systems

A term M ∈ T (F1 ∪ F2, V ) has a layer structure of contexts on F1 and F2, and this
structure is modified through a reduction process in a direct sum system R1 ⊕ R2

on T (F1 ∪ F2, V ). If a reduction M → N results in the disappearance of some layer
between two layers in the term M , then, by putting the two layers together, a new
layer structure appears in the term N . If no middle layer in M disappears as a result
of any reduction, then we say that the layer structure in M is preserved in the direct
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sum system. In this section we will show that if two term rewriting systems have
the Church-Rosser property, then terms with a certain restriction, viz. that their
layer structure is preserved under reductions, also have the Church-Rosser property.
Using this result, we will prove our conjecture in section 4.

The set of terms reduced from a term M by a reduction relation → is denoted
by G→(M) = {N | M

∗→N}.

Definition. A term M is root preserved (denoted by r-Pre(M) ) iff
root(M) ∈ Fa ⇒ ∀N ∈ G→(M), root(N) ∈ Fa, where a ∈ {1, 2}.

Now we formalize the concept of preserved layer structure.

Definition. A term M ≡ C[[B1, . . . , Bn]] (n > 0) is preserved iff M satisfies two
conditions;

(1) r-Pre(M),

(2) ∀i, Bi is preserved.

We write Pre(M) when M is preserved. Note that, by the definition, if Pre(M),
then ∀N ∈ G→(M), P re(N).

Let M
A→N and M ≡ C[[B1, . . . , Bn]]. If the redex occurrence A occurs in some

Bj, then we write M →
i

N ; otherwise M →
o

N . →
i

and →
o

are called an inner and

an outer reduction, respectively.

Lemma 3.1. Let Pre(M) and M ≡ C[[B1, . . . , Bn]]. Then,

(1) M →
i

N ⇒ N ≡ C[[C1, . . . , Cn]] where ∀i, Bi
≡→Ci;

(2) M →
o

N ⇒ N ≡ C ′[[Bi1 , . . . , Bip ]] (1 ≤ ij ≤ n), where C[ , . . . , ] and C ′[ , . . . , ]

are contexts on the same set Fa (a = 1 or 2).

Proof. It is immediately proved from Pre(M) and the definition of →
i
, →

o
.

We consider the term sequences; α = 〈A1, . . . , An〉 and β = 〈B1, . . . , Bn〉 where
Ai, Bi ∈ T . Then, we write α ∝ β iff ∀i, j[Ai ≡ Aj ⇒ Bi ≡ Bj]. We define α

∗→ β
by ∀i, Ai

∗→Bi.
We extend the above notations to terms. Let M ≡ C[[A1, . . . , An]], N ≡ C[[B1, . . . , Bn]],

α = 〈A1, . . . , An〉, β = 〈B1, . . . , Bn〉. Then write M ∝ N if α ∝ β .
We use the relation ∝ to deal with nonlinear rewriting rules. For example,

let the reduction f(A1, A2, A3, A4)
∗→ g(A1) be obtained by using the nonlinear rule

f(x, x, y, y) . g(x). Then, we can obtain the reduction f(B1, B2, B3, B4)
∗→ g(B1) by
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the same rule if 〈A1, A2, A3, A4〉 ∝ 〈B1, B2, B3, B4〉. This leads us to the following
lemma.

Lemma 3.2. Let Pre(M), M ∝ N . If M →
o

M ′, then ∃N ′, N →
o

N ′ ∧M ′ ∝ N ′.

Proof. Let M ≡ C[[A1, . . . , An]], N ≡ C[[B1, . . . , Bn]]. Then the left side of the
rewriting rule used in M →

o
M ′ occurs in context C[ , . . . , ]. Since M ∝ N we can

apply this rule to N in the same way, and obtain N →
o

N ′. By Lemma 3.1(2), it is

clear that M ′ ∝ N ′.

