
On Equivalence Transformations for 

Term Rewriting Systems 

Yoshihito TOYAMA 

Musashino Electrical Communication Laboratory, N.ToT. 

Midori-cho, Musashino-shi, 180 Japan 

Abstract 

This paper proposes some simple methods, based on the 

Church-Rosser property, for testing the equivalence in a restricted 

domain of two reduction systems. Using the Church-Rosser property, 

sufficient conditions for the equivalence of abstract reduction 

systems are proved. These conditions can be effectively applied to 

test the equivalence in a restricted domain of term rewriting 

systems. In addition , equivalence transformation rules for term 

rewriting systems are proposed. 

I. Introduction 

The concept of the equivalence in a restricted domain of two 

term rewriting systems is presented here. The equivalence in a 

restricted domain means that the equational relation (or the 

transitive reflexive closure) generated by a reduction relation of 

one system is equal in a restricted domain to that of another 

system. 

This concept plays an important role in transforming recursive 

programs [2][12] and proving an equation in abstract data types 

[3][5][6][9]. For example, consider a recursive program computing 

the factorial function on the set N of natural numbers represented 

by 0~ S(0), S(S(O)) .... ; 

F(x)=IF equal(x,0) THEN S(0) ELSE x*F(x-S(0))° 

By using the successor function S, we can also define the factorial 
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function by; 

F(0)=S(0), 

F(S(x))=S(x)*F(x). 

Regarding equations as rewriting rules from the left hand side to 

the right hand side, we can obtain two term rewriting systems [4][5] 

from the above two definitions. The first term rewriting system can 

reduce "F(M)" to "IF equal(M,0) THEN S(0) ELSE M*F(M-S(0))" for any 

term M, but the second system can not reduce "F(M)" unless M is 

either "0" or the form of "S(M')" Therefore the two term rewriting 

systems produce different results in the reduction of "F(M)", 

although they can reduce "F(M)" to the same result unless M can be 

reduced to a natural number. Thus, the equivalence for the 

recursive programs must be regarded as the equivalence in the 

restricted domain N for the term rewriting systems. 

We consider in this paper sufficient conditions for the equivalence 

in a restricted domain for two term rewriting systems. We first 

treat this problem in an abstract framework and show sufficient 

conditions for two abstract reduction systems. It is shown how one 

can formally validate the equivalence in the restricted domain for 

term rewriting systems by using these conditions. Finally, the 

problems related to the rules for transforming programs described by 

Burstall and Darlington [2], and Scherlis [12] are discussed, and 

equivalence transformation rules in a restricted domain for term 

rewriting systems are proposed. 

2. Reduction Systems 

We explain notions of reduction systems and give definitions for 

the following sections. These reduction systems have only an 

abstract structure, thus they are called abstract reduction systems 

[4][7][11]. 

A reduction system is a structure R=<A,-~ > consisting of some 

object set A and some binary relation -~ on A, called a reduction 

relation. A reduction (starting with x0) in R is a finite or 

infinite sequence XO-~Xl-~X2--> .... The identity of elements of A 
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(or syntactical equality) is denoted by ~. --> is the transitive 

reflexive closure of -~, -~ is the reflexive closure of -~,, and = is 

the equivalence relation generated by --~ (i.e., the transitive 

reflexive symmetric closure of --~). If x~A is minimal with respect 

to -e, i.e., ~yeA[x-ey], then we say that x is a normal form, and 

let NF be the set of normal forms. If x~-~y and yeNF then we say x 

has a normal form y and y is a normal form of x. 

Definition. R=<A,-~> is strongly normalizing (denoted by SN(R) 

or SN(-~)) iff every reduction in R terminates, i.e., there is no 

infinite sequence Xo-+xl-+X2--> .... R is weakly normalizing (denoted 

by WN(R) or WN(--~)) iff any x6A has a normal form. 

Definition. R=<A,-~> has the Church-Rosser property, or 

Church-Rosser, (denoted by CR(R)) iff 

~x,y, zeA[x--ey^x--+z ~ ~weA,y ,wAz-~w]. 

