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A b s t r a c t  

The direct sum of two term rewriting systems is the union of systems having disjoint sets 

of function symbols. It is shown that two term rewriting systems both are left-linear and 

complete if and only if the direct sum of these systems is so. 

1. I n t r o d u c t i o n  

An important  concern in building algebraic specifications is their hierarchical or modular  struc- 

ture. The same holds for term rewriting systems [1] which can be viewed as implementations 

of equational algebraic specifications. Specifically, it is of obvious interest to determine which 

*This paper is an abbreviated version of the IEICE technical report COMP88-30, July 1988. Now we are 

preparing a final version for submission based on this draft. 
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properties of term rewriting systems have a modular character, where we call a property mod- 

ular if its validity for a term rewriting system, hierarchically composed of some smaller term 

rewriting systems, can be inferred from the validity of that property for the constituent term 

rewriting systems. Naturally, the first step in such an investigation considers the most basic 

properties of term rewriting systems: confluence, termination, unique normal form property, 

and similar fundamental properties as well as combinations thereof. 

As to the modular structure of term rewriting systems, it is again natural to consider as 

a start the most simple way that term rewriting systems can be combined to form a larger 

term rewriting system: namely, as a disjoint sum. This means that the alphabets of the term 

rewriting systems to be combined are disjoint, and that the rewriting rules of the sum term 

rewriting system are the rules of the summand term rewriting systems together. (Without the 

disjointness requirement the situation is even more complicated - see for some results in this 

direction: Dershowitz [2], Toyama [10].) A disjoint union of two term rewriting systems Ro and 

/ll is called in our paper a direct sum, notation R0 ~ R1. 

Another simplifying assumption that we will make, is that R0, R1 are homogeneous term 

rewriting systems, i.e. their signature is one-sorted (as opposed to the many sorted or heteroge- 

neous case; for results about direct sums of heterogeneous term rewriting systems, see Ganzinger 

and Giegerich [3].) 

The first result in this setting is due to Toyama [8], where it is proven that confluence is 

a modular property. (I.e. Ro and Rx are confluent iff Ro (~/~1 is so. Here ¢= is trivial; =v is 

what we are interested in.) To appreciate the non-triviality of this fact, it may be contrasted 

with the fact that another fundamental property, termination, is not modular, as the following 

simple counterexample in Toyama [9] shows: 

Ro { F(O,l ,x)~,F(x,x,x)  

R1 ! g(x, y) t, x 

t g(x, y) ~, V 

It is trivial that Ro and R1 are terminating. 

R0 (9//1 has the infinite reduction sequence: 

However, R0 (~ R1 is not terminating, because 

F(g(O, 1), g(0,1), g(0, 1)) ~ F(0, g(0,1), g(0,1)) --* F(0, 1, g(0,1)) 

--* F(g(O, 1), g(0,1), g(0,1)) - * . . . .  

The above counterexample uses a non-confluent term rewriting system R1. A more compli- 

cated counterexample to the modularity of termination, involving only confluent term rewriting 
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systems, was given by Klop an Barendregt [4] (for ground terms only; for some improved versions, 

holding for open terms as well, and even using term rewriting systems which are irreducible, see 

Toyama [9]). This means that the important property of complegeness of term rewriting systems 

(a term rewriting system is complete iff it is both confluent and terminating) is not modular, 

i.e. there are complete term rewriting systems R0, R1 such that R0 @ R1 is not complete (in 

fact, not terminating; confluence of R0 @ Rx is ensured by the theorem in Toyama [8]). This 

counterexample, however, uses non-left-linear term rewriting systems. 

The point of the present paper is that left-linearity is essential; if we restrict ourselves to 

left-linear term rewriting systems, then completeness is modular. Thus we prove: If Pro and R1 

are left-linear (meaning that the rewriting rules have no repeated variables in their left-hand- 

sides), then R0 and R1 are complete iff Ro ~ R1 is so. As left-lineaxity is a property which is 

so easily checked, and many equational algebraic specifications can be given by term rewriting 

systems which axe left-lineax, we feel that this result is worth while. 

The proof, however, is rather intricate and not easily digested. A crucial element in the 

proof, and in general in the way that the summand term rewriting systems interact, is how 

terms may collapse to a subterm. The problem is that this collapsing behavior may exhibit a 
f 

nondeterministic feature, which is caused by ambiguities among the rewriting rules. We hope 

that the present paper is of value not only because it establishes a result that in itself is simple 

enough, but also because of the analysis necessary for the proof which gives a kind of structure 

theory for disjoint combinations of term rewriting systems and which may be of relevance in 

other, similar, studies. 