Lemma 3.3. Let Pre(M), M →
o

P , M
∗→
i

N , M ∝ N . Then there is a term Q

satisfying the diagram in Figure 2, that is,
∀M, N, P ∈ T [M

∗→
i

N ∧M
∗→
i

P ∧M ∝ N ⇒ ∃Q ∈ T, N
∗→
i

Q∧P
∗→
i

Q∧P ∝ Q].

Proof. By Lemma 3.2 we obtain a term Q such that P ∝ Q and N →
o

Q. Using

M →
o

P , M
∗→
i

N and Lemma 3.1(1), (2), we obtain P
∗→
i

Q.

?

-

-?

M P

N Q

o

o

∗ i ∗i

Figure 2

Lemma 3.4. Let Pre(M), M
∗→
i

N , M
∗→
o

P , M ∝ N . Then we can obtain a

term Q satisfying Figure 3.
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?

-

-?

M P

N Q

∗
o

∗
o

∗ i ∗i

Figure 3

Proof. Using lemma 3.3, the diagram in Figure 4 can be made.

?

- - - -

? ? ? ?- - - -

M P

N Q

o o o o

o o o o

∗ ∗ ∗ ∗ ∗i i i i i

Figure 4

We define the local Church-Rosser property at a term M .

Definition. Let R = 〈T,→〉 be a reduction system and let M ∈ T . Then M is
Church-Rosser for → (denoted by CR→(M) or CR(M) ) iff

∀N, P ∈ T [M
∗→N ∧M

∗→P ⇒ ∃Q ∈ T, N
∗→Q ∧ P

∗→Q].
Note that ∀M ∈ T, CR(M) iff CR(R).

We define M ↓ N by ∃Q ∈ T, M
∗→Q ∧N

∗→Q.
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Lemma 3.5. Let α = 〈A1, . . . , An〉 and ∀i, CR(Ai). Then
∃β = 〈B1, . . . , Bn〉[α ∗→ β ∧ ∀i, j[Ai ↓ Aj ⇒ Bi ≡ Bj]].

Proof. Using CR(Ak), it can be shown that Ai ↓ Ak ∧ Ak ↓ Aj ⇒ Ai ↓ Aj.
Hence ↓ is an equivalence relation and it partitions {A1, . . . , An} in the equivalence
class C1, . . . , Cm. Using the Church-Rosser property for each Ai, we can take a term
Bp for each equivalence class Cp = {Ap1 , . . . , Apq} as the diagram in Figure 5. Take
Bp1 ≡, . . . ,≡ Bpq ≡ Bp.

A
A
A
A
A
A
A
A
A
AU

¢
¢

¢
¢

¢
¢

¢
¢

¢
¢®

A
A
A
A
A
A
A
A
A
AU

¢
¢

¢
¢

¢
¢

¢
¢

¢
¢®

A
A
A
A
A
A
A
A
A
AU

¢
¢

¢
¢

¢
¢

¢
¢

¢
¢®

A
A
A
A
A
A
A
A
A
AU

�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

A
A
A
A
A
A
A
A
A
AU

Ap1 Ap2 · · · · · · Apq

Bp

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗

∗

∗

Figure 5

Lemma 3.6. Let α = 〈A1, . . . , An〉 ∗→ β = 〈B1, . . . , Bn〉 and ∀i, CR(Ai). Then
Ai ↓ Aj iff Bi ↓ Bj.

Proof. By the Church-Rosser property for each Ai, it is obvious.

Lemma 3.7. Let α = 〈A1, . . . , An〉, ∀i, CR(Ai), and α
∗→ β, α

∗→ γ. Then we
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can obtain δ satisfying Figure 6, where β ∝ γ and δ ∝ γ.

?

-

-?