The following properties are well known [1][4][7]. 

Property 2.1. Let R have the Church-Rosser property, then, 

(i) Vx,y%A[x=y ~ ~w{A,x~w^y~w], 

(2) Vx,yENF[x=y ~ x~y], 

(3) ~xeA,VyeNF[x=y ~ x~ey]. 

3. Basic Results 

Let RI=<A, ~-+ >, R2=<A, 2---~ > be two abstract reduction systems 

having the same object set A, and let -~ , ~- and NF i be the 

transitive reflexive closure, the equivalence relation and the set 

of normal forms in R i respectively (i=1,2). Note that ~ and ~ are 

subsets of AXA: for example, ~C~_ means that the set ~ is contained 

in the set =. 
1 

Let B, C be any subsets of the object set A. We write 7 = ~ (in B) 

for Vx,y6B[xTy <==~ x~y], and say R 1 and R 2 are equivalent in the 

restricted domain B for the equivalence relation. We write 

+ = ~ (in BXC) for Vx~B y6C[x i-~y 4=~ x~y], and say R 1 and R 2 are 

equivalent in the restricted domain B X C for the transitive 

reflexive closure. 
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We first show sufficient conditions for = = ~(in B). 

Lemma 3.1. Let RI, R 2 satisfy the following conditions: 

(1) ~¢~, 

(2) T = ~ (in C), 

(3) VxeB,~y£C[x~y]. 

Then = = = (in B). 
f 

Proof. Prove V x,yeB[x~y ~=~ x~y]. ~ is trivial from 

condition(l), hence we show~. Assume x~y where x,y~B. By using 

condition(3), there are some elements z,w~C such that x=z and YT w" 

Since x=z and y~w are obtained from condition(l) z~w can be 

derived from z~x~y~w. From condition(2), z~w holds. Therefore x~y 

f~om x~zTwTy. [] 

If R 2 has the Church-Rosser property, we can modify condition(2) 

in Lemma 3.1 as follows. 

Theorem3.1. Assume the following conditions: 

(i) T ~' 

(2) CR(R2) and C~NF2, 

(3) v x~B,~yEC[x~y]. 

Then T = ~ (in B). 

Proof. Show condition(2) of Lemma 3.1, i.eo, 

Vx,y6C[xTy4==>x~y], from the above conditions. ~ is trivial from 

condition(l), hence we prove ~. By using property 2.1(2) and 

condition(2), x~y ~x~y for any x,y~C. Therefore xTy. [] 

Corollary 3.1. Assume the conditions: 

(2) CR(R2) and NFI=NF2, 

(3) WN(RI). 

Then T = ~ is obtained. 

Proof. Set B=A and NFI=NF2=C in Theorem 3.1. [] 

Next we will consider sufficient conditions for the equivalence in 

B XC for the transitive reflexive closure, i.e., ~ = ~ (in B XC)o 
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Theorem 3.2. Assume the following conditions: 

(i) ~---~ ~-~ 

(2) CR(R2) and C~NF2, 

(3) ~x6B,~y~C[x"~y]. 

•hen ,-5 = - ~  ( i n S × C ) .  

Proof. It is sufficient to show that for any x~B,y6C, 

x~y ~ =~ x~-y.~" Let x~y. Then, by condition(3), there is some z6C 

such that x~z. By condition(l), x~z, hence, y~z is obtained from 

property 2.1(2) and condition(2). Therefore x~l--~y. [~ 

Corollary 3.2. Assume the conditions: 

(i) -~7, 

(2) CR(R2) and NFI=NF2, 

(3) WN(R1). 

Then ~-7 = 2 

Proof. This is obvious from Theorem 3.2. [] 

4. Term Rewriting Systems 

In this section we will explain term rewriting systems that are 

reduction systems having a term set as an object set A. 

