
On Equivalence Transformations for

Term Rewriting Systems

Yoshihito TOYAMA

Musashino Electrical Communication Laboratory, N.ToT.

Midori-cho, Musashino-shi, 180 Japan

Abstract

This paper proposes some simple methods, based on the

Church-Rosser property, for testing the equivalence in a restricted

domain of two reduction systems. Using the Church-Rosser property,

sufficient conditions for the equivalence of abstract reduction

systems are proved. These conditions can be effectively applied to

test the equivalence in a restricted domain of term rewriting

systems. In addition , equivalence transformation rules for term

rewriting systems are proposed.

I. Introduction

The concept of the equivalence in a restricted domain of two

term rewriting systems is presented here. The equivalence in a

restricted domain means that the equational relation (or the

transitive reflexive closure) generated by a reduction relation of

one system is equal in a restricted domain to that of another

system.

This concept plays an important role in transforming recursive

programs [2][12] and proving an equation in abstract data types

[3][5][6][9]. For example, consider a recursive program computing

the factorial function on the set N of natural numbers represented

by 0~ S(0), S(S(O)) ;

F(x)=IF equal(x,0) THEN S(0) ELSE x*F(x-S(0))°

By using the successor function S, we can also define the factorial

45

function by;

F(0)=S(0),

F(S(x))=S(x)*F(x).

Regarding equations as rewriting rules from the left hand side to

the right hand side, we can obtain two term rewriting systems [4][5]

from the above two definitions. The first term rewriting system can

reduce "F(M)" to "IF equal(M,0) THEN S(0) ELSE M*F(M-S(0))" for any

term M, but the second system can not reduce "F(M)" unless M is

either "0" or the form of "S(M')" Therefore the two term rewriting

systems produce different results in the reduction of "F(M)",

although they can reduce "F(M)" to the same result unless M can be

reduced to a natural number. Thus, the equivalence for the

recursive programs must be regarded as the equivalence in the

restricted domain N for the term rewriting systems.

We consider in this paper sufficient conditions for the equivalence

in a restricted domain for two term rewriting systems. We first

treat this problem in an abstract framework and show sufficient

conditions for two abstract reduction systems. It is shown how one

can formally validate the equivalence in the restricted domain for

term rewriting systems by using these conditions. Finally, the

problems related to the rules for transforming programs described by

Burstall and Darlington [2], and Scherlis [12] are discussed, and

equivalence transformation rules in a restricted domain for term

rewriting systems are proposed.

2. Reduction Systems

We explain notions of reduction systems and give definitions for

the following sections. These reduction systems have only an

abstract structure, thus they are called abstract reduction systems

[4][7][11].

A reduction system is a structure R=<A,-~ > consisting of some

object set A and some binary relation -~ on A, called a reduction

relation. A reduction (starting with x0) in R is a finite or

infinite sequence XO-~Xl-~X2--> The identity of elements of A

46

(or syntactical equality) is denoted by ~. --> is the transitive

reflexive closure of -~, -~ is the reflexive closure of -~,, and = is

the equivalence relation generated by --~ (i.e., the transitive

reflexive symmetric closure of --~). If x~A is minimal with respect

to -e, i.e., ~yeA[x-ey], then we say that x is a normal form, and

let NF be the set of normal forms. If x~-~y and yeNF then we say x

has a normal form y and y is a normal form of x.

Definition. R=<A,-~> is strongly normalizing (denoted by SN(R)

or SN(-~)) iff every reduction in R terminates, i.e., there is no

infinite sequence Xo-+xl-+X2--> R is weakly normalizing (denoted

by WN(R) or WN(--~)) iff any x6A has a normal form.

Definition. R=<A,-~> has the Church-Rosser property, or

Church-Rosser, (denoted by CR(R)) iff

~x,y, zeA[x--ey^x--+z ~ ~weA,y ,wAz-~w].

The following properties are well known [1][4][7].

Property 2.1. Let R have the Church-Rosser property, then,

(i) Vx,y%A[x=y ~ ~w{A,x~w^y~w],

(2) Vx,yENF[x=y ~ x~y],

(3) ~xeA,VyeNF[x=y ~ x~ey].