α β

γ δ

∗ ∗

∗

∗

∗ ∗

Figure 6

Proof. Let β = 〈B1, . . . , Bn〉, γ = 〈C1, . . . , Cn〉. By ∀i, CR(Ai), we have a term
δ′ = 〈D′

1, . . . , D
′
n〉 such that β

∗→ δ′ and γ
∗→ δ′. Using Lemma 3.5 for δ′, we obtain

δ = 〈D1, . . . , Dn〉 such that δ′ ∗→ δ and D′
i ↓ D′

j ⇒ Di ↓ Dj. Then, by Lemma 3.6,
Ai ↓ Aj ⇐⇒ D′

i ↓ D′
j, hence Ai ↓ Aj ⇒ Di ≡ Dj. Next we show β ∝ δ. If Bi ≡ Bj,

then Ai ↓ Ai, and, thus Di ≡ Dj, hence β ∝ δ. Similarly we can prove γ ∝ δ.

Lemma 3.8. Let M ≡ C[[A1, . . . , An]], Pre(M), ∀i, CR(Ai). Then we have the
diagram in Figure 7, where N ∝ Q, P ∝ Q.

?

-

-?

M P

N Q

∗
i

∗
i

∗ i ∗i

Figure 7
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Proof. Since Pre(M), we obtain N ≡ C[[B1, . . ., Bn]], P ≡ C[[C1, . . . , Cn]], where
α = 〈A1, . . . , An〉 ∗→ β = 〈B1, . . . , Bn〉, α = 〈A1, . . . , An〉 ∗→ γ = 〈C1, . . . , Cn〉. Using
Lemma 3.7, we can obtain δ = 〈D1, . . . , Dn〉 such that β

∗→ δ, γ
∗→ δ, β ∝ δ and

γ ∝ δ. Therefore, take Q ≡ C[[D1, . . . , Dn]].

Lemma 3.9. If Pre(M), then CR→
o

(M), that is, M is Church-Rosser for →
o

(Figure 8).

?

-

-?

M P

N Q

∗
o

∗
o

∗ o ∗o

Figure 8

Proof. Let root(M) ∈ Fa (a = 1 or 2). Then, since Pre(M), the outermost
part of any term in G→(M) is always a context on Fa. Thus →

o
is determined by

only Ra. Hence Church-Rosser for →
o

is obvious by CR(Ra).

Theorem 3.1. If Pre(M), then CR(M).

Proof. By induction on the rank r(M) of layers in M . The case r(M) = 1 is
trivial since M ∈ T (Fa, V ) and CR(Ra) (a = 1 or 2); therefore, suppose r(M) =
n > 1, M ≡ C[[A1, . . . , Am]].

Claim: We obtain the diagram in Figure 9.
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?

?

?

?

- -

- -

M P

N Q

∗
i

∗
o

∗
i

∗
o

∗ i

∗ o

∗ i

∗ o

Figure 9

Proof of the claim. By the induction hypothesis, we obtain ∀i, CR(Ai). Using
Lemmas 3.8, 3.4 and 3.9 for (1), (2) and (3), respectively, we can obtain the diagram
in Figure 10, where M ′ ∝ Q′ and M ′′ ∝ Q′.
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?

?

?

?

?

?

-

-

-

-

- -

M

M ′

M ′′ P

P ′

N N ′ Q

Q′

(1) (2)

(2) (3)

∗
i

∗
o

∗
i

∗
o

∗
i

∗
o

∗ i

∗ o

∗ i

∗ o

∗ i

∗ o

Figure 10

Now we will show CR(M). Note that any reduction M
∗→M ′ takes the form of

M
∗→
i

∗→
o

M1
∗→
i

∗→
o

M2
∗→
i

∗→
o
· · · ∗→

i

∗→
o

M ′.

Let M
∗→N , M

∗→P . By splitting
∗→ into

∗→
i

∗→
o

and using the claim, one can

draw the diagram in Figure 11. Hence CR(M).
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?

?- -∗
i

∗
o

∗ i

∗ o

?

?- -∗
i

∗
o

∗ i

∗ o

?

?- -∗
i

∗
o

∗ i

∗ o

?

?- -∗
i

∗
o

∗ i

∗ o

?

?- -∗
i

∗
o

∗ i

∗ o

?

?- -∗
i

∗
o

∗ i

∗ o

?

?

∗ i

∗ o

?

