
H o w t o p r o v e E q u i v a l e n c e o f T e r m R e w r i t i n g S y s t e m s

w i t h o u t I n d u c t i o n

Yoshihito TOYAMA

NTT Electrical Communications Laboratories
3-9-11 Midori-cho, Musashino-shi, Tokyo 180 Japan

Abs t rac t

A simple method is proposed for testing equivalence in a restricted domain of two given term
rewriting systems. By using the Church-Rosser property and the teachability of term rewriting
systems, the method allows us to prove equivalence of these systems without the explicit use of
induction; this proof usually requires some kind of induction. The method proposed is a general
extension of inductionless induction methods developed by Musser, Goguen, Huet and HuUot,
and allows us to extend inductionless induetior~ concepts to not only term rewriting systems with
the termination property, but also various reduction systems: term rewriting systems without the
termination property, string rewriting systems, graph rewriting systems, combinatory reduction
systems, and resolution systems. This method is applied to test equivalence of term rewriting
systems, to prove the inductive theorems, and to derive a new term rewriting system from a given
system by using equivalence transformation rules.

1. In t roduc t ion

We consider how to prove equivalence in a restricted domain of two term rewriting systems
[5116] without induction. Equivalence in a restricted domain means that the equational relation
(or the transitive reflexive closure) generated by the reduction relation of one system is equal in
the restricted domain to that of another system.

We first explain the concept of equivalence in a restricted domain through simple examples.
Consider the term rewriting system R1 computing the addition on the set N of natural numbers
represented by 0, s(0), 8(s(0)),...;

R1 : x + O ~ x ,

By adding the associative law to R1, we can obtain another system R~ computing the same
function;

R~ : x + O ~ x,

Then, R2 can reduce (M + N) + P and M + (N + P) to the same normal form for any terms
M, N, P, but R1 cannot reduce them unless M, N, P can be reduced to natural numbers. Thus,
equivalence of R1 and R2 must be regarded as equivalence in the domain in which terms can be
reduced into natural numbers.

We show another example concerning equivalence of recursive programs. Assuming rules for
primitive functions, we define the factorial function f (n) = n! by using the term rewriting systems
R1 and R2;

119

R1 ": f(x) r, if equal(x,0) then s(0) else x * f i x - s(0)),

n 2 : f(O) ~> s(O),
s(=) • f (=) .

Since the rewriting rule of R1 can be infinitely applied to the function symbol f , R1 has an
infinite reduction sequence start ing with the term f (M) for any term M. On the other hand, Rz
cannot reduce f (M) unless M can be reduced to a natural number. Thus, RI and R2 generally
produce different reduction sequences, although they can reduce the term f (M) to the same result
if M can be reduced to a natural number. Therefore, equivalence for the recursive programs may
be regarded as equivalence in the restricted domain of term rewriting systems.

Thus, the concept of equivalence in a restricted domain of term rewriting systems frequently
appears in computer science: automated theorem proving, semantics of functional programs,
program transformation, verification of programs, and specification of abstract da ta types. How-
ever, this equivalence cannot, in general, be proved by mere equational reasoning: some kind of
induction on the domain is necessary.

In this paper, we present a new very simple method for proving equivalence in a restricted
domain of two term rewriting systems without explicit induction. Our approach to this problem
was inspired by inductionlcss induction methods developed by Musser [13], Goguen [4], Huet and
Hullot [7]. However, our method is more general than their inductiontess induction methods, and
allows us to extend inductionlcss induction concepts to not only term rewriting systems with the
termination property [4] [7] [13], but also various reduction systems: term rewriting systems with-
out the termination property [5][6], string rewriting systems (Thue systems) [2], graph rewriting
systems [17], combinatory reduction systems [10], and resolution systems [8][16], etc.