Let V be a set of variable symbols denoted by x,y,z,..., and let F 

be a set of function symbols denoted by f,g,h,..., where FaV=~. Let 

N be the set of natural numbers. An arity function p is a mapping 

from F to N, and if p(f)=n then f is called an n-ary function 

symbol. In particular, a 0-ary function symbol is called a 

constant. 

and a variable The set T(FUV) of terms on a function symbol set F 

symbol set V is inductively defined as follows: 

(i) x~T(FUV) if x6V, 

(2) f6T(FUV) if f6F and ~(f)=0, 

(3) f(M1,...Mn)~T(FUV) if f6F, p(f)=n>O, and 

M 1 ..... MnE T ( FUV ). 

We may write MfN, i.e., infix notation, instead of f(M,N). Let T(F) 

be the set of terms having no variable symbols. T is used for 
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T(FUV) when F and V are clear from the context. 

A substitution 8 is a mapping from a term set T to T such that 

(i) ~(f)~f if fEF and ~(f)=0, 

(2) ~(f(M 1 ..... Mn))~f(~(Ml) ..... ~(Mn)) 

if f(M 1 ..... Mn)6T. 

Thus, for term M, ~(M) is determined by its values on the variable 

symbols occurring in M. Following common usage, we write this as M~ 

instead of #(M). 

Consider an extra constant [] called a hole and the set T(FUV~[[]})o 

Then CET(FUV~[~]) is called a context on F. We use the notation 

C[ ..... ] for the context containing n holes (n>0), and if 

NI,...,NnET(FUV) then C[N 1 .... ,Nn] denotes the result of placing 

NI,...,N n in the holes of C[ ..... ] from left to right. In 

particular, C[ ] denotes a context containing precisely one hole. 

N is called a subterm of M~C[N]. Let N be a subterm occurrence of 

M, then, write N£M, and if NSM then write NcM. 

A rewriting rule on T is a pair <M1,Mr> of terms in T such that Ml~V 

and any variable in M r also occurs in M I. The notation ~ denotes a 

set of rewriting rules on T and we write Ml>M r for <M1,Mr>&~. A 

-~redex, or redex, is a term MI~ where MI~Mr, and in this case Mr@ 

is called a -~contractum, or contractum, of MI~. The set > of 

rewriting rules on T defines a reduction relation -~on T as 

follows: 

M-~N iff M~C[MI~], N~C[Mr~], and MI~M r 

for some MI, Mr, C[ ], and ~. 

Defini%ion. A term rewriting system R on T is a reduction 

system R=<T,-~> such that the reduction relation -+ is defined by a 

set > of rewriting rules on T. If R has MI>Mr, then we write 

Sl~ Mr6 R. 

If every variable in term M occurs only once, then M is called 

linear. We say that R is linear iff MM > N & R, M is linear. 

Let M~N and P>Q be two rules in R. We assume that we have renamed 

variables appropriately, so that M and P share no variables. Assume 
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S~V is a subterm occurrence in M, i.e., M~C[S], such that S and P 

are unifiable, i.e., SS~P~, with a minimal unifier ~ [4][8]. Since 

MS~C[S]8~CS[P#], two reductions starting with M~, i.e., 

M@-eCe[Qe]~C[Q]8 and MS-~N~, can be obtained by using P~Q and M>N. 

Then we say that the pair <C[Q]~, N8 > of terms is critical in R 

[4][5]. We may choose M>N and PmQ to be the same rule, but in this 

case we shall not consider the case S ~ M, which gives trivial pairs 

<N,N>. If R has no critical pair, then we say that R is 

non-overlapping (with itself) [4][5][8][13]. 

The critical pair for two term rewriting systems R 1 and R 2 can be 

defined in the same way. Let M>N and P~Q be in R 1 and in R 2 

respectively. Then we say that the above pair <C[Q]#, N~ > is 

critical between R 1 and R 2. If there is no critical pair between R 1 

and R2, then we say that R 1 and R 2 are non-overlapping with each 

other [13]. 

The following sufficient conditions for the Church-Rosser property 

are well known [4][5][8]. 