?

∗ i

∗ o

- -∗
i

∗
o

- -∗
i

∗
o

- -∗
i

∗
o

M P

N Q

Figure 11

Let M
A→N where A is a redex occurrence. Then write M →

p
N if A occurs in a

preserved subterm of M , otherwise write M →
np

N .

Theorem 3.2. Let M ≡ C[[A1, . . . , An]], ∀i, Pre(Ai). Then CR(M).

Proof. If Pre(M), immediate by Theorem 3.1. Hence, suppose ¬Pre(M). Then
one can prove the diagrams (1), (2) and (3) in Figure 12, where M ∝ N in (1) and
N ∝ Q, P ∝ Q in (2), in the same way as for Lemmas 3.4, 3.8 and 3.9, respectively,
by replacing →

i
, →

o
with →

p
, →

np
. Using an analogy to the proof in Theorem 3.1,

first, one can obtain the diagram in Figure 13 from the diagrams (1), (2), (3) in
Figure 12, and secondly, splitting

∗→ into
∗→
p

∗→
np

, one can show CR(M).
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?

-

-?

M P

N Q

∗
np

∗
np

∗ p ∗p(1)

?

-

-?

M P

N Q

∗
p

∗
p

∗ p ∗p(2)

?

-

-?

M P

N Q

∗
np

∗
np

∗ np ∗np(3)

Figure 12
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?

?

?

?

- -

- -

M P

N Q

∗
p

∗
np

∗
p

∗
np

∗ p

∗ np

∗ p

∗ np

Figure 13

Note. Though ¬Pre(M), the above proof is similar to the proof of Theorem 3.1 in
which we assumed Pre(M). This analogy comes from the fact that in Theorem 3.2
a non-preserved context in a term M only occurs at the outermost part of layer
structure. However, if some non-preserved context occurs in the middle part, then
one cannot prove CR(M) by the analogous method to Theorem 3.1. In the next
section we shall consider this case.

4 The Church-Rosser Property for the Direct Sum

In this section we will show that if CR(R1) and CR(R2), then CR(R1 ⊕ R2). This
is done by proving CR(M) for any term M by using parallel deletion reduction
which deletes the layers of the non-preserve contexts occurring in M . First we shall
introduce the following deletion reduction.

Let a term M ∈ T (F1 ∪ F2, V ) be not preserved. Then there is a term N ∈
Part(M): N ≡ C̃[[B1, . . . , Bn]], ¬Pre(N), ∀i, Pre(Bi). Since N is not preserved,
one has N ′: N

∗→N ′, root(N) ∈ Fa, root(N) ∈ Fa (a = 1 or 2). Then the deletion
reduction →

d
is defined by replacing N occurring in M by N ′ as follows:

M →
d

M ′ ⇒ M ≡ C[N ], M ′ ≡ C[N ′],

where N and N ′ are the above terms.
Then we say N is →

d
redex. From this definition, →

d
⊆ ∗→. Let N1, N2 be two

17



different →
d

redex occurrences in M , then it is trivial from the definition that N1, N2

are disjoint, that is, N1 ⊥ N2. Note that M ∈ NF→
d

iff Pre(M).

Definition. The maximum depth d(M) of →
d

redex occurrences in M is defined

by the following:

d(M) =





0 if Pre(M),
1 if ¬Pre(M) and M is →

d
redex,

maxi{d(Bi)}+ 1 if ¬Pre(M), M is not →
d

redex,

and M ≡ C[[B1, . . . , Bn]] (n > 0).

Lemma 4.1. Let M ≡ C[B1, . . . , Bn] and C ∈ T (Fa ∪ { }, V ) (a = 1 or 2),
then d(M) ≤ maxi{d(Bi)}+ 1.

Proof. It is immediately proved from the definition of d(M).

Lemma 4.2. If M → N then d(M) ≥ d(N).

Proof. We will prove the lemma by induction on d(M). The case d(M) ≤ 1 is
trivial from the definition. Assume the lemma for d(M) < k (k > 1), then we will

show the case d(M) = k. Let M ≡ C[[B1, . . . , Bn]] (n > 0) and M
A→N .