The key idea of our method is that equivalence in a restricted domain can be easily proved
by using the Church-Rosser property and the reachability of reduction systems. We first explain
this idea in an abstract framework. Simple sufficient conditions for equivalence in a restricted
domain of two given abstract reduction systems are shown. Our results are carefully partit ioned
between abstract properties depending solely on the reduction relation and properties depending
on the term structure. We show how one can formally validate equivalence for term rewriting
systems by using these abstract results, and how inductiordcss induction methods by [4][7][13]
can be natural ly extended to our method. Finally, we propose an equivalence transformation
technique for term rewriting systems.

2. Reduction Systems

We explain notions of reduction systems and give definitions for the following sections. These
reduction systems have only an abstract structure, thus they are called abstract reduction systems
[5][10].

A reduction system is a structure R = (A,-*) consisting of some object set A and some
binary relation -* on A (i.e., --*C A × A), called a reduction relation. A reduction (starting with
Xo) in R is a finite or infinite sequence Xo -* xl -* x2 -* The identity of elements of A (or
syntactical equality) is denoted by -=. -~ is the transitive reflexive closure of --* and = is the
equivalence relation generated by -* (i.e., the transitive reflexive symmetric closure of -*). If
x 6 A is minimal with respect to -% i.e., -~3y E A[x -* y], then we say that x is a normal form;
let N F be the set of normal forms. If x -~ y and y E N F then we say x has a normal form y and
y is a normal form of x.

De f in i t i on . R = (A, --*) is strongly normalizing (denoted by SN(R)) , or R has the termi-
nation property, iff every reduction in R terminates, i.e., there is no infinite sequence xo --* Xl -*
x2 -* R is weakly normalizing (denoted by WN(R)) iff any x E A has a normal form.

De f in i t i on . R = (A,--*) has the Church-Rosser property (denoted by CR(R)) iff Vz, y,z E
A[x ~ ,y A x-~ z =~ 3w E A , y - - w A z-*w].

t20

The following proposi t ion is well known [1] [5! [10].

P r o p o s i t i o n 2.1, Let R have the Church-Rosser property, then,
(1) Vx, y E A[x = y=~ 3w • A ,x -~ .w A y-~.w],
(2) Vx, y • NF[x = y =~ x =- y],
(3) Vx e AVy • NF[x = y =~ x ~. y].

3. B a s i c R e s u l t s

Let R1 = (A, -~) and R2 = (A, -~) be two abstract reduct ion systems having the same object

set A, and let ~ . , = and NFI (i=1,2) be the t ransi t ive reflexive closure, the equivalence relation

and the set of normal forms in Re respectively. Note tha t -~ and = are subsets of A × A; for
example, = C = means tha t Vx,y • A [x T y ~ x~y] .

1 2

D e f i n i t i o n . Let A r and Att be any nonempty subsets of the object set A. Let ~ (i = 1,2) be
i

any two binary relations on A. Then ~ = ,-~ in A ~ x A" iff Vx E A'Vy E A ' [x ,,~ y ~ x ~ y]. We
1 2

write this as ,-, = N in A 1 if A ~ = A ' . A t is reachable to A" under N iff Vx E A~3y E A'[x,,~y].
1 2 1

A ~ is closed under N iff Vx E A~Vy • A[x,.~y ::~ y • .411.
1

We first show sufficient condit ions for = = = in A ~.
1 2

L e m m a 3.1. Let R1, R2 satisfy the following conditions:

(1) 7 c
(2) 7 = 7 in A",
(3) A I is reachable to A" under = .

1

Then = = = in A ~.
1 2

P r o o f . Prove Vx,y e A'[xTy .=~ =~y]. ~ is t r ivial f rom condit ion (1), hence we

will show ¢=. Assume x = y , where x , y E A' . By using condit ion (3), there are some elements
2

z, w E A " such tha t x = z and y = w. Since x = z and y = w are obta ined f rom condit ion (1) ,
1 1 2 2

z = w can be derived f rom z = x = y = w . From condit ion (2), z = w holds. Therefore x = y from
2 2 2 2 1 1

x = z - ~ w : y . []
1 1 1

If R2 has the Chnrch-Rosser property, we can modify condit ion (2) of Lemma 3.1 as follows.