3. Basic Results

Let RI=<A, ~-+ >, R2=<A, 2---~ > be two abstract reduction systems

having the same object set A, and let -~ , ~- and NF i be the

transitive reflexive closure, the equivalence relation and the set

of normal forms in R i respectively (i=1,2). Note that ~ and ~ are

subsets of AXA: for example, ~C~_ means that the set ~ is contained

in the set =.
1

Let B, C be any subsets of the object set A. We write 7 = ~ (in B)

for Vx,y6B[xTy <==~ x~y], and say R 1 and R 2 are equivalent in the

restricted domain B for the equivalence relation. We write

+ = ~ (in BXC) for Vx~B y6C[x i-~y 4=~ x~y], and say R 1 and R 2 are

equivalent in the restricted domain B X C for the transitive

reflexive closure.

47

We first show sufficient conditions for = = ~(in B).

Lemma 3.1. Let RI, R 2 satisfy the following conditions:

(1) ~¢~,

(2) T = ~ (in C),

(3) VxeB,~y£C[x~y].

Then = = = (in B).
f

Proof. Prove V x,yeB[x~y ~=~ x~y]. ~ is trivial from

condition(l), hence we show~. Assume x~y where x,y~B. By using

condition(3), there are some elements z,w~C such that x=z and YT w"

Since x=z and y~w are obtained from condition(l) z~w can be

derived from z~x~y~w. From condition(2), z~w holds. Therefore x~y

f~om x~zTwTy. []

If R 2 has the Church-Rosser property, we can modify condition(2)

in Lemma 3.1 as follows.

Theorem3.1. Assume the following conditions:

(i) T ~'

(2) CR(R2) and C~NF2,

(3) v x~B,~yEC[x~y].

Then T = ~ (in B).

Proof. Show condition(2) of Lemma 3.1, i.eo,

Vx,y6C[xTy4==>x~y], from the above conditions. ~ is trivial from

condition(l), hence we prove ~. By using property 2.1(2) and

condition(2), x~y ~x~y for any x,y~C. Therefore xTy. []

Corollary 3.1. Assume the conditions:

(2) CR(R2) and NFI=NF2,

(3) WN(RI).

Then T = ~ is obtained.

Proof. Set B=A and NFI=NF2=C in Theorem 3.1. []

Next we will consider sufficient conditions for the equivalence in

B XC for the transitive reflexive closure, i.e., ~ = ~ (in B XC)o

48

Theorem 3.2. Assume the following conditions:

(i) ~---~ ~-~

(2) CR(R2) and C~NF2,

(3) ~x6B,~y~C[x"~y].

•hen ,-5 = - ~ (i n S × C) .

Proof. It is sufficient to show that for any x~B,y6C,

x~y ~ =~ x~-y.~" Let x~y. Then, by condition(3), there is some z6C

such that x~z. By condition(l), x~z, hence, y~z is obtained from

property 2.1(2) and condition(2). Therefore x~l--~y. [~

Corollary 3.2. Assume the conditions:

(i) -~7,

(2) CR(R2) and NFI=NF2,

(3) WN(R1).

Then ~-7 = 2

Proof. This is obvious from Theorem 3.2. []

4. Term Rewriting Systems

In this section we will explain term rewriting systems that are

reduction systems having a term set as an object set A.

Let V be a set of variable symbols denoted by x,y,z,..., and let F

be a set of function symbols denoted by f,g,h,..., where FaV=~. Let

N be the set of natural numbers. An arity function p is a mapping

from F to N, and if p(f)=n then f is called an n-ary function

symbol. In particular, a 0-ary function symbol is called a

constant.

and a variable The set T(FUV) of terms on a function symbol set F

symbol set V is inductively defined as follows:

(i) x~T(FUV) if x6V,

(2) f6T(FUV) if f6F and ~(f)=0,

(3) f(M1,...Mn)~T(FUV) if f6F, p(f)=n>O, and

M 1 MnE T (FUV).