Regarding the question of modular properties in the present simple set-up, we mention the 

recent results by Rusinowitch [7] and Middeldorp [5]; these papers, together, contain a complete 

analysis of the cases in which termination for R0~R1 may be concluded from termination of R0, 

R1, depending on the distribution among R0, R1 of so-called collapsing and duplicating rules. 

Another useful fact is established in Middeldorp [6], where it is proven that the unique 
normal form property is a modular property. 

2. N o t a t i o n s  and  D e f i n i t i o n s  

Assuming that the reader is familiar with the basic concepts and notations concerning term 

rewriting systems in [1,8], we briefly explain notations and definitions for the following discus- 

sions. 

Let F be a set of function symbols, and let V be a set of variable symbols. By T(F, V), we 

denote the set of terms constructed from F and V. 

A term rewriting system R is a set of rewriting rules M ~ N, where M and N are terms 
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disjoint function symbols [8]. 

In this paper, we assume that two disjoint systems Ro on T(Fo, V) and R~ on T(F~,V) 

both are left-linear and complete. Then we shall prove that the direct sum system R0 @ R1 on 

T(Fo U F1, V) is terminating. From here on the notation -~ represents the reduction relation on 

Ro ~ R1. 

L e m m a  2.1. RoOR1 is weakly normalizing, i.e., every term M has a normal form (denoted 

by M ~). 

P roo f .  Since R0 and R1 are terminating, M can be reduced into M ~ through innermost 

reduction. D 

The identity of terms of T(Fo U F1, V) (or syntactical equality) is denoted by ~. -~, is the 

transitive reflexive closure of --~, +-* is the transitive closure of --% -% is the reflexive closure of 

--% and = is the equivalence relation generated by --* (i.e., the transitive reflexive symmetric 

closure of -*). --~ denotes a reduction of m (m > 0) steps. 

Def ini t ion.  A root is a mapping from T(Fo U F1, V) to F0 U F1 U V as follows: For M E 

T( ro U F~, V), 

f if M -  f(M1,. . . ,M,) ,  root(M) [ M if M is a constant or a variable. 

Def ini t ion.  Let M =- C[B1,...,B,] 6 T(Fo U F~,V) and C ~ D. Then write M _= 

C[BI,.. . ,  B,~ if C [ , . . . ,  ] is a context on Fa and Vi, root(B,) E Fd (d 6 {0, 1} and d = 1 - d). 

Then the set S(M) of the special subterms of M is inductively defined as follows: 

S ( M ) = I  {M} i f M 6 T ( F ~ , V )  ( d = 0 o r l ) ,  

[ U, S(B,) u {M}  if M ; (n > 0). 

The set of the special subterms having the root symbol in Fa is denoted by Sd(M) = {N I N e 

S(M) and root(N) e Fd}. 

Let M =- C[B1,...,B,~] and M A N  (i.e., N results from M by contracting the redex 

occurrence A). If the redex occurrence A occurs in some Bj, then we write M ~ N; otherwise 

M o'~ N. Here, ~ and -~o are called an inner and an outer reduction, respectively. 

Def ini t ion.  For a term M 6 T(Fo U F1, V), the rank of layers of contexts on F0 and F1 in 

M is inductively defined as follows: 

S 1 i f M E T ( F d ,  Y) ( d : 0 o r l ) ,  
rank(M) 

I rnaxi{rank(B{)} + 1 if M ~ C[Bs,...,Bn] (n > 0). 
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Lemnm 2.2. If M --~ N then  rank(M) > rank(N). 

P r o o f .  I t  is easily ob ta ined  from the  definitions of the  direct  sum. O 

L e m m a  2.3. Let M - %  N and  root(M), root(N) E -fla. Then  there  exists  a reduct ion 

M - M0 --* M1 --~ M2 --* . "  --~ M ,  - N (n > 0) such tha t  root(Mi) E Fd for any i. 

P r o o f .  Let M ~ N  (k > 0). We will prove the l emma  by induct ion  on k. The  case 

k = 0 is t r ivial .  Let M --* M '  k-7~ 1 N (k > 0). If root(M') e Fd then  the l emma  holds by the 

induct ion  hypothesis .  If root(M') E F~ then there exists a context  C[ ] wi th  root  E Fd such tha t  

M - C[M'] and C[]  --* o .  Thus,  we can ob ta in  a reduct ion M - C[M'] -% C[N] ~ N in which 

M1 terms have root  symbols  in Fd. [] 

The  set of terms in the reduct ion graph of M is denoted  by G(M) = {N 1 M -% N}.  The  set of 

te rms having the root  symbol  in F~ is denoted  by Gd(M) = { g ] g  E G(M) and  root(N) E Fd}. 