T h e o r e m 3.1. Assume the following conditions:
(1) T C ~ ,
(2) CR(R2), -~ = -~ in A" , and A " is closed under -~,

(3) A I is reachable to A II under = .
1

Then = = = in A I.
1 2

P r o o f . Show condit ion (2) of Lemma 3.1, i.e., Vx, y E A " [x ~ y e=~ x~y] . ~ is trivial

f rom condi t ion (1), hence we will prove .~=. Assume x ~ y , where x ,y E A ' . From CR(R2), the

closed proper ty of A " under -~, and Proposi t ion 2.1(1), there exists some z E .4" such that x - ~ z

and y -~ z. By using -+1 = -'2 in A" and the ~losed proper ty of A 't under -%2 x -~1 z and y --1 z can

be derived. Therefore x = y. K]
1

121

T h e o r e m 3.2. Assume the following conditions:

(1) Tc~ ,
(2) CR(R2) and A" C NF2,
(3) A I is reachable to A" under =.

1

Then = = = in A ~.
1 2

Proof . Show condition (2) of Lemma 3.1, i.e., Vx, y E A"[x ~ y ~=~ x ~ y]. =:~ is trivial. ~ :

By using condition (2) of this theorem and Proposition 2.1(2), x ~ y ::~ x --- y for any x , y e A".

Therefore x --- y. []
1

Coro l l a ry 3.1. Assume the conditions:

(1) i C y ,

(2) CR(R2) and NF1 = NF2,
(3) W~(R1).

Then --- = = is obtained.
1 2

Proof . Set A ~ = A and A" = NF1 = NF2 in Theorem 3.2. []

Next, we consider ~litlicient conditions for * = - - in A I × A".
1 2

T h e o r e m 3.3. Assume the following conditions:

(1) Tc~ ,
(2) CR(R2) and A" C NF2,

$
(3) A I is reachable to A II under ---*.

l

Then & = -~" in W x A".
1 2

Proof . Prove Vx E AIVy e A"[x ~ y ~=~ x-~ y]. =~: Let x --1 y" Then x ~ y from condition

(1). Thus x - - y is obtained from condition (2) and Proposition 2.1(3). ¢=: Let x--L,y. Then,
2 2

$
from condition (3), there exists some z E An such that x---~z.1 By condition (1), x ~ z ; hence,

y ~ z can be derived from y =2 x =2 z. Thus, y - z is obtained from condition (2) and Proposition

2.1(2). Therefore x---*y. []
1

Coro l l a ry 3.2. Assume the conditions:

(1) Tc7 ,
(2) CR(R2) and NF1 = NF2,
(3) W N (R 1) .

Then -~ = -~ in A × NF1.
1 2

Proof . Set A I = A and A" = NF1 = NF2 in Theorem 3.3. []

In the following sections, we will explain how to apply the above abstract results to term
rewriting systems that are reduction systems having a term set as the object set A. However,
note that the above abstract results can be applied to not only term rewriting systems, but also
various reduction systems.

4. Term Rewri t ing Sys tems

Assuming that the reader is familiar with the basic concepts concerning term rewriting sys-
tems, we briefly summarize the important notions below [5][6].

122

Let F be an enumerable set of function symbols denoted by f, g, h , . . . , and let V be an enu-
rustable set of variable symbols denoted by x ,y , z where F n V = ¢. By T(F,V) (abbreviated
by T) we denote the set of terms constructed from F and V. If V is empty, T(F,V), denoted as
T(F), is the set of ground terms.

A substitution 0 is a mapping from a term set T to T such that for term M, 6(M) is
completely determined by its values on the variable symbols occurring in M. Following common
usage, we write this as M0 instead of O(M).

Consider an extra constant [] called a hole and the set T(FU{[-7~, V). Then C E TCFU{[]~, V)
is called a context on F. We use the notation C[] for the context containing precisely one hole,
and if N E T(F, V) then C[N] denotes the result of placing N in the hole of C[]. N is called a
subterm of M ~ C[N]. Let N be a subterm occurrence of M, then, write N C M.