Condition 4.1. Let R be strongly normalizing. If for any 

critical pair <P,Q> in R, P and Q have the same normal form, then R 

has the Church-Rosser property. 

Condition 4.2. Let R be linear and non-overlapping0 

has the Church-Rosser property. 

Then R 

Let RI=<T, ~-~> with~ and R2=<T, 2--~> with ~. Then their union RIQR 2 

is defined by RIJR2=<T,-~> with ~ = ~U~. The next condition is 

described in [13] by using the commutativity of R 1 and R 2. 

Condition 4.3. Let the two linear term rewriting systems R 1 

and R 2 have the Church-Rosser property and let them be 

non-overlapping with each other. Then RIUR 2 has the Church-Rosser 

property. 

5. Equivalence in Restricted Domain 

In this section, equivalence for term rewriting systems is 



51 

discussed. The basic results in Section 3 are effectively applied 

to test the equivalence in a restricted domain of two systems. 

First, useful lemmas are given for showing condition(3) in 

Theorem 3.1 and Theorem 3.2 in term rewriting systems. Let R be a 

term rewriting system on T(FUV), and G~H~F. 

Lemma 5.1. Let every term of the form M~f(MI,...,Mn) , with 

f CH-G and MI,...,M n in T(G), have some term N in T(G) such that 

M=N. ThenVM ET(H),~N 6T(G)[M=N]. 

Proof. By structural induction on nesting levels of function 

symbols in H-G occurring in a term, it is easy to show that for any 

term M in T(H), there is some term N in T(G) such that M=N. [] 

Lemma 5.2. Let every term of the form Maf(Ml,...,Mn) , with 

f &H-G and M 1 ..... M n in T(G), have some term N in T(G) such that 

M~N. Then VM 6T(H),~N{ T(G) [M~--~N]. 

Proof. The Lemma can be proved in the same way as for 

Lemma 5.1. [] 

Here, examples of the equivalence in a restricted domain of 

RI=<T(F), i--+> with~ and R2=<T(F), &-~> with ~ will be shown. 

Example 5.1. Let F=[+,S,0} be a set of function symbols, where 

p(+)=2, p(S)=l, p(O)=O. Consider the term rewriting systems R 1 and 

R 2 having the following rewriting rules: 

and 

RI: x+O ~ x, 

x+S(y)> S(x+y), 

R2: x+O > x, 

O+x > x, 

x+S(y)> S(x+y). 

We shall prove that - - - (in T(F)) by using Theorem 3.1. It must 
r 

be shown that R 1 and R 2 hold conditions(l), (2), (3) in Theorem 3.1o 

Since ~ ~ ~ , condition(1), i.e., 7 ~5" is obvious. By using SN(R 2) 

and condition 4.1, CR(R2) is obtained. Let G=[S,O}, then T(G) ~NF2, 
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thus condition(2) holds. 

~M6T(F),~NET(G)[M~N], 

, ~ (in T(F)). 

Finally, we can prove condition(3), i~e., 

by using Lemma 5.1. Therefore 

It is also possible to prove ~ = ~ (in T(F)X T(G)) by using 

Theorem 3.2. Hence we may say that R 1 equals R 2 in T(F) for the 

equivalence relation and in T(F)X T(G) for the transitive reflexive 

closure. However, the number of reduction steps required to obtain 

a normal form can be reduced by transforming R 1 to R 2 for the 

following computation: 

RI: 0+s(s(s(0)))Ts(0+s(s(0)))~s(s(0+s(0))) 
~s(s(s(0+0)))~s(s(s(0))), 

R2: O+S(S(S(O)))z--->S(S(S(O))). [] 

Let us examine another example of the equivalence in a restricted 

domain such that R 2 reduces the number of reduction steps required 

to obtain a normal form. 

