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Abs t rac t  

A simple method is proposed for testing equivalence in a restricted domain of two given term 
rewriting systems. By using the Church-Rosser property and the teachability of term rewriting 
systems, the method allows us to prove equivalence of these systems without the explicit use of 
induction; this proof usually requires some kind of induction. The method proposed is a general 
extension of inductionless induction methods developed by Musser, Goguen, Huet and HuUot, 
and allows us to extend inductionless induetior~ concepts to not only term rewriting systems with 
the termination property, but also various reduction systems: term rewriting systems without the 
termination property, string rewriting systems, graph rewriting systems, combinatory reduction 
systems, and resolution systems. This method is applied to test equivalence of term rewriting 
systems, to prove the inductive theorems, and to derive a new term rewriting system from a given 
system by using equivalence transformation rules. 

1. In t roduc t ion  

We consider how to prove equivalence in a restricted domain of two term rewriting systems 
[5116 ] without induction. Equivalence in a restricted domain means that the equational relation 
(or the transitive reflexive closure) generated by the reduction relation of one system is equal in 
the restricted domain to that of another system. 

We first explain the concept of equivalence in a restricted domain through simple examples. 
Consider the term rewriting system R1 computing the addition on the set N of natural numbers 
represented by 0, s(0), 8(s(0)),...; 

R1 : x + O ~ x ,  

By adding the associative law to R1, we can obtain another system R~ computing the same 
function; 

R~ : x + O ~  x, 

Then, R2 can reduce (M + N) + P and M + (N + P) to the same normal form for any terms 
M, N, P, but R1 cannot reduce them unless M, N, P can be reduced to natural numbers. Thus, 
equivalence of R1 and R2 must be regarded as equivalence in the domain in which terms can be 
reduced into natural numbers. 

We show another example concerning equivalence of recursive programs. Assuming rules for 
primitive functions, we define the factorial function f ( n )  = n! by using the term rewriting systems 
R1 and R2; 
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R1 ": f(x) r, if equal(x,0) then s(0) else x * f i x  - s(0)), 

n 2 :  f(O) ~> s(O), 
s(=) • f (=) .  

Since the rewriting rule of R1 can be infinitely applied to the function symbol f ,  R1 has an 
infinite reduction sequence start ing with the term f (M)  for any term M.  On the other hand, Rz 
cannot reduce f (M)  unless M can be reduced to a natural  number. Thus, RI and R2 generally 
produce different reduction sequences, although they can reduce the term f (M)  to the same result 
if M can be reduced to a natural  number. Therefore, equivalence for the recursive programs may 
be regarded as equivalence in the restricted domain of term rewriting systems. 

Thus, the concept of equivalence in a restricted domain of term rewriting systems frequently 
appears in computer science: automated theorem proving, semantics of functional programs, 
program transformation, verification of programs, and specification of abstract  da ta  types. How- 
ever, this equivalence cannot, in general, be proved by mere equational reasoning: some kind of 
induction on the domain is necessary. 

In this paper,  we present a new very simple method for proving equivalence in a restricted 
domain of two term rewriting systems without explicit induction. Our approach to this problem 
was inspired by inductionlcss induction methods developed by Musser [13], Goguen [4], Huet and 
Hullot [7]. However, our method is more general than their inductiontess induction methods, and 
allows us to extend inductionlcss induction concepts to not only term rewriting systems with the 
termination property [4] [7] [13], but  also various reduction systems: term rewriting systems with- 
out the termination property [5][6], string rewriting systems (Thue systems) [2], graph rewriting 
systems [17], combinatory reduction systems [10], and resolution systems [8][16], etc. 

The key idea of our method is that  equivalence in a restricted domain can be easily proved 
by using the Church-Rosser property and the reachability of reduction systems. We first explain 
this idea in an abstract  framework. Simple sufficient conditions for equivalence in a restricted 
domain of two given abstract  reduction systems are shown. Our results are carefully partit ioned 
between abstract  properties depending solely on the reduction relation and properties depending 
on the term structure. We show how one can formally validate equivalence for term rewriting 
systems by using these abstract  results, and how inductiordcss induction methods by [4][7][13] 
can be natural ly extended to our method. Finally, we propose an equivalence transformation 
technique for term rewriting systems. 