A rewriting rule on T is a pair (Mz, Mrl of terms in T such that Ms ~ V and any variable in
Mr also occurs in Mz. The notation ~> denotes a set of rewriting rules on T and we write Ms ~ Mr
for (Mz,Mr) E ~>. The set ~ of rewriting rules on T defines a reduction relation --~ on T as follows:

M -* N iff M =-" C[MzO], N =- C[MrO], and Ms > Mr for some Ms,Mr,C[], and 8.

Def in i t ion . A term rewriting system R on T is a reduction system R = (T, --*) such that
the reduction relation -~ is defined by a set ~ of rewriting rules on T.

R U {M ~ N} (resp. R - {M ~ N}) denotes the term rewriting system obtained by adding
the rule M ~> N to R (rcsp. by removing the rule M ~ N from R).

If every variable in term M occurs only once, then M is called linear. We say that R is linear
iff for any Ms ~ Mr E R, M'l is linear.

Let M ~ N and P ~ Q be two rules in R. We assume that we have renamed variables
appropriately, so that M and P share no variables. Assume S ~ V is a subterm occurrence in M,
i.e., M =- C[S], such that S and P are unifiable, i.e., $0 ~- P0, with a minimal unifier 0 [5][11].
Since MO =- C[S]O = CO[PO], two reductions starting with M0, i.e., MO ~ CO[QO] - C[Q]O and
MO ---* NO, can be obtained by using P ~ Q and M ~ N. Then we say that the pair (C[Q]O, NO)
of terms is critical in R [5][6]. We may choose M ~ N and P ~ Q to be the same rule, but in this
case we shall not consider the case S --- M, which gives trivial pair (N, N). If R has no critical
pair, then we say that R is nonoverlapping [5][6][11][19].

The following sufficient conditions for the Church-Rosser property are well known [5][6][11].

P r o p o s i t i o n 4.1. Let R be strongly normalizing, and let for any critical pair (P, Q) in R,
P and Q have the same normal form. Then R has the Church-Rosser property.

P r o p o s i t i o n 4.2. Let R be linear and nonoverlapping. Then R has the Church-Rosser
property.

For more discussions concerning the Church-Rosser property of term rewriting systems having
overlapping or nonlinear rules, see [5][19][21].

There are several sufficient conditions for the reachability of term rewriting systems to hold.
However, we will omit all proofs of the teachability in the following examples, because they are
mostly technical. For discussions of techniques for proving the teachability, see [7][12][15][18].

5. E x a m p l e s

We now illustrate how to prove equivalence in a restricted domain of two term rewriting
systems Ri and R2 by using Theorems 3.1, 3.2, and 3.3.

E x a m p l e 5.1. Let F I --- {+, s, 0} and F ~t --- {s, 0}. Consider the term rewriting systems Rl and
R2 computing the addition on the set N:

Ri : x + 0 ~ x , R2 : x + 0 ~ x ,
+ ~(Y) ~' '~(x + Y), x + sCy) ~" sex + Y),

123

=+ (y + z)~ (= + y)+z .

We will prove that = = = in T(F') by using Theorem 3.2. Let A' = T (F ') , A" = T(F")
1 2

in Theorem 3.2. We must show conditions (1), (2), (3) of Theorem 3.2 for R1 and R2. Since
C ~, condition (1), i.e., 7 C ~ , is obvious. By using SN(R2) and Proposition 4.1, OR(R2)

is obtained. Condition (2) holds, since T(F") C NF2. T(F') is reachable to T(F") under =.
1

Therefore, = - = in T(F') .
1 2

It is also possible to prove --~ = ~* in T(F') × T(F") by using Theorem 3.3. []
1 2

E x a m p l e 5.2. Let F ' = {+ , s ,0} and F " = {s,0}. Consider the term rewriting systems R1 and
R~ computing the addition on Zs:

R1 : s(s(s(x))) ~ x, R2 : s(s(s(x))) ~, x,
x +O~ x, x + O~, x,

+ s(y) ~ s(= + y), = + s(y) ~ s(= + y),
= + (y + z) ~ (= + y) +z.