We may write MfN, i.e., infix notation, instead of f(M,N). Let T(F)

be the set of terms having no variable symbols. T is used for

4g

T(FUV) when F and V are clear from the context.

A substitution 8 is a mapping from a term set T to T such that

(i) ~(f)~f if fEF and ~(f)=0,

(2) ~(f(M 1 Mn))~f(~(Ml) ~(Mn))

if f(M 1 Mn)6T.

Thus, for term M, ~(M) is determined by its values on the variable

symbols occurring in M. Following common usage, we write this as M~

instead of #(M).

Consider an extra constant [] called a hole and the set T(FUV~[[]})o

Then CET(FUV~[~]) is called a context on F. We use the notation

C[.....] for the context containing n holes (n>0), and if

NI,...,NnET(FUV) then C[N 1 ,Nn] denotes the result of placing

NI,...,N n in the holes of C[.....] from left to right. In

particular, C[] denotes a context containing precisely one hole.

N is called a subterm of M~C[N]. Let N be a subterm occurrence of

M, then, write N£M, and if NSM then write NcM.

A rewriting rule on T is a pair <M1,Mr> of terms in T such that Ml~V

and any variable in M r also occurs in M I. The notation ~ denotes a

set of rewriting rules on T and we write Ml>M r for <M1,Mr>&~. A

-~redex, or redex, is a term MI~ where MI~Mr, and in this case Mr@

is called a -~contractum, or contractum, of MI~. The set > of

rewriting rules on T defines a reduction relation -~on T as

follows:

M-~N iff M~C[MI~], N~C[Mr~], and MI~M r

for some MI, Mr, C[], and ~.

Defini%ion. A term rewriting system R on T is a reduction

system R=<T,-~> such that the reduction relation -+ is defined by a

set > of rewriting rules on T. If R has MI>Mr, then we write

Sl~ Mr6 R.

If every variable in term M occurs only once, then M is called

linear. We say that R is linear iff MM > N & R, M is linear.

Let M~N and P>Q be two rules in R. We assume that we have renamed

variables appropriately, so that M and P share no variables. Assume

50

S~V is a subterm occurrence in M, i.e., M~C[S], such that S and P

are unifiable, i.e., SS~P~, with a minimal unifier ~ [4][8]. Since

MS~C[S]8~CS[P#], two reductions starting with M~, i.e.,

M@-eCe[Qe]~C[Q]8 and MS-~N~, can be obtained by using P~Q and M>N.

Then we say that the pair <C[Q]~, N8 > of terms is critical in R

[4][5]. We may choose M>N and PmQ to be the same rule, but in this

case we shall not consider the case S ~ M, which gives trivial pairs

<N,N>. If R has no critical pair, then we say that R is

non-overlapping (with itself) [4][5][8][13].

The critical pair for two term rewriting systems R 1 and R 2 can be

defined in the same way. Let M>N and P~Q be in R 1 and in R 2

respectively. Then we say that the above pair <C[Q]#, N~ > is

critical between R 1 and R 2. If there is no critical pair between R 1

and R2, then we say that R 1 and R 2 are non-overlapping with each

other [13].

The following sufficient conditions for the Church-Rosser property

are well known [4][5][8].

Condition 4.1. Let R be strongly normalizing. If for any

critical pair <P,Q> in R, P and Q have the same normal form, then R

has the Church-Rosser property.

Condition 4.2. Let R be linear and non-overlapping0

has the Church-Rosser property.

Then R

Let RI=<T, ~-~> with~ and R2=<T, 2--~> with ~. Then their union RIQR 2

is defined by RIJR2=<T,-~> with ~ = ~U~. The next condition is

described in [13] by using the commutativity of R 1 and R 2.

Condition 4.3. Let the two linear term rewriting systems R 1

and R 2 have the Church-Rosser property and let them be

non-overlapping with each other. Then RIUR 2 has the Church-Rosser

property.

5. Equivalence in Restricted Domain

In this section, equivalence for term rewriting systems is

51

discussed. The basic results in Section 3 are effectively applied

to test the equivalence in a restricted domain of two systems.