2. Reduction Systems 

We explain notions of reduction systems and give definitions for the following sections. These 
reduction systems have only an abstract  structure, thus they are called abstract  reduction systems 
[5][10]. 

A reduction system is a structure R = (A,-*)  consisting of some object set A and some 
binary relation -* on A (i.e., --*C A × A), called a reduction relation. A reduction (starting with 
Xo) in R is a finite or infinite sequence Xo -* xl  -* x2 -* . . . .  The identity of elements of A (or 
syntactical equality) is denoted by -=. -~ is the transitive reflexive closure of --* and = is the 
equivalence relation generated by -* (i.e., the transitive reflexive symmetric closure of -*). If 
x 6 A is minimal with respect to -% i.e., -~3y E A[x -* y], then we say that  x is a normal form; 
let N F  be the set of normal forms. If x -~ y and y E N F  then we say x has a normal form y and 
y is a normal form of x. 

De f in i t i on .  R = (A, --*) is strongly normalizing (denoted by SN(R)) ,  or R has the termi- 
nation property, iff every reduction in R terminates, i.e., there is no infinite sequence xo --* Xl -* 
x2 -* . . . .  R is weakly normalizing (denoted by WN(R))  iff any x E A has a normal form. 

De f in i t i on .  R = (A,--*) has the Church-Rosser property (denoted by CR(R)) iff Vz, y,z E 
A[x ~ ,y  A x-~ z =~ 3w E A , y - - w  A z-*w]. 
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The  following proposi t ion is well known [1] [5! [10]. 

P r o p o s i t i o n  2.1,  Let  R have the  Church-Rosser property, then,  
(1) Vx, y E A[x = y=~ 3w • A ,x -~ .w  A y-~.w], 
(2) Vx, y • NF[x  = y =~ x =- y], 
(3) Vx e AVy • NF[x  = y =~ x ~. y]. 

3. B a s i c  R e s u l t s  

Let  R1 = (A, -~) and R2 = (A, -~) be two abstract  reduct ion systems having the  same object 

set A, and let ~ . ,  = and NFI (i=1,2) be  the t ransi t ive  reflexive closure, the equivalence relation 

and the set of normal  forms in Re respectively. Note tha t  -~ and = are subsets of A × A; for 
example,  = C = means  tha t  Vx,y • A [ x T y  ~ x~y] .  

1 2 

D e f i n i t i o n .  Let  A r and Att be any nonempty subsets of the  object  set A. Let ~ (i = 1,2) be 
i 

any two binary  relations on A. Then  ~ = ,-~ in A ~ x A" iff Vx E A'Vy E A ' [x  ,,~ y ~ x ~ y]. We 
1 2 

write this as ,-, = N in A 1 if A ~ = A ' .  A t is reachable to A"  under  N iff Vx E A~3y E A'[x,,~y]. 
1 2 1 

A ~ is closed under  N iff Vx E A~Vy • A[x,.~y ::~ y • .411. 
1 

We first show sufficient condit ions for = = = in A ~. 
1 2 

L e m m a  3.1.  Let  R1, R2 satisfy the following conditions: 

(1) 7 c 
(2) 7 = 7 in A", 
(3) A I is reachable to A"  under  = .  

1 

Then  = = = in A ~. 
1 2 

P r o o f .  Prove Vx,y e A'[xTy .=~ =~y]. ~ is t r ivial  f rom condit ion (1), hence we 

will show ¢=. Assume x = y ,  where x , y  E A' .  By using condit ion (3), there are some elements 
2 

z, w E A "  such tha t  x = z and y = w. Since x = z and y = w are obta ined  f rom condit ion (1) , 
1 1 2 2 

z = w  can be derived f rom z = x = y = w .  From condit ion (2), z = w  holds. Therefore x = y  from 
2 2 2 2 1 1 

x = z - ~ w : y .  [] 
1 1 1 

If R2 has the  Chnrch-Rosser property,  we can modify condit ion (2) of Lemma  3.1 as follows. 