We will prove that = -- = in T(F') by using Theorem 3.1. Let A' = TIE') , A" = T(F").
1 2

We must show conditions (1), (2), (3) of Theorem 3.1 for R1 and R2. Condition (1), i.e., 7 C ~ ,

is obvious. By using SN(R2) and Proposition 4.1, CR(R2) is obtained. Condition (2) holds,
since ~ = ~ in T (F ') , and TIE") is closed under --~. T(F') is reachable to T(F") under =.

1 2 2 1

Therefore, = = = in T(F') .
1 2

Note that it is also possible to prove --- = = in T(F') by letting A" = {O,s(O),s(s(O))} and
1 2

using Theorem 3.2. []

We next show an example in which R2 does not have the strongly normalizing property.

E x a m p l e 5.3. Consider the following term rewriting systems R1 and R2 computing the double
function d(n) = 2 * n:

R1 : d(0) ~> 0,
dCs(=)) ~ s(sCd(=))),

R2 : dCx) ~ if(x, 0, s(s(dCx - sO0))))),
if(0, y, z) ~ y,
if(s(x), y, z) ~, z,
T, --O~> x ,

The term rewriting system R~ does not have the strongly normalizing property, since the
first rewriting rule in R2 can be applied infinitely to the function symbol d.

Let F' = {d,s ,0} and F" = {s,0}. We will show that the function d of R1 equals that of
R2 in the restricted domain T(F') , that is, = = = in T (F ') . For this purpose, Theorem 3.2 is

1 2

used. Let A ' = T(F') , A" = T(F") . We must show conditions (1), (2), (3) of Theorem 3.2. Since
d(0) ~ 0 and d(s(x)) ~ s(s(d(x))), condition (i) , i.e., 7 C ~ , is obtained. It is obvious that R2 is

linear and nonoverlapping. Hence, by using Proposition 4.2, R2 has the Church-Rosser property.
Since some function symbol not in F " appears in the left hand side of any rewriting rule in R2,
we can obtain that T(F") c NF2. Thus, condition (2) holds. T(F') is reachable to T(F") under
= . Therefore, = = = in T(F') holds.
1 1 2

Note that T(F') is also reachable to T (F ") under -+. Hence, by Theorem 3.3, we can prove
1

.L, --- _~ in T(F') x T(F") in the same way as the above proof. []
1 2

6. I n d u c t i o n l e s s I n d u c t i o n

By using Theorem 3.2, an equation whose proof usually requires induction on some data

124

structure can be proved without the explicit use of induction. In this section, we will explain how
to prove an equation with inductionless induction method [4][7][9][12][13t[14][15][16].

Let R: be a term rewriting system with teachability from T(F ~) to T(F") under =. For
1

a term set T, let M = N in T denote VS[MS, N0 E T =~ M8 = NS]. Now, for given terms
1 1

M, N E T(FI, V) such that any variable in N also occurs in M, consider the validity of M = N
1

in TiFI). Note that this validity cannot be proved by merely equational reasoning: some kind of
induction on TiE') usually becomes necessary [4][7][13]. However, we can prove that M = N in

1
T(F ~) by using the following theorem, without induction.

T h e o r e m 6.1. Let R2 = R: • {M~N} . If R2 has the Church-Ro.~ser property and TiP") C
NF2, then M = N in T(F').

1
P r o o f . It is obvious that _R: and R2 satisfy conditions (1), (2), (3) of Theorem 3.2 by letting

A' = T(F'), A" = TIP"). Thus - = -- in TiP'). Since M ~, N e R2, we can show that M = N
1 2 2

in TiFf). Therefore, M = N in TiFI). []
1

E x a m p l e 6.1. Consider R: defining the haft function bin) = n/2 and the double function
d(n) = 2 * n:

R : : h(O) ~ 0,
hi,Co)) o,
hCsCs(=)))
d(0) ~ 0,
disC=))