D e f i n i t i o n .  A te rm M is erasable  iff M -% x for some x E V. 

F rom now on we assume tha t  every te rm M E T(FoOF1, V) has  only x as var iable  occurrences,  

unless i t  is s ta ted  otherwise.  Since Ro@R1 is left-l inear,  this  var iable  convention may  be assumed 

in the  following discussions without  loss of generality. If we need fresh var iable  symbols  not in 

terms,  we use z, zl ,  z2, " ' .  

3. E s s e n t i a l  S u b t e r m s  

In this  sect ion we in t roduce  the concept of the  essentiM subterms.  We first prove the following 

proper ty :  

VN ~ Cd(M) 3P e Sd(M), M -% P -% g .  

L e m m a  3.1.  Let M --* N and Q E Sd(N). Then,  there  exists some P E Sd(M) such tha t  

P&Q. 

P r o o f .  We will prove the  l emma by induct ion on rank(M). The  case rank(M) = 1 is 

t r ivial .  Assume the l emma for rank(M) < k (k > 1), then  we will show the  case rank(M) = k. 

Let M - C ~ M x , . . . , M n ]  ( n > 0 )  a n d M A N .  

Case 1. M - - C ~ M I , . . . , M ~ , . . . , M , ]  A N=_Mr. 
0 

Then  sd(g) C_ Sd(M). 
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Case ~. M -- C[M1,..., M~] ~ N =- C'[Mq,. . . ,  Mi,] (1 < ij < n). 

If root(M) e Fd then 

Sd(M) -~ {M} U Ui Sd(Mi), 

Sd(N) = {g} U U~ Sd(M,~)- 

Thus the lemma holds since Uj Sd(M~j) C_ Ui S~(MI), and M ~ N. 

If root(M) e Fd then Sd(N) = Uj Sd(Mi,) C UiS~(Mi) --- &(M). 

Case 3. M =- C[M1,..., Mr, . . . ,  M~] A N =. C[Mt,. . . ,  M~,...,  M,I where Mr A M'. 

If root(M) E Fd then 

Sd(M) = {M} U Sd(M,) U U~#,- S4(M,), 

Sd(N) C {N] U Sd(M~') U U,#~ Sd(Mi). 

If root(M) e Fg then 

Sd(M) = Sd(Mr) U Ui#r Sd(Mi), 

sd(g)  = &(M') u U,¢~ Sd(Md. 

By the induction hypothesis, VQ ~ Sd(M')3P E Sd(M~), P ~, Q for the both root(M) E Fd 

and root(M) E F],. Thus the lemma holds. [] 

RE consists of the single rule e(x)t>x. --~ denotes the reduction relation of Re, and --, denotes 
• ES 

the reduction relation of RE ~ (R0 ~ Rz) such that if C[e(P)] ~ N then the redex occurrence A 

does not occur in P. It is easy to show the confluence property of --*. 
et 

From here on, C[e(P1),..., e(Pp)] denotes a term such that C[P1,..., Pp] e T(Fo U F1, Y), 

i.e., C and P~ contain no e. 

L e m m a  3.2. Let C[e(P1),...,e(Pi_l),e(Pi),e(Pi+l),... ,e(Pp)] k e(pi). Then C[P1,"" 
Et 

k '  

P~-l, ~(P,), P,+l, . . . ,  Pp] 7 e(P,) (k' < k). 

Proof. It is easily obtained from the definition and the left-linearity of the reduction --*. 
e t 

Let M =-- C[P] e T(Fo O F1, V) be a term containing no function symbol e. Now, consider 

C[e(P)] by replacing the occurrence P in M with e(P). Assume C[e(P)] ~ e(P). Then, by 

tracing the reduction path, we can also obtain the reduction M =- C[P]-~P (denoted by 

M * ,  P) under R0 ~ R1. We say that the reduction M *, P pulls up the occurrence P from 
pull pull 

M. 
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E x a m p l e  3.1. Consider the two systems R0 and RV 

{ F(~) -~ a(~, ~) 
Ro a ( C ,  z)  --* = 

R~ { h(=) ---, z 

Then we have the reduction: 