Example 5.2. Let F={h,d,S,0} be a function symbol set, where 

#(h)=P(d)=P(S)=I, p(0)=0. Consider the following R 1 and R2: 

and 

RI: h(0)> 0, 

h(S(O)) > O, 

h(S(S(x)))> S(h(x)), 

d(O)> O, 

d(S(x)) ~ S(S(d(x))), 

R2: =>U{h(d(x))> x}, 

where h and d mean the 'half' function h(n)=[n/2] (i.e., the 

greatest integer less than or equal to n/2), and the 'double ~ 

function d(n)=2*n. Let G={S,0}. Then, by using Theorem 3.1 and 3.2 

in the same way as in Example 5.1, we can obtain 

(in T(F)), 7 
= -~ (in T(F)~T(G)). 
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R 2 reduces the number of reduction steps more than RI, since n can 

be obtained from h(d(n)) in one step by using the rule h(d(x))>x in 

R2° [] 

Looking at these examples from another viewpoint, the equivalence in 

the restricted domain T(F) can be used to prove an equation 

V P1 .... Pn ~T(F) [EI(P 1 .... Pn)TE2(PI .... Pn )] 

in R i. Let us assume that 

EI(P 1 .... pn),E2(Pl .... Pn)~ T(F) 

for any PI,..,Pn ~T(F). By regarding the equation 

El(X 1 .... Xn)=E2(Xl,..,Xn), 

that must be proved, as the rewriting rule and adding it to RI, we 

obtain R 2 with the set 

~a =~ U{EI(X 1 .... Xn)>E2(x i .... Xn)} 

of rewriting rules. By El(Xl, o.,Xn) >E2(Xl,..,Xn) ~ R2, 

V P1 .... Pn ~ T(F) [EI(P 1 .... Pn)~E2(PI .... Pn )] 

is trivial. Hence, if we can prove } a (in T(F)) by using 

Theorem 3.1, then 

V P1 .... Pn ~T(F) [EI(P 1 .... Pn)TE2(Pl .... Pn )] 

can be obtained. 

For instance, let R 1 be the same as in Example 5.2 and let us prove 

the equation ~ P£T(F)[h(d(P))TP] by the above method. We obtain R 2 

in Example 5.2 by adding h(d(x))~ x to R I. ~ = ~ (in T(F)) has been 

shown in Example 5.2. Therefore, it can be proved that 

p~T(F)[h(d(p))Tp ] . 

This idea for proving an equation has been proposed by Musser [9], 

Goguen [3], Huet and Hullot [6], in studies of the validity of 

equations in abstract data types. Huet and Hullot showed that by 

using the above method in a simple extension of the Knuth-Bendix 

completion algorithm [8], an equation whose proof usually requires 

induction on some data types can be proved without the direct use of 

induction. Their method of proving the equation has many 

restrictions, however. In particular, the requirement of the 

strongly normalizing property of R 1 and R 2 restricts its 

application, since most term rewriting systems obtained from 

recursive definitions, such as recursive programs, do not satisfy 

these requirements. On the other hand, the basic results proposed 
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in Section 3 do not require the strongly normalizing property, 

hence, this difficulty can be overcome by using these results. 

We next show an example in which R 2 does not have the strongly 

normalizing property. 

Example 5.3. Let F={if, eq, -, d, S, true, false, 0~ be the 

set of function symbols, where P(if)=3, $(eq)=2(-)=2, P(d)=$(S)=I, 

and ~(true)=~(false)=p(0)=0. The following term rewriting systems 

R 1 and R 2 are considered for computing the 'double' function d: 

RI: d(0) > 0, 

d(S(x))~S(S(d(x))). 

R2: d(x) ~if(eq(x,0),0,S(S(d(x-S(O))))), 

if(true,x,y) Q x, 

if(false,x,y)> y, 

eq(O,O)P true, 

eq(S(x),0)> false, 

x-O~ x, 

S(x)-S(y)> x-y. 

The term rewriting system R 2 does not have the strongly normalizing 

property, since the first rewriting rule in R 2 can be applied 

infinitely to function symbol d. 