First, useful lemmas are given for showing condition(3) in

Theorem 3.1 and Theorem 3.2 in term rewriting systems. Let R be a

term rewriting system on T(FUV), and G~H~F.

Lemma 5.1. Let every term of the form M~f(MI,...,Mn) , with

f CH-G and MI,...,M n in T(G), have some term N in T(G) such that

M=N. ThenVM ET(H),~N 6T(G)[M=N].

Proof. By structural induction on nesting levels of function

symbols in H-G occurring in a term, it is easy to show that for any

term M in T(H), there is some term N in T(G) such that M=N. []

Lemma 5.2. Let every term of the form Maf(Ml,...,Mn) , with

f &H-G and M 1 M n in T(G), have some term N in T(G) such that

M~N. Then VM 6T(H),~N{ T(G) [M~--~N].

Proof. The Lemma can be proved in the same way as for

Lemma 5.1. []

Here, examples of the equivalence in a restricted domain of

RI=<T(F), i--+> with~ and R2=<T(F), &-~> with ~ will be shown.

Example 5.1. Let F=[+,S,0} be a set of function symbols, where

p(+)=2, p(S)=l, p(O)=O. Consider the term rewriting systems R 1 and

R 2 having the following rewriting rules:

and

RI: x+O ~ x,

x+S(y)> S(x+y),

R2: x+O > x,

O+x > x,

x+S(y)> S(x+y).

We shall prove that - - - (in T(F)) by using Theorem 3.1. It must
r

be shown that R 1 and R 2 hold conditions(l), (2), (3) in Theorem 3.1o

Since ~ ~ ~ , condition(1), i.e., 7 ~5" is obvious. By using SN(R 2)

and condition 4.1, CR(R2) is obtained. Let G=[S,O}, then T(G) ~NF2,

52

thus condition(2) holds.

~M6T(F),~NET(G)[M~N],

, ~ (in T(F)).

Finally, we can prove condition(3), i~e.,

by using Lemma 5.1. Therefore

It is also possible to prove ~ = ~ (in T(F)X T(G)) by using

Theorem 3.2. Hence we may say that R 1 equals R 2 in T(F) for the

equivalence relation and in T(F)X T(G) for the transitive reflexive

closure. However, the number of reduction steps required to obtain

a normal form can be reduced by transforming R 1 to R 2 for the

following computation:

RI: 0+s(s(s(0)))Ts(0+s(s(0)))~s(s(0+s(0)))
~s(s(s(0+0)))~s(s(s(0))),

R2: O+S(S(S(O)))z--->S(S(S(O))). []

Let us examine another example of the equivalence in a restricted

domain such that R 2 reduces the number of reduction steps required

to obtain a normal form.

Example 5.2. Let F={h,d,S,0} be a function symbol set, where

#(h)=P(d)=P(S)=I, p(0)=0. Consider the following R 1 and R2:

and

RI: h(0)> 0,

h(S(O)) > O,

h(S(S(x)))> S(h(x)),

d(O)> O,

d(S(x)) ~ S(S(d(x))),

R2: =>U{h(d(x))> x},

where h and d mean the 'half' function h(n)=[n/2] (i.e., the

greatest integer less than or equal to n/2), and the 'double ~

function d(n)=2*n. Let G={S,0}. Then, by using Theorem 3.1 and 3.2

in the same way as in Example 5.1, we can obtain

(in T(F)), 7
= -~ (in T(F)~T(G)).

53

R 2 reduces the number of reduction steps more than RI, since n can

be obtained from h(d(n)) in one step by using the rule h(d(x))>x in

R2° []

Looking at these examples from another viewpoint, the equivalence in

the restricted domain T(F) can be used to prove an equation

V P1 Pn ~T(F) [EI(P 1 Pn)TE2(PI Pn)]

in R i. Let us assume that

EI(P 1 pn),E2(Pl Pn)~ T(F)

for any PI,..,Pn ~T(F). By regarding the equation

El(X 1 Xn)=E2(Xl,..,Xn),

that must be proved, as the rewriting rule and adding it to RI, we

obtain R 2 with the set

~a =~ U{EI(X 1 Xn)>E2(x i Xn)}

of rewriting rules. By El(Xl, o.,Xn) >E2(Xl,..,Xn) ~ R2,

V P1 Pn ~ T(F) [EI(P 1 Pn)~E2(PI Pn)]

is trivial. Hence, if we can prove } a (in T(F)) by using

Theorem 3.1, then

V P1 Pn ~T(F) [EI(P 1 Pn)TE2(Pl Pn)]

can be obtained.