T h e o r e m  3.1.  Assume the following conditions: 
(1) T C ~ ,  
(2) CR(R2),  -~ = -~ in A" ,  and A "  is closed under  -~, 

(3) A I is reachable to A II under  = .  
1 

Then  = = = in A I. 
1 2 

P r o o f .  Show condit ion (2) of Lemma  3.1, i.e., Vx, y E A " [ x ~ y  e=~ x~y] .  ~ is trivial 

f rom condi t ion (1), hence we will prove .~=. Assume x ~ y ,  where x ,y  E A ' .  From CR(R2), the  

closed proper ty  of A "  under  -~, and Proposi t ion 2.1(1), there exists some z E .4" such that  x - ~  z 

and y -~ z. By using -+1 = -'2 in A"  and the ~losed proper ty  of A 't under  -%2 x -~1 z and y --1 z can 

be  derived. Therefore x = y. K] 
1 
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T h e o r e m  3.2. Assume the following conditions: 

(1) Tc~ ,  
(2) CR(R2) and A" C NF2, 
(3) A I is reachable to A" under =.  

1 

Then = = = in A ~. 
1 2 

Proof .  Show condition (2) of Lemma 3.1, i.e., Vx, y E A"[x ~ y ~=~ x ~ y]. =:~ is trivial. ~ :  

By using condition (2) of this theorem and Proposition 2.1(2), x ~ y  ::~ x --- y for any x , y  e A". 

Therefore x --- y. [] 
1 

Coro l l a ry  3.1. Assume the conditions: 

(1) i C y ,  

(2) CR(R2) and NF1 = NF2, 
(3) W~(R1). 

Then --- = = is obtained. 
1 2 

Proof .  Set A ~ = A and A" = NF1 = NF2 in Theorem 3.2. [] 

Next, we consider ~litlicient conditions for * = - -  in A I × A". 
1 2 

T h e o r e m  3.3. Assume the following conditions: 

(1) Tc~ ,  
(2) CR(R2) and A" C NF2, 

$ 
(3) A I is reachable to A II under ---*. 

l 

Then & = -~" in W x A". 
1 2 

Proof .  Prove Vx E AIVy e A"[x ~ y ~=~ x-~ y]. =~: Let x --1 y" Then x ~ y from condition 

(1). Thus x - - y  is obtained from condition (2) and Proposition 2.1(3). ¢=: Let x--L,y. Then, 
2 2 

$ 
from condition (3), there exists some z E An such that x---~z.1 By condition (1), x ~ z ;  hence, 

y ~ z can be derived from y =2 x =2 z. Thus, y - z is obtained from condition (2) and Proposition 

2.1(2). Therefore x---*y. [] 
1 

Coro l l a ry  3.2. Assume the conditions: 

(1) Tc7 ,  
(2) CR(R2) and NF1 = NF2, 
(3) W N ( R 1 ) .  

Then -~ = -~ in A × NF1. 
1 2 

Proof .  Set A I = A and A" = NF1 = NF2 in Theorem 3.3. [] 

In the following sections, we will explain how to apply the above abstract results to term 
rewriting systems that are reduction systems having a term set as the object set A. However, 
note that the above abstract results can be applied to not only term rewriting systems, but also 
various reduction systems. 

4. Term Rewri t ing  Sys tems  

Assuming that the reader is familiar with the basic concepts concerning term rewriting sys- 
tems, we briefly summarize the important notions below [5][6]. 
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Let F be an enumerable set of function symbols denoted by f, g, h , . . . ,  and let V be an enu- 
rustable set of variable symbols denoted by x ,y , z  . . . .  where F n V  = ¢. By T(F,V)  (abbreviated 
by T) we denote the set of terms constructed from F and V. If V is empty, T(F,V),  denoted as 
T(F),  is the set of ground terms. 

A substitution 0 is a mapping from a term set T to T such that for term M, 6(M) is 
completely determined by its values on the variable symbols occurring in M. Following common 
usage, we write this as M0 instead of O(M). 

Consider an extra constant [] called a hole and the set T(FU{[-7~, V). Then C E TCFU{[]~, V) 
is called a context on F. We use the notation C[ ] for the context containing precisely one hole, 
and if N E T(F, V) then C[N] denotes the result of placing N in the hole of C[ ]. N is called a 
subterm of M ~ C[N]. Let N be a subterm occurrence of M, then, write N C M. 

A rewriting rule on T is a pair (Mz, Mrl of terms in T such that Ms ~ V and any variable in 
Mr also occurs in Mz. The notation ~> denotes a set of rewriting rules on T and we write Ms ~ Mr 
for (Mz,Mr) E ~>. The set ~ of rewriting rules on T defines a reduction relation --~ on T as follows: 

M -* N iff M =-" C[MzO], N =- C[MrO], and Ms > Mr for some Ms,Mr,C[ ], and 8. 