Let F' = {h, d, s, O} and F" = {s, 0}. T(F') is reachable to TIP") under = . Now, let us
1

prove hid(x)) 7 x in T(F') by using Theorem 6.1. Take R2 = R1 U {h(dix)) ~ x}. Then, CRiR2)

by Proposit ion 4.1 and T(F') C NF~. Therefore h(d(x)) 7 x in T(F'). []

When R2 = R1 t2 {M ~, N} does not satisfy the conditions in Theorem 6.1, we may find
Rs instead of R2 such that CR(Rs), TiP") C NFs, and = = = in T(F~). If term rewriting

2 3
systems are strongly normalizing, then the effective search for R3 can be done by using the
Knuth-Bendix completion algorithm [11]. Thus, this method allows us to automatically prove
inductive theorems.

The original idea of this method was proposed by Mugger [13], and has been extended by
Goguen [4], Huet and Hullot [7], and others [9][12][14][15]. However, their inductionless induction
methods have many limitations. In particular, the requirement for the strongly normalizing
property [4] [7] [13] [14] (or the strongly normalizing property on equivalence classes of terms if there
are associative/commutative laws [9][12][15]) restricts its application, since most term rewriting
systems in which functions are denoted by recursive definitions, such as recursive programs, do not
satisfy this property. On the other hand, since Theorem 6.1 holds under very weak assumptions,
our method allows us to overcome these limitations.

We next show an example in which R1 does not have the strongly normalizing property.

E x a m p l e 6.2.
R~ : dCx) ~ if(x,0, sCsCdC= - s(0))))),

hi=) ~ if(x,0,if(= - s(0), 0, s(hi= - s(s(0)))))),
if(0, y, z) ~ y,
if(s(x), y, z) ~> z,
=-Or~ x,

- s (y) = - y .

Note that the term rewriting system R1 does not have the strongly normalizing property,

125

since the first and the second rules in R1 can be infinitely applied to the function symbols d and
h respectively~

Let F ' -- {d,h, i f , - , s , 0 } and F" -- {s,O}. T(F') is reachable to T(F") under --. Now, we
1

show tha t h(d(x)) 7 x in T(F') . Take R2 = R1 u { h(d(x)) ~, x}. To easily show the Church-Rosser

property of the term rewriting system obtained by adding the rule h(d(x)) > x, we consider Rs
instead of R2:

R3 : d(0) E> 0,
dCs(=)) ~ , (, (d (=))) ,
h(0) ~ 0,
h(s(0)) ~ 0,
h 0 (s (=))) ~ ~(h(=)),
if(0, y, z) > y,
if(s(=), y, z) ~ z,
x--Ot> z~

~(d(=)) > =.

Then, -- = = in T (F ') can be proved in the same way as for Example 5.3. It is shown from
2 3

Proposition 4.1 that R3 has the Church-Rosser property. Clearly, T (F ") C NFs. Hence, Rs
satisfies the conditions in Theorem 6.1. Therefore, h(d(=)) 7 x in T(F') . []

7. E q u i v a l e n c e T r a n s f o r m a t i o n Techn ique

In this section, we propose the equivalence transformation rules for term rewriting systems.
We show that equivalence of term rewriting systems, to which it is difficult to apply Theorem 3.2
and 3.3 directly, can be easily proved by an equivalence transformation technique.

Let Ro = (T(F, V),-~) with ° >, and let F ' be a subset of F . Now, we give the equivalence

transformation rules in T(F') for Ro. Let Fo be the union of the set F ' and the set of all function
symbols appearing in the rewriting rules of Ro. Then, we transform R,~ = (T(F,V),---*) with

,~ (n > 0) to R,~+I = (T(F,V),n---~I) with ,,+1 ~' by using the following rules:

(D) Def in i t i on : Add a new rewriting rule g (xl xk) > Q to R , , where g 6 F-F,~, g(x 1 , . . . , xk)
is linear, and 62 6 T(F,~,V). Thus, R,~+I -- R , U {g(xl ,xk) ~" 62}. Set F,~+I = F,~ U {g}.