For instance, let R 1 be the same as in Example 5.2 and let us prove

the equation ~ P£T(F)[h(d(P))TP] by the above method. We obtain R 2

in Example 5.2 by adding h(d(x))~ x to R I. ~ = ~ (in T(F)) has been

shown in Example 5.2. Therefore, it can be proved that

p~T(F)[h(d(p))Tp] .

This idea for proving an equation has been proposed by Musser [9],

Goguen [3], Huet and Hullot [6], in studies of the validity of

equations in abstract data types. Huet and Hullot showed that by

using the above method in a simple extension of the Knuth-Bendix

completion algorithm [8], an equation whose proof usually requires

induction on some data types can be proved without the direct use of

induction. Their method of proving the equation has many

restrictions, however. In particular, the requirement of the

strongly normalizing property of R 1 and R 2 restricts its

application, since most term rewriting systems obtained from

recursive definitions, such as recursive programs, do not satisfy

these requirements. On the other hand, the basic results proposed

54

in Section 3 do not require the strongly normalizing property,

hence, this difficulty can be overcome by using these results.

We next show an example in which R 2 does not have the strongly

normalizing property.

Example 5.3. Let F={if, eq, -, d, S, true, false, 0~ be the

set of function symbols, where P(if)=3, $(eq)=2(-)=2, P(d)=$(S)=I,

and ~(true)=~(false)=p(0)=0. The following term rewriting systems

R 1 and R 2 are considered for computing the 'double' function d:

RI: d(0) > 0,

d(S(x))~S(S(d(x))).

R2: d(x) ~if(eq(x,0),0,S(S(d(x-S(O))))),

if(true,x,y) Q x,

if(false,x,y)> y,

eq(O,O)P true,

eq(S(x),0)> false,

x-O~ x,

S(x)-S(y)> x-y.

The term rewriting system R 2 does not have the strongly normalizing

property, since the first rewriting rule in R 2 can be applied

infinitely to function symbol d.

Let H=[d,S,O} and G=[S,0}. It will be shown that the function d of

R ! equals that of R 2 in the restricted domain T(H), that is, I 2

(in T(H)). For this purpose, Theorem 3.1 is used. We must show

conditions(l), (2), (3) in Theorem 3.1. Since d(O)~0 and

d(S(x))~S(S(d(x))), condition(l), i.e., ~ c [, is obtained. It is

obvious that R 2 is linear and non-overlapping. Hence, by using

condition 4.2, R 2 has the Church-Rosser property. Since some

function symbol in F-G appears in the left hand side of any

rewriting rule in R2, it is trivial that T(G) ~ NF 2 . Thus,

condition(2) holds. By using Lemma 5.1, condition(3) is obtained,

• . (in T(H)) holds. [] i.e. VMeT(H),~N~T(G)[M~N] Therefore, t z

55

6. Equivalence Transformation Rules

In this section, let us consider the correctness of the program

transformation rules discussed by Burstall and Darlington [2], and

Scherlis [12]. They showed in many examples that by using their

rules, a recursive program can be transformed to an improved one

computing the same function. Moreover, formal proof of the

correctness of the transformation was discussed in [12].

This problem can be seen as one of equivalence transformations for

term rewriting systems. In this section, an attempt is made to give

a formal proof, based on the equivalence in the restricted domain,

for the correctness of transformation rules.

Let R=<T(F ~ V),-~> with ~ , and let H be a subset of F such that H

contains all function symbols appearing in the rewriting rules of R.