Let H=[d,S,O} and G=[S,0}. It will be shown that the function d of 

R ! equals that of R 2 in the restricted domain T(H), that is, I 2 

(in T(H)). For this purpose, Theorem 3.1 is used. We must show 

conditions(l), (2), (3) in Theorem 3.1. Since d(O)~0 and 

d(S(x))~S(S(d(x))), condition(l), i.e., ~ c [, is obtained. It is 

obvious that R 2 is linear and non-overlapping. Hence, by using 

condition 4.2, R 2 has the Church-Rosser property. Since some 

function symbol in F-G appears in the left hand side of any 

rewriting rule in R2, it is trivial that T(G) ~ NF 2 . Thus, 

condition(2) holds. By using Lemma 5.1, condition(3) is obtained, 

• . (in T(H)) holds. [] i.e. VMeT(H),~N~T(G)[M~N] Therefore, t z 
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6. Equivalence Transformation Rules 

In this section, let us consider the correctness of the program 

transformation rules discussed by Burstall and Darlington [2], and 

Scherlis [12]. They showed in many examples that by using their 

rules, a recursive program can be transformed to an improved one 

computing the same function. Moreover, formal proof of the 

correctness of the transformation was discussed in [12]. 

This problem can be seen as one of equivalence transformations for 

term rewriting systems. In this section, an attempt is made to give 

a formal proof, based on the equivalence in the restricted domain, 

for the correctness of transformation rules. 

Let R=<T(F ~ V),-~> with ~ , and let H be a subset of F such that H 

contains all function symbols appearing in the rewriting rules of R. 

We propose the equivalence transformation rules in the restricted 

domain T(H) for R. Set R0=R and F0=H, and then we transform 

Rn=<T(FU V), ~--~> with~ to Rn+I=<T(F~3 V),--~> with ~ by using the 

following rules: 

(1) Definition: Add a new rewriting rule g(x I ..... Xk)> Q to Rn, 

where g ~F-Fn, g(x I ..... x k) is linear, and Q ~T(FnU V). 

Thus, ~ = ~ U {g(x I ..... x k) >Q}. Set Fn+l=FnJ {g}. 

(2) Addition: Add a new rule P > Q to Rn, where P~Q 

= P , Q ~ T ( F n U  V).  Thus,  ~ I  ~ U  { P ~ Q } .  S e t  Fn+l=Fn . 

and 

(3) Elimination: Remove a rule P ~ Q from R n. 

~> = ~ -{P~ Q}. Set Fn+l=Fn . 

Thus, 

Remark. The above three rules include the transformation rules 

suggested by Scherlis [12]: we can show easily that transformations 

by the rules in [12] can be obtained by using the above rules. 

Rn~Rn+ 1 shows that R n is transformed to Rn+ 1 by rule(i) 

( i = l , 2 , o r  3 ) .  Rn~Rn+ 1 shows t h a t  R n i s  t r a n s f o r m e d  t o  Rn+ 1 by 

rule(l), (2), or (3). Rm~R n and Rm~R n (m<n) are the transitive 

r e f l e x i v e  c l o s u r e  o f  t h e  two r e l a t i o n s .  
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Lamina 6.1. If RI~R2~R 3 (i>J)~ then there is some R½ 

that RI=~R~,=f~R 3 . 

Proof. From the definition of the rules, it is obvious. [] 

such 

Lemma 6.2. Let R~R' . Then there exists a transformation 

sequence from R to R' such that R~Ra~Rb~ • 

Proof. By using Lemma 6.1 repeatedly, we can construct a 

sequence R~Ro~R~R' from R~R'o [] 

Theorem 6.1. Let Roar n, where R 0 is a linear system and 

CR(R0). Let G ~H and T(G) ~ NF O. Assume the following property for 

R 0 and Rn: 

V M~T(H) ~ N~T(G)[M~N] (i=O,n). 

Then = = = (in T(H)). 
0 

Proof. By Lemma 6.2, we may assume 

prove the theorem we will show 

(in T(H)). 

that Rn~R~R~=~R_. To 

that = = = (in T(H)) and 
0 

_ r _ Let Consider Roar a. It is clear that ~ ~ ~. 