Case 1. ∃k, A ⊆ Bk.

Then N ≡ C[B1, . . . , Bk−1, B
′
k, Bk+1, . . . , Bn] where Bk

A→B′
k. We can obtain

d(Bk) ≥ d(B′
k) by using the induction hypothesis. Hence by Lemma 4.1,

d(M) = maxi{d(Bi)}+ 1

≥ max{d(B1), . . . , d(Bk−1), d(B′
k), d(Bk+1), . . . , d(Bn)}+ 1

≥ d(N).

Case 2. Not Case 1.
Then N ≡ C ′[Bi1 , . . . , Bis ] where 1 ≤ ij ≤ n and C ′ ∈ T (Fa ∪ , V ) (a = 1 or 2).

If s = 0 then it is clear from d(N) = 1 or 0 that d(M) ≤ d(N). If s > 0 then

d(M) = maxi{d(Bi)}+ 1

≤ maxj{d(Bij)}+ 1

≤ d(N)

for both C ′ 6≡ and C ′ 6≡ .

18



Let N1, . . . , Nn be all the →
d

redex occurrences in M having depth d(M). Note

that Ni ⊥ Nj (i = j). Then the parallel deletion reduction →
pd

is defined by replacing

each →
d

redex occurrence Ni by N ′
i such that Ni→

d
N ′

i at one step, or,

M →
pd

N ⇐⇒ M ≡ C[N1, . . . , Nn], N ≡ C[N ′
1, . . . , N

′
n].

We say that the above N1, . . . , Nn are →
pd

redex occurrences. It is clear that

NF→
pd

= NF→
d

. By the definition of parallel deletion reduction, one can easily

prove that if M →
pd

M ′ then d(M) > d(M ′). Hence, every parallel deletion reduction

terminates, that is, SN(→
pd

).

Lemma 4.3. Let M ≡ C[[A1, . . . , An]]
M→C[Ai1 , . . . , Aip ] where 1 ≤ ij ≤ n, and

let 〈A1, . . . , An〉 ∝ 〈B1, . . . , Bn〉. Then one has a reduction N ≡ C[B1, . . . , Bn]
N→

C ′[Bi1 , . . . , Bip ].

Proof. The left side of the rewriting rule used in the reduction
M→ occurs in

context C[ , . . . , ]. Hence, one can apply this rewriting rule to N in the same way
as for Lemma 3.2.

Lemma 4.4. Let d(M) > 1, M ≡ C[M1, . . . , Mm]
M→C ′[Mi1 , . . . , Mip ] (1 ≤ ij ≤

m ), where M1, . . . ,Mm are all the →
pd

redex occurrences in M . Let 〈M1, . . . , Mm〉 ∝
〈M ′

1, . . . , M
′
m〉. Then one has a reduction M ′ ≡ C[M ′

1, . . . ,M
′
m]

M ′→C[M ′
i1
, . . . , M ′

ip ].

Proof. Let M ≡ C̃[[A1, . . . , An]], then ∀i,∃j,Mi ⊆ Aj, and, thus, by replacing
each Mi in Aj with Mi, to make Aj, one can obtain M ′ ≡ C̃[A′

1, . . . , A
′
n]. Now it

is evident from 〈M1, . . . , Mm〉 ∝ 〈M ′
1, . . . , M

′
m〉, that 〈A1, . . . , An〉 ∝ 〈A′

1, . . . , A
′
n〉.

Hence Lemma 4.3 applies.

Lemma 4.5. Let d(M) > 1, M ≡ C[M1, . . . , Mm]
M→C ′[Mi1 , . . . , Mip ] (1 ≤ ij ≤

m), where M1, . . . , Mm are all the →
pd

redex occurrences in M . Let 〈M1, . . . , Mm〉
∗→〈M ′

1, . . . ,M
′
m〉. Then one can obtain a term sequence 〈M ′′

1 , . . . , M ′′
m〉 such that

〈M ′
1, . . . , M

′
m〉 ∗→ 〈M ′′

1 , . . . ,M ′′
m〉 and M ′ ≡ C[M ′′

1 , . . . ,M ′′
m]

M ′→C ′[M ′′
i1
, . . . , M ′′

ip ].