We propose the equivalence transformation rules in the restricted

domain T(H) for R. Set R0=R and F0=H, and then we transform

Rn=<T(FU V), ~--~> with~ to Rn+I=<T(F~3 V),--~> with ~ by using the

following rules:

(1) Definition: Add a new rewriting rule g(x I Xk)> Q to Rn,

where g ~F-Fn, g(x I x k) is linear, and Q ~T(FnU V).

Thus, ~ = ~ U {g(x I x k) >Q}. Set Fn+l=FnJ {g}.

(2) Addition: Add a new rule P > Q to Rn, where P~Q

= P , Q ~ T (F n U V). Thus, ~ I ~ U { P ~ Q } . S e t Fn+l=Fn .

and

(3) Elimination: Remove a rule P ~ Q from R n.

~> = ~ -{P~ Q}. Set Fn+l=Fn .

Thus,

Remark. The above three rules include the transformation rules

suggested by Scherlis [12]: we can show easily that transformations

by the rules in [12] can be obtained by using the above rules.

Rn~Rn+ 1 shows that R n is transformed to Rn+ 1 by rule(i)

(i = l , 2 , o r 3) . Rn~Rn+ 1 shows t h a t R n i s t r a n s f o r m e d t o Rn+ 1 by

rule(l), (2), or (3). Rm~R n and Rm~R n (m<n) are the transitive

r e f l e x i v e c l o s u r e o f t h e two r e l a t i o n s .

56

Lamina 6.1. If RI~R2~R 3 (i>J)~ then there is some R½

that RI=~R~,=f~R 3 .

Proof. From the definition of the rules, it is obvious. []

such

Lemma 6.2. Let R~R' . Then there exists a transformation

sequence from R to R' such that R~Ra~Rb~ •

Proof. By using Lemma 6.1 repeatedly, we can construct a

sequence R~Ro~R~R' from R~R'o []

Theorem 6.1. Let Roar n, where R 0 is a linear system and

CR(R0). Let G ~H and T(G) ~ NF O. Assume the following property for

R 0 and Rn:

V M~T(H) ~ N~T(G)[M~N] (i=O,n).

Then = = = (in T(H)).
0

Proof. By Lemma 6.2, we may assume

prove the theorem we will show

(in T(H)).

that Rn~R~R~=~R_. To

that = = = (in T(H)) and
0

_ r _ Let Consider Roar a. It is clear that ~ ~ ~.

>'=[gl(Xl,..,Xnl)> Q1,..,ga(Xl,.o,Xna)~ Qa) be the set of new rules

added to R 0 through R0~R a. Define R' by ~ . Then R a is the union

of R 0 and R'. Since R' is linear and non-overlapping, by using

condition 4.2, CR(R') can be proved. R 0 and R' are non-overlapping

with each other since the function symbols go,..,ga do not appear in

the rewriting rules in R O. Hence, by condition 4.3, CR(Ra) is

obtained. From the definition of rule (I), T(G) ~ NFao

MET(H) ~ N~T(G)[M~N] has been assumed. Hence, by using Theorem 3.1,

we can obtain = = = (in T(H)).
0

= = = is trivial. By R a R b and the definition of rule (2), % b

It has Now, consider Rb~R n. By ~ = ~ and ~=-C ~, we can prove ~-=c %="

been shown that CR(Ra) and T(G)CNF a hold. VMeT(H) ~ N&T(G)[M~N] has

been assumed. Hence, by using Theorem 3.1 for R a and Rn, it can be

proved that = = = (in T(H)).

Therefore it follows that = = = (in T(H)).
0

57

Theorem 6.2. Let R0~Rn, where R 0 is a linear system and

CR(Ro). Let G~ H and T(G) ~NF O. Assume the following property for

R 0 and Rn:

VM~T(H) ~ N~T(G)[M~N] (i=O,n).

Then --~ = ~ (in T(H) XT(G)).
0

Proof. By the assumption, it holds that

7M~T(H) H N%T(G)[M~N](i=0,n). Hence, by using Theorem 6.1, we obtain

= = = (in T(H)). NOW, we will show that
0

7N~T(G)[M~N 4=~ M~N]. ~ : Let M~N and MET(H) N~T(G). VMET(H)

Then, by the assumption in the theorem, there is a term P~T(G) such

= = = (in T(H)), M=N, and M=P, we can obtain N=P. that M P. By 0 ~ 0 ~

Since N,P~NF 0 and CR(R0) , N~P holds. Therefore M~N. ~ : It can

be proved in the same way. []

By using the above theorems, we will show the correctness of the

equivalence transformation for the examples discussed in [2][12].