>'=[gl(Xl,..,Xnl)> Q1,..,ga(Xl,.o,Xna)~ Qa ) be the set of new rules 

added to R 0 through R0~R a. Define R' by ~ . Then R a is the union 

of R 0 and R'. Since R' is linear and non-overlapping, by using 

condition 4.2, CR(R') can be proved. R 0 and R' are non-overlapping 

with each other since the function symbols go,..,ga do not appear in 

the rewriting rules in R O. Hence, by condition 4.3, CR(Ra) is 

obtained. From the definition of rule (I), T(G) ~ NFao 

MET(H) ~ N~T(G)[M~N] has been assumed. Hence, by using Theorem 3.1, 

we can obtain = = = (in T(H)). 
0 

= = = is trivial. By R a R b and the definition of rule (2), % b 

It has Now, consider Rb~R n. By ~ = ~ and ~=-C ~, we can prove ~-=c %=" 

been shown that CR(Ra) and T(G)CNF a hold. VMeT(H) ~ N&T(G)[M~N] has 

been assumed. Hence, by using Theorem 3.1 for R a and Rn, it can be 

proved that = = = (in T(H)). 

Therefore it follows that = = = (in T(H)). 
0 
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Theorem 6.2. Let R0~Rn, where R 0 is a linear system and 

CR(Ro). Let G~ H and T(G) ~NF O. Assume the following property for 

R 0 and Rn: 

VM~T(H) ~ N~T(G)[M~N] (i=O,n). 

Then --~ = ~ (in T(H) XT(G)). 
0 

Proof. By the assumption, it holds that 

7M~T(H) H N%T(G)[M~N](i=0,n). Hence, by using Theorem 6.1, we obtain 

= = = (in T(H)). NOW, we will show that 
0 

7N~T(G)[M~N 4=~ M~N]. ~ : Let M~N and MET(H) N~T(G). VMET(H) 

Then, by the assumption in the theorem, there is a term P~T(G) such 

= = = (in T(H)), M=N, and M=P, we can obtain N=P. that M P. By 0 ~ 0 ~ 

Since N,P~NF 0 and CR(R0) , N~P holds. Therefore M~N. ~ : It can 

be proved in the same way. [] 

By using the above theorems, we will show the correctness of the 

equivalence transformation for the examples discussed in [2][12]. 

Note that the transformation R~R' can be used in the reverse 

direction to obtain R from R ~ . We write R'~R if R~R' is used to 

obtain R from R'. Hence, if RI~R2, R2~R3, R3~R 4 ..... Rn_I~R n 

each are the equivalence transformation on the restricted domain 

T(H), i.e., [ - ~ (in T(H)) for l<i<n-l, then we can obtain R n from 

R 1 by this sequence. 

Example 6.1.(List Reverse) Let H={append, cons, rev, nil} 

and G={cons, nil}, where p(append)=P(cons)=2 and~ (rev)=l, p(nil)=0o 

Note that T(G) can be regarded as the set of lists. Then the append 

function is defined by; 

(1) append(nil,y)> y, 

(2) append(cons(x,y),z)~cons(x, append(y,z)). 

The reverse function is given by the following rules: 

(3) rev(nil)~ nil, 

(4) rev(cons(x,y))~ append(rev(y),cons(x,nil))o 

Let us define R 1 by ~=[(I),(2),(3),(4)}. We will transform R 1 to 
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an improved version R 6 which equals R 1 in the restricted domain 

T(H). We first add two rules(5)~(6) to RI: 

(5) append(append(x,y),z)~append(x, append(y,z)), 

(6) append(x,nil)~ x. 

Let us define R 2 by ~ =~ ~ {(5),(6)}. Note that RI~R2, i.e., T2 ~" 

By using Lemma 5.1, it can be proved that V M ~T(H) F N ~ T(G)[M~N]. 

T(G) ~ NF 2 is obvious from the definition of R 2. Since R 2 is 

strongly normalizing, by using Condition 4.1, it can be shown that 

= CR(R2). Hence = = i (in T(H)) holds by Theorem 6.1. 