(A) A d d i t i o n : Add a new rule P > Q to R,~, where P ~ Q and P, Q E T(F,~, V). Thus, R~+I --

R. U {P ~> Q}. Set F.+I = F..

(E) E l i m i n a t i o n : Remove a rule P > Q from R,~. Thus, R~+I = Rn - {P > Q}. Set F , + I = F,~.

R e m a r k s . The above three rules are a natural extension of the program transformation
rules suggested by Burstall and Darlington [3]. Note that their program transformations can
be seen as special eases of equivalence transformations for term rewriting systems in restricted
domains. Thus, we can give formal proofs to correctness of program transformations by the
technique developed in this section [20].

R , =~ R,~+I shows that R , is transformed to Rn+l by rule(D), (A), or (E). ~ denote the
transitive reflexive closure of =~.

T h e o r e m 7.1. Let Ro =~ R,~, where Ro is a linear system and CR(Ro). Let F " C F ' and
T (F ") c NFo. Assume that T (F ') is reachable to T (F ") under = and under = (resp. under -4

0 n 0

and under --*). Then = = = in T (F ') (resp. -~ = -~ in T (F ') × T(F")) .
0 ~ 0

P r o o f . See [20]. []

126

E x a m p l e 7.1 (S u m m a t i o n) . Consider the following term rewriting systems R1 and R2
computing the summation function f(n) = n + . . . + 1 + 0:

R I : f(0) t~ 0, R2: f(0) ~, 0,
f(s(x)) r~ sex) + f(x), f(s(x)) ~, g(x, sCx)),
x + 0 ~, x, g(O, y) ~, y,
= + ~(y) ~' s(= + y), 9Cs(=), y) ~ gC=, y + ~C=)),

x + 0~,x,

Let F t = {f, + , s, 0} and F" = {s, 0}. By using the equivalence transformation rules, we will
show that ---- = -- in T(Ft). To transform R1 to J?2, we first add the associative law for + to RI:

1 2

take R3 = R1 U {x + (y + z) > (x + y) + z}. Then R3 =~ R1 by rule(E). From Proposition 4.1,
CR(Rs). Clearly T(F') C NFs. T(F') is reachable to T(F n) under 7 (and also under ~). By

Theorem 7.1, = = = in T(F r) is obtained.
1 3

Now, let us transform Rs to R2 by using the transformation rules. By using rule(D), we
introduce a new function g,

(1) o(=, y) ~" ~ + f(=).

Let R4 = Rs U {(1)}, then we can prove f(s(x)) 4g(x,s(x)) , g(O,y) 7y , and

g(s(x),y) 4 y + f(s(x)) 4 y + (sCx) + fox)) 4 (y + sCx)) + f(x) 4 g(x,y + s(x)).
By using ruleCA), we can obtain Rs = R4 U {(2), (3), (4)}:

(2) f(s(x)) ~,g(x,s(x)),
(3) g(0, y) ~ y,
(4) gCs(=), y) ~ gCx, y + ~(=)).

Finally, by using rule(E), remove unnecessary rules x+ (y +z)~, (x+y) +z , f(s(x)) ~s(x) +f(x),
and g(x,y) ~ y + f(x) from Rb. Thus, we can obtain R2. T(F t) is reachable to T(F') under =.

2

Hence, = = = in T(F t) is obtained by Theorem 7.1.
3 2

Now, we obtain an equivalence transformation sequence from R1 to R 2 : R 1 4= R3 =~
*

R4 =~ R5 ~ R~. Therefore, = = = in T(Ft).
1 2

Note that it is also possible to prove -~ = _!~ in T(F r) × T(F rt) by this transformation
t 2

technique. []

8. C o n c l u s i o n

In this paper, we have proposed a new simple method to prove equivalence in a restricted do-
main for reduction systems without the explicit use of induction. The key idea is that equivalence
in the restricted domain can be easily tested by using the Church-Rosser property and the reach-
ability of reduction systems. We have shown that this technique can be effectively applied to test
the equality of term rewriting systems and to prove the inductive theorems without induction. We
believe firmly that our method provides us with systematic means of proving equivalence which
arises in various formal systems: automated theorem proving, program transformation, program
verification, and semantics of abstract da ta types.