Proof. In order to prove the lemma by using Lemma 4.4, we only need to find a
〈M ′′

1 , . . . , M ′′
m〉 such that 〈M1, . . . , Mm〉 ∝ 〈M ′′

1 , . . . , M ′′
m〉. Since M1, . . . ,Mm are →

pd

redex occurrences, we obtain ∀i, CR(Mi) by Theorem 3.2. Therefore, we obtain this
〈M ′′

1 , . . . , M ′′
m〉 by Lemma 3.7, taking α = 〈M1, . . . , Mm〉, β = γ = 〈M ′

1, . . . , M
′
m〉

and δ = 〈M ′′
1 , . . . , M ′′

m〉.
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Lemma 4.6. Let M → N , M →
pd

P , d(M) = d(N). Then one has the diagram

in Figure 14. Note that d(M) > d(S).

?

-

-

?

?

M N

P S

Q

∗

pd

pd

∗

Figure 14

Proof. Let M
A→N . The possible relative positions of the redex occurrence A

and all of the →
pd

redex occurrences in M , say M1, . . . , Mm, are given in the following

cases.

Case 1. ∀i, A ⊥ Mi.
Then

M ≡ C[M1, . . . , Mr, A, Mr+1, . . . , Mm],

N ≡ C[M1, . . . , Mr, B, Mr+1, . . . ,Mm],

P ≡ C[P1, . . . , Pr, A, Pr+1, . . . , Pm],

where A→
A

B and ∀i, Mi→
d

Pi. Since all of the →
pd

redex occurrences in N are

also M1, . . . , Mm (this follows by d(A) ≥ d(B); A-contraction cannot create deeper
→
d

redex occurrences, in particular no →
pd

redex occurrences), we can take

Q ≡ C[P1, . . . , Pr, B, Pr+1, . . . , Pm].
Let S ≡ Q, then P

∗→S and Q
∗→S.

Case 2. ∃r, A ⊆ Mr.
Then

M ≡ C[M1, . . . ,Mr−1,Mr,Mr+1, . . . ,Mm],

N ≡ C[M1, . . . ,Mr−1, Nr,Mr+1, . . . , Mm],

P ≡ C[P1, . . . , Pr−1, Pr, Pr+1, . . . , Pm],
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where Mr
A→Nr, and ∀i,Mi→

d
Pi. Since each Mi (i 6= r) is also a →

pd
redex

occurrence in N , by using →
pd

for N , one obtains

Q ≡ C[P1, . . . , Pr−1, Qr, Pr+1, . . . , Pm],
where Nr

≡→
d

Qr, whether Nr is a →
pd

redex occurrence or not (in N ). By Theo-

rem 3.2, CR(Mr); therefore, there is a term Sr such that Pr
∗→Sr, Qr

∗→Sr. There-
fore, take

S ≡ C[P1, . . . , Pr−1, Sr, Pr+1, . . . , Pm].

Case 3. ∃j, Mj ⊂ A.
Let Mr, . . . ,Mk (r ≤ k ) be all the →

pd
redex occurrences in M occurring in A.