Note that the transformation R~R' can be used in the reverse

direction to obtain R from R ~ . We write R'~R if R~R' is used to

obtain R from R'. Hence, if RI~R2, R2~R3, R3~R 4 Rn_I~R n

each are the equivalence transformation on the restricted domain

T(H), i.e., [- ~ (in T(H)) for l<i<n-l, then we can obtain R n from

R 1 by this sequence.

Example 6.1.(List Reverse) Let H={append, cons, rev, nil}

and G={cons, nil}, where p(append)=P(cons)=2 and~ (rev)=l, p(nil)=0o

Note that T(G) can be regarded as the set of lists. Then the append

function is defined by;

(1) append(nil,y)> y,

(2) append(cons(x,y),z)~cons(x, append(y,z)).

The reverse function is given by the following rules:

(3) rev(nil)~ nil,

(4) rev(cons(x,y))~ append(rev(y),cons(x,nil))o

Let us define R 1 by ~=[(I),(2),(3),(4)}. We will transform R 1 to

58

an improved version R 6 which equals R 1 in the restricted domain

T(H). We first add two rules(5)~(6) to RI:

(5) append(append(x,y),z)~append(x, append(y,z)),

(6) append(x,nil)~ x.

Let us define R 2 by ~ =~ ~ {(5),(6)}. Note that RI~R2, i.e., T2 ~"

By using Lemma 5.1, it can be proved that V M ~T(H) F N ~ T(G)[M~N].

T(G) ~ NF 2 is obvious from the definition of R 2. Since R 2 is

strongly normalizing, by using Condition 4.1, it can be shown that

= CR(R2). Hence = = i (in T(H)) holds by Theorem 6.1.

Now, let us transform R 2 to R 6 by using the transformation rules:

definition, addition, and elimination. By using definition, we

introduce a new function f,

(7) f(x,y)~ append(rev(x),y).

Define R 3 by the union of ~ and rule(7). Then,

f(nil,y)~y,

and,

f(cons(x,y),z)

;append(append(rev(y),cons(x,nil)),z)

~append(rev(y),append(cons(x,nil),z))

=f(y, append(cons(x,nil),z))

=f(y, cons(x,z)).

By using addition, we obtain R 4 which is defined by the union of

and the following:

(8) f(nil,y)> y,

(9) f(cons(x,y),z)~ f(y, cons(x,z)).

Then, rev(cons(x,y))~f(y, cons(x,nil)) holds.

from R4, by addition:

Hence we obtain R 5

(i0) rev(cons(x,y))~f(y, cons(x,nil)).

Finally, by using elimination, remove unnecessary rules from RS.

5g

Thus, we obtain R 6 defined by the union of [(I),(2)} and the rules:

(3) rev(nil)~ nil,

(i0) rev(cons(x,y))~ f(y, cons(x,nil)),

(8) f(nil,y)> y,

(9) f(cons(x,y),z)~ f(y, cons(x,z)).

By using Lemma 5.1, it can be proved that V MET(H)H N~T(G)[M~N].

Thus, ~ 6 (in T(H)) is obtained by Theorem 6.1. Therefore,

(in T(H)).
I 2

Note that it is also possible to prove ~ = ~ (in T(H)~T(G)) by

using Theorem 6.2. []

Example 6.2.(List Reverse-Append) Let the set of function

symbols G and the rewriting rule(1),...,(6) be the same as in

Example 6.1. Let H=G U {append,rev,h} , where h is defined by the

following rule:

(7) h(x,y)> append(rev(x),y).