F(e(h(C))) ~ C(~(~(C), e(h(C))) 7 C(h(C), ,(h(C))) ~ a(C, ¢(h(C))) 7 e(h(C)) 
Hence F ( h ( C ) ) ~ h ( C ) .  However, we cannot obtain F(z) *~ z. Thus, in general, we 

pull pull 

cannot obtain C[z] -2-* z from C[P] ", P. o 

L e m m a  3.3. Let P ~ Q and let C[Q] ~ Q. Then C[P] "~ P. 
pull 

Proof .  Let M ~ C[e(Q)] ~ e(Q). We will prove the lemma by induction on k. The 

case k = 0 is trivial. Let M = O[e(Q)] 7 C'[e(Q),... ,  e(Q) , . . . ,  e(Q)] k -1  7 e(Q). Then, from 
Lemma 3.2 we can obtain the following reduction: 

k' 
C ' [ Q , . . . ,  e(Q), . . .  Q] - - ,  e(Q) (k' < k - 1). 
By using the induction hypothesis, C'[Q,.. . ,  e (P) , . . . ,  Q] ~ ,  e(P). Therefore, we can obtain 

* I e l C[e(P)] ~ C ' [e (P) , - . . ,  e (P ) , . - . ,  e(P)] 7 C [Q,.. . , e(P),. .. , Q] - ~  e(P) 

from P - ,  Q. cl 

L e m m a  3.4. VN E ad(M) 3P E Sd(M), M --~ P 2, N. 
pull 

Proof .  If root(M) E Fd then the above property is trivial by taking M as P. Thus we 

consider only the non trivial case of root(M) E Fg. Let M ~ N. We will prove the lemma 

by induction on k. The case k = 1 is trivial since M - C[M1, . . . ,Mr , . . . ,M~]-}  N - M, 

for some r (i.e., take P = Mr). Assume the lemma for k - 1. We will prove the case k. Let 

M - ,  M' ~-=!} N. 

Case 1. root(Mr) E Fd. 

Then M - C[M1,... , Mr, . . . ,  M,~ -* M' -~ M~ for some r. Take P _= M~. 

Case 2. root(M') E Fd. 
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By using the induction hypothesis, 3P' E Sd(M'), M' * ~ P' -~ N. Here, from Lemma 3.1, 
pull 

there exists some P E Sd(M) such that P -~ P' .  We will consider the following two subcases: 

Case 2.1. P ~ P'. T h e n M  =- C[P] ~ M'  =- C[P']. Thus, by us ingLemma3.3 ,  M - -  
t * C[P]-L,  P - ,  P ~ g .  

pull 

Case 2.2. P - P'. Then, for some context C ' [ , . . . ,  ], M - C[P] ~ M'  - C'[P,. . .  ,P , . . .  ,P] 

and C'[P,...,e(P),... ,PI ~,, e(P). Therefore 

C[e(P)] .-.+ C'[e(P) , . . . ,  e(P), . .  •, e(P)] _2_. C'[P, . . . ,  e(P),- .  • P] --k+ e(P). Thus M -- C[P] 
• } es  

• ~p2+N.  [] 
pull 

Now, we introduce the concept of the essential subterms. The set Ed(M) of the essential 

subterms of the term M E T(Fo U F1, V) is defined as follows: 

E~(M) = {P I M -/-* P E S~(M) and -,3Q E Sa(M) [M --~ Q +-% P]}. 
pull pull 

The following lemmas are easily obtained from the definition of the essential subterms and 

Lemma 3.4. 

L e m m a  3.5. VN E Gd(M) 3P E Ea(M), P - ~  N. 

L e m m a  3.6. Ed(M) = ¢ iff Gd(M) = ¢. 

We say M is deterministic for d if tEd(M)I = 1; M is nondeterministic for d if IEd(M)I >_ 2. 

The following lemma plays an important role in the next section. 

L e m m a  3.7 If root(M ,[) E Fd then IEd(M)I = 1, i.e., M is deterministic for d. 

Proof .  See Appendix in [11]. O 

4. T e r m i n a t i o n  for  t h e  D i r e c t  S u m  

In this section we will show that Ro(~R1 is terminating. Roughly speaking, termination is proven 

by showing that any infinite reduction M0 ~ M1 --, M2 ~ ..- of Ro (3 R1 can be translated into 

an infinite reduction M~ --+ M~ -+ M~ --+ .-- of R~. 

We first define the term M d E T(Fe, V)  for any term M and any d. 
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Def in i t ion .  For any M and any d, M e E T(Fd, V) is defined by induction on rank(M): 

(1) M d = M  i f M E T ( F d ,  V). 

(2)  M e - x  i f E a ( M ) = ¢ .  

(3) M e - C[Md, ... , M~] if root(M) E Fd and M - VIM1,. . . ,  M,~] (rn > 0). 

(4)  M e - pe  if root(M) EFg and Ed(M) = {P}. Note that  rank(P) < rank(M). 