Then they are also→
pd

redex occurrences in A. Let A ≡ D[Mr, . . . , Mk]
A→D′[Mi1 , . . . , Mip ]

(r ≤ ij ≤ k).
Then

M ≡ C[M1, . . . , Mr−1, D[Mr, . . . ,Mk],Mk+1, . . . , Mm],

N ≡ C[M1, . . . , Mr−1, D
′[Mi1 , . . . ,Mip ],Mk+1, . . . , Mm],

P ≡ C[P1, . . . , Pr−1, D[Pr, . . . , Pk], Pk+1, . . . , Pm],

where ∀i,Mi→
d

Pi. Since M1, . . . , Mr−1,Mk+1, . . . , Mm are also →
pd

redex occur-

rences in N , whether Mi1 , . . . , Mip are →
pd

redex occurrences or not (in N ), one can

obtain
Q ≡ C[P1, . . . , Pr−1, D

′[Qi1 , . . . , Qip ], Pk+1, . . . , Pm],

where ∀j, Mij
≡→
d

Qij . Now, by using Lemma 4.5, one can show for the subterm

D[Pr, . . . , Pk] in P that there is a sequence 〈P ′
r, . . . , P

′
k〉 such that 〈Pr, . . . , Pk〉 ∗→〈P ′

r, . . . , P
′
k〉

and D[P ′
r, . . . , P

′
k] → D′[P ′

i1
, . . . , P ′

ip ]. Take
P ′ ≡ C[P1, . . . , Pr−1, D

′[P ′
i1
, . . . , P ′

ip ], Pk+1, . . . , Pm];

then one can have P
∗→P ′. Since ∀j, CR(Mij), for each j there is Sij such that

P ′
ij

∗→Sij , Qij
∗→Sij . Therefore, take

S ≡ C[P1, . . . , Pr−1, D
′[Si1 , . . . , Sip ], Pk+1, . . . , Pm].

Lemma 4.7. Let M → N , M →
pd

P , d(M) > d(N), then one has the diagram in

Figure 15. Note that d(M) > d(S).
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?

-

-?

M N

P Q

∗

pd ∗

Figure 15

Proof. One can obtain a term S in the same way as for Case 2 and Case 3 in
the proof of Lemma 4.6.

Theorem 4.1. R1 ⊕ R2 has the Church-Rosser property, that is, we have the
diagram in Figure 16.

?

-

-?

M P

N Q

∗

∗

∗ ∗

Figure 16

Proof. We will prove CR(M) by induction on d(M). The case d(M) = 0 is
trivial from Theorem 3.1. Assume CR(M) for d(M) < n (n > 0). Then we will
show the following claim.
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Claim. One has the diagram in Figure 17 for the case d(M) ≤ n.

?

-

-?

M N

P Q

∗

∗

pd ∗

Figure 17

Proof of the Claim. Let M
m→N , where

m→ denotes a reduction of m (m ≥ 0)
steps. Then we prove the claim by induction on m. The case m = 0 is trivial.
Assume the claim for m − 1 (m > 0). We will show the diagram for m. Let

M → A
m−1→ N .

Case 1. d(M) = d(A). We can obtain the diagram in Figure 18, proving dia-
gram(1) by using Lemma 4.6, diagram(2) by using the induction hypothesis for the
claim, and diagram(3) by using the induction hypothesis for the theorem, that is,
CR(B), since d(M) > d(B).

23



?

?

?

?

?

- -

-

- -

M A N

P Q

B(1)

(2)

(3)

m− 1

∗

∗ ∗

pd

pd

∗

∗

∗

Figure 18

Case 2. d(M) > d(A). We can obtain the diagram in Figure 19, proving dia-
gram(1) by using Lemma 4.7, and diagram(2) by using the induction hypothesis for
the theorem, that is, CR(A).
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? ? ?

- -

- -

M A N

P Q

∗(1) (2)

m− 1

∗ ∗

pd ∗

Figure 19

Now we will prove CR(M) for d(M) = n. The diagram in Figure 20 can be ob-
tained, where diagram(1) and diagram(2) are shown by the claim and the induction
hypothesis, that is, CR(A), respectively.
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@
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@
@
@
@
@
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?

?

?

--

-

- -

M

A

N

P Q

(1)

(1)

(2)

∗

∗ ∗

pd

∗

∗

∗

∗

∗

Figure 20

Corollary 4.1. CR(R1) ∧ CR(R2) ⇐⇒ CR(R1 ⊕R2).

Proof. ⇐ is trivial, and ⇒ is proved by Theorem 4.1.
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