Def in i t ion .  A term rewriting system R on T is a reduction system R = (T, --*) such that 
the reduction relation -~ is defined by a set ~ of rewriting rules on T. 

R U {M ~ N} (resp. R - {M ~ N}) denotes the term rewriting system obtained by adding 
the rule M ~> N to R (rcsp. by removing the rule M ~ N from R). 

If every variable in term M occurs only once, then M is called linear. We say that R is linear 
iff for any Ms ~ Mr E R, M'l is linear. 

Let M ~ N and P ~ Q be two rules in R. We assume that we have renamed variables 
appropriately, so that M and P share no variables. Assume S ~ V is a subterm occurrence in M, 
i.e., M =- C[S], such that S and P are unifiable, i.e., $0 ~- P0, with a minimal unifier 0 [5][11]. 
Since MO =- C[S]O = CO[PO], two reductions starting with M0, i.e., MO ~ CO[QO] - C[Q]O and 
MO ---* NO, can be obtained by using P ~ Q and M ~ N. Then we say that the pair (C[Q]O, NO) 
of terms is critical in R [5][6]. We may choose M ~ N and P ~ Q to be the same rule, but in this 
case we shall not consider the case S --- M,  which gives trivial pair (N, N). If R has no critical 
pair, then we say that R is nonoverlapping [5][6][11][19]. 

The following sufficient conditions for the Church-Rosser property are well known [5][6][11]. 

P r o p o s i t i o n  4.1. Let R be strongly normalizing, and let for any critical pair (P, Q) in R, 
P and Q have the same normal form. Then R has the Church-Rosser property. 

P r o p o s i t i o n  4.2. Let R be linear and nonoverlapping. Then R has the Church-Rosser 
property. 

For more discussions concerning the Church-Rosser property of term rewriting systems having 
overlapping or nonlinear rules, see [5][19][21]. 

There are several sufficient conditions for the reachability of term rewriting systems to hold. 
However, we will omit all proofs of the teachability in the following examples, because they are 
mostly technical. For discussions of techniques for proving the teachability, see [7][12][15][18]. 

5. E x a m p l e s  

We now illustrate how to prove equivalence in a restricted domain of two term rewriting 
systems Ri and R2 by using Theorems 3.1, 3.2, and 3.3. 

E x a m p l e  5.1. Let F I --- {+, s, 0} and F ~t --- {s, 0}. Consider the term rewriting systems Rl and 
R2 computing the addition on the set N: 

Ri : x + 0 ~ x ,  R2 : x + 0 ~ x ,  
+ ~(Y) ~' '~(x + Y), x + sCy) ~" sex + Y), 
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=+ (y + z)~ (= + y)+z .  

We will prove that  = = = in T(F')  by using Theorem 3.2. Let A'  = T ( F ' ) ,  A" = T(F")  
1 2 

in Theorem 3.2. We must show conditions (1), (2), (3) of Theorem 3.2 for R1 and R2. Since 
C ~, condition (1), i.e., 7 C ~ ,  is obvious. By using SN(R2)  and Proposition 4.1, OR(R2) 

is obtained. Condition (2) holds, since T(F")  C NF2. T(F')  is reachable to T(F")  under =.  
1 

Therefore, = - = in T(F') .  
1 2 

It  is also possible to prove --~ = ~* in T(F')  × T(F")  by using Theorem 3.3. [] 
1 2 

E x a m p l e  5.2. Let F '  = {+ , s ,0}  and F "  = {s,0}. Consider the term rewriting systems R1 and 
R~ computing the addition on Zs: 

R1 : s(s(s(x))) ~ x, R2 : s(s(s(x))) ~, x, 
x +O~ x, x + O~, x, 

+ s(y) ~ s(= + y), = + s(y) ~ s(= + y), 
= + ( y + z ) ~ ( = + y )  +z. 