Let us define R 1 by ~ =[(i),(2),(3),(4),(7)} and R 2 by

= ~ U [(5),(6)}. Then, since RI~ R2'- I Z (in T(H)) can be proved

in the same way as in Example 6ol. Here we obtain

and

rev(x)~h(x,nil),

h(nil,y)~y,

h(cons(x,y),z)

~append(rev(cons(x,y),z)

~append(append(rev(y),cons(x, nil)),z)
~append(rev(y),append(cons(x,nil),z))

~append(rev(y),cons(x,z))

=h(y, cons(x,z)).

Hence the following three rules can be

addition:

added to R 2 by using

(8) rev(x)~ h(x,nil),

6O

(9) h(nil,y) > y,

(i0) h(cons(x,y)rZ)£> h(y, cons(x,z)).

Finally, using elimination, we can obtain R 3 which is defined by the

union of {(i),(2)} and,

(8) rev(x)~ h(x,nil),

(9) h(nil,y)i> y,

(i0) h(cons(x,y),z)~ h(y,cons(x,z)).

By using Lemma 5. i, it is possible to obtain

M ~ T(H) H N~ T(G)[M~N]. Thus, by Theorem 6.1, it can be proved

that (in T(H)). Therefore = = = (in T(H)).

By using Theorem 6.2, we can also obtain ~ = ~ (in T(H)X T(G)). I
[]

7. Conclusion

In this paper we have proposed the concept of the equivalence in

a restricted domain for reduction systems. The key point of this

concept is that the equivalence in the restricted domain can be

tested easily by using the Church-Rosser property of reduction

systems. We have shown in Sections 5 and 6 that the concept can be

effectively applied to test the equivalence of term rewriting

systems and to prove the correctness of equivalence transformation

rules for these systems. We believe firmly that these methods

provide us with systematic means of proving the equivalence which

arises in various formal systems: program transformation, program

verification, semantics of abstract data type~ and automated theorem

proving.

Acknowledgments

The author is grateful to Hirofumi Katsuno and other members of

the First Research Section for their suggestions. The author also

wishes to thank Taisuke Sato for his comments.

61

References

[i] Barendregt,H.P.:" The lambda calculus, its syntax and

semantics", North-Holland (1981).

[2] Burstall,R.M. and Darlington, J.:" A transformation system for

developing recursive programs", J.ACM, Vol.24 (1977), pp.44-67o

[3] Goguen,J.Ao:" How to prove algebraic inductive hypotheses

without induction, with applications to the correctness of data

type implementation", Proc. 5th Conf. Automated deduction, Les

Arcs (1980).

[4] Huet,G.:" Confluent reductions: abstract properties and

applications to term rewriting systems", J.ACM, Vo!.27 (1980),

pp.797-821.

[5] Huet,G. and Oppen, D.C.:" Equations and rewrite rules: a

survey", Formal languages: perspectives and open problems,

Ed. Book,R., Academic Press (1980), pp.349-393.

[6] Huet,G. and Hullot,J.M.:" Proofs by induction in equational

theories with constructors", J. Comput° and Syst. Sci., Voi.25

(1982), pp.239-266.

[7] Klop,J.W.:" Combinatory reduction systems", Dissertation, Univo

of Utrecht (1980).

[8] Knuth, D.E. and Bendix,P.G.:" Simple word problems in universal

algebras", Computational problems in abstract algebra,

Ed. Leech, J., Pergamon Press (1970), pp.263-297.

[9] Musser,D.R.:" On proving inductive properties of abstract data

types", Proc. 7th ACM Sympo. Principles of programming

languages (1980), pp.154-162.

[i0] O'Donnell,M.:" Computing in systems described by equations 'v,

Lecture Notes in Comput. Sci. Voi.58, Springer-Verlag (1977)o

[Ii] Rosen,B.K.:" Tree-manipulating systems and Church-Rosser

theorems", J.ACM, Vol 20 (1973), pp.160-187.

[12] Scherlis,W.L.:" Expression procedures and program derivation '~ ,

Ph.D.thesis, Stanford Computer Science Report STAN-CS-80-S18

(1980).

[13] Toyama,Y.:" On commutativity of term rewriting systems ",

Trans. IECE Japan, J66-D, 12, pp.1370-1375 (1983).