A c k n o w l e d g m e n t s

The author is grateful to Hirofumi Katsuno, Shigeki Goto, and other members of the First
Research Section for their suggestions.

127

References

[1] Barendregt,H.P." The lambda calculus, its syntax and semantics", North-Holland (1981).
[2] Book,R." Confluent and other types of Thue systems", J.ACM, Vol.29 (1982), pp.171-182.
[3] BurstaU,R.M. and Darlington,J." A transformation system for developing recursive pro-

grams", J.ACM, Vol.24 (1977), pp.44-67.
[4] Goguen,J.A." How to prove algebraic inductive hypotheses without induction, with appli-

cations to the correctness of data type implementation", Lecture Notes in Comput. Sci.,
Vol.87, Springer-VerIag (1980), pp.356-373.

[5] Huet,G." Confluent reductions: abstract properties and applications to term rewriting sys-
tems", J.ACM, Vol.27 (1980), pp.797-82t.

[6] Huet,G. and Oppen,D.C." Equations and rewrite rules: a survey", Formal languages: per-
spectives and open problems, Ed.Book,R., Academic Press (1980), pp.349-393.

[7] Huet,G. and HulIot,J.M." Proofs by induction in equational theories with constructors", J.
Comput. and Syst.Sci., Vol.25 (1982), pp.239-266.

[8] Kapur,D. and Narendran,P." An equational approach to theorem proving in first-order pred-
icate calculus", General Electric Corporate Resarch Development Report, No.84CRD322,
(1985).

[9] Kirchner,H."A general inductive completion algorithm and application to abstract data
types", Lecture Notes in Comput. Sci., Vol.170, Springer-Verlag (1985), pp.282-302.

[10] Klop,J.W." Combinatory reduction systems", Dissertation, Univ. of Utrecht (1980).
[11] Knuth,D.E. and Bendix,P.G." Simple word problems in universal algebras", Computational

problems in abstract algebra, Ed.Leech,J., Pergamon Press (1970), pp.263-297.
[12] Kounalis,E."Completeness in data type specifications", Lecture Notes in Comput. Sci.,

Vol.204, Springer-Verlag (1985), pp.348-362.
[13] Musser,D.R." On proving inductive properties of abstract data types", Proc. 7th ACM

Sympo. Principles of programming languages (1980), pp.154-162.
[14] Nipkow,T. and Weikum,G."A decidability results about sufficient-completeness of axiomati-

cally specified abstract data type", Lecture Notes in Comput. Sci., Vo1.145, Springer-VerIag
(1983), pp.25~'-26~'.

[15] Paul,E." Proof by induction in equational theories with relations between constructors", 9th
Colloquium on trees in algebra and programming, Ed. Courcelle,B., Cambridge University
Press (1984), pp.211-225.

[16] Paul,E."On solving the equality problem in theories defined by Horn clauses", Lecture Notes
in Comput. Sci., Vol.204, Springer-Verlag (1985), pp.363-377.

[17] Raoult,J.C."On graph rewriting", Theoretical Comput. Sci. Vol.32 (1984), pp.l-24.
[18] Thiel,J.J." Stop losing sleep over incomplete data type specifications", Proc. l l th ACM

Sympo. Principles of programming languages (1984), pp.76-82.
[19] Toyama,Y." On commutativity of term rewriting systems", Trans. IECE Japan, J66-D, 12,

pp.1370-1375 (1983), in Japanese.
[20] Toyama,Y." On equivalence transformations for term rewriting systems", RIMS Symposia

on Software Science and Engineering, Kyoto (1984), Lecture Notes in Comput. Sci., Vol.220,
Springer-Verlag (1986), pp.44-61.

[21] Toyama,Y. ~ On the Church-Rosser property for the direct sum of term rewriting systems",
to appear in J.ACM.