We will prove that  = -- = in T(F')  by using Theorem 3.1. Let A' = TIE') ,  A" = T(F").  
1 2 

We must show conditions (1), (2), (3) of Theorem 3.1 for R1 and R2. Condition (1), i.e., 7 C ~ ,  

is obvious. By using SN(R2)  and Proposition 4.1, CR(R2) is obtained. Condition (2) holds, 
since ~ = ~ in T ( F ' ) ,  and TIE"  ) is closed under --~. T(F')  is reachable to T(F")  under =.  

1 2 2 1 

Therefore, = = = in T(F') .  
1 2 

Note that  it is also possible to prove --- = = in T(F')  by letting A" = {O,s(O),s(s(O))} and 
1 2 

using Theorem 3.2. [] 

We next show an example in which R2 does not have the strongly normalizing property. 

E x a m p l e  5.3. Consider the following term rewriting systems R1 and R2 computing the double 
function d(n) = 2 * n: 

R1 : d(0) ~> 0, 
dCs(=)) ~ s(sCd(=))), 

R2 : dCx) ~ if(x, 0, s(s(dCx - sO0))))), 
if(0, y, z) ~ y, 
if(s(x), y, z) ~, z, 
T, --O~> x ,  

The term rewriting system R~ does not have the strongly normalizing property, since the 
first rewriting rule in R2 can be applied infinitely to the function symbol d. 

Let F'  = {d,s ,0} and F" = {s,0}. We will show that  the function d of R1 equals that  of 
R2 in the restricted domain T(F') ,  that  is, = = = in T ( F ' ) .  For this purpose, Theorem 3.2 is 

1 2 

used. Let A '  = T(F') ,  A"  = T(F") .  We must show conditions (1), (2), (3) of Theorem 3.2. Since 
d(0) ~ 0 and d(s(x)) ~ s(s(d(x))), condition (i) ,  i.e., 7 C ~ ,  is obtained. It is obvious that  R2 is 

linear and nonoverlapping. Hence, by using Proposition 4.2, R2 has the Church-Rosser property. 
Since some function symbol not in F "  appears in the left hand side of any rewriting rule in R2, 
we can obtain that  T(F")  c NF2. Thus, condition (2) holds. T(F')  is reachable to T(F")  under 
= .  Therefore, = = = in T(F')  holds. 
1 1 2 

Note that  T(F')  is also reachable to T ( F " )  under -+. Hence, by Theorem 3.3, we can prove 
1 

.L, --- _~ in T(F')  x T(F")  in the same way as the above proof. [] 
1 2 

6. I n d u c t i o n l e s s  I n d u c t i o n  

By using Theorem 3.2, an equation whose proof usually requires induction on some data 
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structure can be proved without the explicit use of induction. In this section, we will explain how 
to prove an equation with inductionless induction method [4][7][9][12][13t[14][15][16 ]. 

Let R:  be a term rewriting system with teachability from T(F ~) to T(F") under =.  For 
1 

a term set T, let M =  N in T denote VS[MS, N0 E T =~ M8 = NS]. Now, for given terms 
1 1 

M, N E T( FI, V) such that  any variable in N also occurs in M,  consider the validity of M = N 
1 

in TiFI). Note that  this validity cannot be proved by merely equational reasoning: some kind of 
induction on TiE' ) usually becomes necessary [4][7][13]. However, we can prove that  M =  N in 

1 
T(F ~) by using the following theorem, without induction. 

T h e o r e m  6.1. Let R2 = R: • {M~N} .  If R2 has the Church-Ro.~ser property and TiP" ) C 
NF2, then M = N in T(F'). 

1 
P r o o f .  It is obvious that  _R: and R2 satisfy conditions (1), (2), (3) of Theorem 3.2 by letting 

A' = T(F'), A" = TIP" ). Thus - = -- in TiP' ). Since M ~, N e R2, we can show that  M = N 
1 2 2 

in TiFf). Therefore, M = N in TiFI). [] 
1 

E x a m p l e  6.1. Consider R:  defining the haft function bin ) = n/2 and the double function 
d(n) = 2 * n: 

R :  : h(O) ~ 0, 
hi,Co)) o, 
hCsCs(=))) 
d(0) ~ 0, 
disC=)) 

Let F' = {h, d, s, O} and F" = {s, 0}. T(F') is reachable to TIP" ) under = .  Now, let us 
1 

prove hid(x)) 7 x in T(F') by using Theorem 6.1. Take R2 = R1 U {h(dix)) ~ x}. Then, CRiR2 ) 

by Proposit ion 4.1 and T(F' )  C NF~. Therefore h(d(x)) 7 x in T(F'). [] 

When R2 = R1 t2 {M ~, N} does not satisfy the conditions in Theorem 6.1, we may find 
Rs instead of R2 such that  CR(Rs), TiP" ) C NFs, and = = = in T(F~). If term rewriting 

2 3 
systems are strongly normalizing, then the effective search for R3 can be done by using the 
Knuth-Bendix completion algorithm [11]. Thus, this method allows us to automatically prove 
inductive theorems. 