Now, let us transform R 2 to R 6 by using the transformation rules: 

definition, addition, and elimination. By using definition, we 

introduce a new function f, 

(7) f(x,y)~ append(rev(x),y). 

Define R 3 by the union of ~ and rule(7). Then, 

f(nil,y)~y, 

and, 

f(cons(x,y),z) 

;append(append(rev(y),cons(x,nil)),z) 

~append(rev(y),append(cons(x,nil),z)) 

=f(y, append(cons(x,nil),z)) 

=f(y, cons(x,z)). 

By using addition, we obtain R 4 which is defined by the union of 

and the following: 

(8) f(nil,y)> y, 

(9) f(cons(x,y),z)~ f(y, cons(x,z)). 

Then, rev(cons(x,y))~f(y, cons(x,nil)) holds. 

from R4, by addition: 

Hence we obtain R 5 

(i0) rev(cons(x,y))~f(y, cons(x,nil)). 

Finally, by using elimination, remove unnecessary rules from RS. 
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Thus, we obtain R 6 defined by the union of [(I),(2)} and the rules: 

(3) rev(nil)~ nil, 

(i0) rev(cons(x,y))~ f(y, cons(x,nil)), 

(8) f(nil,y)> y, 

(9) f(cons(x,y),z)~ f(y, cons(x,z)). 

By using Lemma 5.1, it can be proved that V MET(H)H N~T(G)[M~N]. 

Thus, ~ 6 (in T(H)) is obtained by Theorem 6.1. Therefore, 

(in T(H)). 
I 2 

Note that it is also possible to prove ~ = ~ (in T(H)~T(G)) by 

using Theorem 6.2. [] 

Example 6.2.(List Reverse-Append) Let the set of function 

symbols G and the rewriting rule(1),...,(6) be the same as in 

Example 6.1. Let H=G U {append,rev,h} , where h is defined by the 

following rule: 

(7) h(x,y)> append(rev(x),y). 

Let us define R 1 by ~ =[(i),(2),(3),(4),(7)} and R 2 by 

= ~ U [(5),(6)}. Then, since RI~ R2'- I Z (in T(H)) can be proved 

in the same way as in Example 6ol. Here we obtain 

and 

rev(x)~h(x,nil), 

h(nil,y)~y, 

h(cons(x,y),z) 

~append(rev(cons(x,y),z) 

~append(append(rev(y),cons(x, nil)),z) 
~append(rev(y),append(cons(x,nil),z)) 

~append(rev(y),cons(x,z)) 

=h(y, cons(x,z)). 

Hence the following three rules can be 

addition: 

added to R 2 by using 

(8) rev(x)~ h(x,nil), 
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(9) h(nil,y) > y, 

(i0) h(cons(x,y)rZ)£> h(y, cons(x,z)). 

Finally, using elimination, we can obtain R 3 which is defined by the 

union of {(i),(2)} and, 

(8) rev(x)~ h(x,nil), 

(9) h(nil,y)i> y, 

(i0) h(cons(x,y),z)~ h(y,cons(x,z)). 

By using Lemma 5. i, it is possible to obtain 

M ~ T(H) H N~ T(G)[M~N]. Thus, by Theorem 6.1, it can be proved 

that (in T(H)). Therefore = = = (in T(H)). 

By using Theorem 6.2, we can also obtain ~ = ~ (in T(H)X T(G)). I 
[] 

7. Conclusion 

In this paper we have proposed the concept of the equivalence in 

a restricted domain for reduction systems. The key point of this 

concept is that the equivalence in the restricted domain can be 

tested easily by using the Church-Rosser property of reduction 

systems. We have shown in Sections 5 and 6 that the concept can be 

effectively applied to test the equivalence of term rewriting 

systems and to prove the correctness of equivalence transformation 

rules for these systems. We believe firmly that these methods 

provide us with systematic means of proving the equivalence which 

arises in various formal systems: program transformation, program 

verification, semantics of abstract data type~ and automated theorem 

proving. 
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