The original idea of this method was proposed by Mugger [13], and has been extended by 
Goguen [4], Huet and Hullot [7], and others [9][12][14][15]. However, their inductionless induction 
methods have many limitations. In particular,  the requirement for the strongly normalizing 
property [4] [7] [13] [14] (or the strongly normalizing property on equivalence classes of terms if there 
are associative/commutative laws [9][12][15]) restricts its application, since most term rewriting 
systems in which functions are denoted by recursive definitions, such as recursive programs, do not 
satisfy this property. On the other hand, since Theorem 6.1 holds under very weak assumptions, 
our method allows us to overcome these limitations. 

We next show an example in which R1 does not have the strongly normalizing property. 

E x a m p l e  6.2. 
R~ : dCx) ~ if(x,0, sCsCdC= - s(0))))), 

hi= ) ~ if(x,0,if(= - s(0), 0, s( hi= - s(s(0)))))), 
if(0, y, z) ~ y, 
if(s(x), y, z) ~> z, 
=-Or~ x, 

- s ( y )  = - y .  

Note that  the term rewriting system R1 does not have the strongly normalizing property, 
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since the first and the second rules in R1 can be infinitely applied to the function symbols d and 
h respectively~ 

Let F '  -- {d,h,  i f , - , s , 0 }  and F" -- {s,O}. T(F')  is reachable to T(F") under --. Now, we 
1 

show tha t  h(d(x) ) 7 x in T(F') .  Take R2 = R1 u { h( d(x) ) ~, x}. To easily show the Church-Rosser 

property of the term rewriting system obtained by adding the rule h(d(x)) > x, we consider Rs 
instead of R2: 

R3 : d(0) E> 0, 
dCs(=)) ~ , ( , (d (=) ) ) ,  
h(0) ~ 0, 
h(s(0))  ~ 0, 
h 0 ( s ( = ) ) )  ~ ~(h(=)),  
if(0, y, z) > y, 
if(s(=), y, z) ~ z, 
x--Ot> z~ 

~(d(=)) > =. 

Then, -- = = in T (F ' )  can be proved in the same way as for Example 5.3. It is shown from 
2 3 

Proposition 4.1 that  R3 has the Church-Rosser property. Clearly, T ( F " )  C NFs. Hence, Rs 
satisfies the conditions in Theorem 6.1. Therefore, h(d(=)) 7 x in T(F') .  [] 

7. E q u i v a l e n c e  T r a n s f o r m a t i o n  Techn ique  

In this section, we propose the equivalence transformation rules for term rewriting systems. 
We show that  equivalence of term rewriting systems, to which it is difficult to apply Theorem 3.2 
and 3.3 directly, can be easily proved by an equivalence transformation technique. 

Let Ro = (T(F, V),-~) with ° >, and let F '  be a subset of F .  Now, we give the equivalence 

transformation rules in T(F') for Ro. Let Fo be the union of the set F '  and the set of all function 
symbols appearing in the rewriting rules of Ro. Then, we transform R,~ = (T(F,V),---*) with 

,~ (n > 0) to R,~+I = (T(F,V),n---~I) with ,,+1 ~' by using the following rules: 

(D) Def in i t i on :  Add a new rewriting rule g (xl . . . . .  xk) > Q to R , ,  where g 6 F-F,~,  g(x 1 , . . . ,  xk) 
is linear, and 62 6 T(F,~,V). Thus, R,~+I -- R ,  U {g(xl . . . .  ,xk) ~" 62}. Set F,~+I = F,~ U {g}. 

(A) A d d i t i o n :  Add a new rule P > Q to R,~, where P ~ Q and P, Q E T(F,~, V). Thus, R~+I -- 

R. U {P ~> Q}. Set F.+I = F.. 

(E) E l i m i n a t i o n :  Remove a rule P > Q from R,~. Thus, R~+I = Rn - {P > Q}. Set F , + I  = F,~. 

R e m a r k s .  The above three rules are a natural  extension of the program transformation 
rules suggested by Burstall and Darlington [3]. Note that  their program transformations can 
be seen as special eases of equivalence transformations for term rewriting systems in restricted 
domains. Thus, we can give formal proofs to correctness of program transformations by the 
technique developed in this section [20]. 

R ,  =~ R,~+I shows that  R ,  is transformed to Rn+l  by rule(D), (A), or (E). ~ denote the 
transitive reflexive closure of =~. 

T h e o r e m  7.1. Let Ro =~ R,~, where Ro is a linear system and CR(Ro). Let F "  C F '  and 
T ( F " )  c NFo. Assume that  T (F ' )  is reachable to T ( F " )  under = and under = (resp. under -4 

0 n 0 

and under --*). Then = = = in T (F ' )  (resp. -~ = -~ in T (F ' )  × T(F" ) ) .  
0 ~ 0 

P r o o f .  See [20]. [] 



126 

E x a m p l e  7.1 ( S u m m a t i o n ) .  Consider the following term rewriting systems R1 and R2 
computing the summation function f(n) = n + . . .  + 1 + 0: 

R I :  f(0) t~ 0, R2:  f(0) ~, 0, 
f(s(x)) r~ sex) + f(x), f(s(x)) ~, g(x, sCx)), 
x + 0 ~, x, g(O, y) ~, y, 
= + ~(y) ~' s(= + y), 9Cs(=), y) ~ gC=, y + ~C=)), 

x +  0~,x, 

Let F t = {f, + ,  s, 0} and F" = {s, 0}. By using the equivalence transformation rules, we will 
show that  ---- = -- in T(Ft). To transform R1 to J?2, we first add the associative law for + to RI: 

1 2 

take R3 = R1 U {x + (y + z) > (x + y) + z}. Then R3 =~ R1 by rule(E). From Proposition 4.1, 
CR(Rs). Clearly T(F')  C NFs. T(F') is reachable to T(F n) under 7 (and also under ~).  By 

Theorem 7.1, = = = in T(F r) is obtained. 
1 3 

Now, let us transform Rs to R2 by using the transformation rules. By using rule(D), we 
introduce a new function g, 

(1) o(=, y) ~" ~ + f(=). 

Let R4 = Rs U {(1)}, then we can prove f(s(x)) 4g(x,s(x)) , g(O,y) 7y ,  and 

g(s(x),y) 4 y + f(s(x)) 4 y + (sCx) + fox)) 4 (y + sCx)) + f(x) 4 g(x,y + s(x)). 
By using ruleCA), we can obtain Rs = R4 U {(2), (3), (4)}: 

(2) f(s(x)) ~,g(x,s(x)), 
(3) g(0, y) ~ y, 
(4) gCs(=), y) ~ gCx, y + ~(=)). 

Finally, by using rule(E),  remove unnecessary rules x+ (y +z)~, (x+y) +z ,  f(s(x)) ~s(x) +f(x), 
and g(x,y) ~ y + f(x) from Rb. Thus, we can obtain R2. T(F t) is reachable to T(F')  under =.  

2 

Hence, = = = in T(F t) is obtained by Theorem 7.1. 
3 2 

Now, we obtain an equivalence transformation sequence from R1 to R 2 : R 1  4= R3 =~ 
* 

R4 =~ R5 ~ R~. Therefore, = = = in T(Ft). 
1 2 

Note that  it is also possible to prove -~ = _!~ in T(F r) × T(F rt) by this transformation 
t 2 

technique. [] 

8. C o n c l u s i o n  

In this paper, we have proposed a new simple method to prove equivalence in a restricted do- 
main for reduction systems without the explicit use of induction. The key idea is that  equivalence 
in the restricted domain can be easily tested by using the Church-Rosser property and the reach- 
ability of reduction systems. We have shown that  this technique can be effectively applied to test 
the equality of term rewriting systems and to prove the inductive theorems without induction. We 
believe firmly that  our method provides us with systematic means of proving equivalence which 
arises in various formal systems: automated theorem proving, program transformation, program 
verification, and semantics of abstract  da ta  types. 
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