(5) M e - C1[C2[... Cp_~[C,[x]] ...]] if root(M) EFg, Ed(M) = {P~, . . . ,  P ,}  (p > 1), and every 

Pi d is erasable. Here Pi d -- Ci[x]-:-*x (i = 1 , - . - , p ) .  Note that ,  for any i, rank(Pi) < 
pull 

rank(M) and M d 2,  p d 

(6) M a = x if root(M) EFg, tEd(M)I _> 2, and not (5). 

Note that  M e is not unique if a subterm of M e is constructed with (5) in the above definition. 

L e m m a  4.1. root(M J,) ~ I'd iff M e $= x. 

P r o o f .  Instead of the lemma, we will prove the following claim: 

Claim. If root(M i)  ¢ Fe then M e L -  x. If roo*(M t) E Fe and M $= C [ M 1 , . . . ,  M',~] then 

M e l =  d [ x , . . . , x ] .  

Proof of the Claim. We will prove the lemma by induction on rank(M). The  case rank(M) = 

1 is trivial by the definition of M d. Assume the lemma for rank(M) < k (k > 2). Then  we will 

prove the case rank(M) -= k. 

Case 1. root(M) E Fd. 

Let M = C[M1,...,Mm]. Then M d =_ C[M~,...,M~]. We may assume that  root(M~ 

) ~ Fd (1 < i < p) and root(Mj ~) E Fd (p < j <_ m) without loss of generMity. Let 

Mj ~=-- Cj[Nj,1,...,Nj,,~] (p < j < m). Then, by using the induction hypothesis, Mid ~---= x 

(1 < i < p) and M~ 1 -  C j [x , . . - , x ]  (p < j < m). Thus M $=C[MI $,...  ,M,~ $1 $ 

-- C[M, ~,..., Mp_~ ~, CA1V~,~,..., N~M,.. •, g ~ [ ~ , , , . . . ,  lv~,~]] 

and M d ~-C[M~ ~,... ,M d j.] ~ - C[x,... ,x,¢p[x,.. .  , x ] , . . .  ,Cm[x , ' - - ,x ] ]  J.. Note that  Mi .[ 

(1 _< i < p), Np,1,...  , N  . . . .  are normal forms having root symbols not in Fd. Therefore, if 

root(M ~) ~ Fd then C[z, . - .  ,z, dp[z , . . - , z ] , . - .  ,Cm[x,-.. ,z]] 1 = z; ifroot(M ~) E Fd then we 

have a context 

6'[ , . . . ,  ] -= C[ , . . . ,  ,¢p[ , . . . ,  ] , " ' , C m [  , ' . . ,  ]] J. such that  M J. - C~N~,. . . ,N,~] where 

Ni E {M~ J. , . . . ,  Mp-1 .L, N,,1,'." ,N  . . . .  ) and M d J.= C[x,... ,x] ~ z. 
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Vase e. root(M) ¢ Fd. 

Consider three subcases: 

Case 2.1. Ed(M) = ¢. 

From Lemma 3.6, root(M ~) ~ Fd. Since M d =_- x, M ~ $=- x. 

Case 2.2. Ed(M) = {P}. 

Then M d = pd. Note that  rank(P)  < k. Since M ~_= P J. and M d $_= P~ $, the claim 

follows by using the induction hypothesis. 

Case 2.3. Ed(M) = {P~,.. .  ,Pp} (p > 1). 

Note that rank(Pi) < k for any i. From Lemma 3.7, root(M ~) ~ Fd. Since M J,-  P/~, it is 

clear that  root(Pi ~) ~ Fd for all i. Thus, we have pd j_-- x by the induction hypothesis. From 

case (5) in the definition of M d, it follows that M d ~ -  x. rq 

Note .  Let Ed(M) = { P I , . . . ,  Pp} (p > 1). Then, from Lemma 3.7 and Lemma 4.1, it follows 

that  every pd is erasable. Hence case (6) in the definition of M d can be removed. 

L e m m a  4.2. If P E Ea(M) then M d -~ pd. 

P roo f .  Obvious from the definition of M d and the above note. O 

We wish to translate directly an infinite reduction M0 -* M1 ~ M2 ~ "." into an infinite 

reduction M0 d A~ M~ -~ M d -~ . -  .. However, the following example shows that M~ -+ M~+~ cannot 
d * be translated into M~ ~ Md+I in general. 

E x a m p l e  4.1. Consider the two systems 2~0 and RI: 

F(C, z) --* x 

F(z, C) -~ 

f (x) -~g(x)  

f ( x ) - * h ( x )  
R1 

g(z)--,x 

Let M -- F ( f ( C ) , h ( C ) )  ~ N =- F(g(C),h(C)) .  Then EI(M)  = {f(C)} and El (N)  = 

{g(C), h(C)}. Thus M ~ =_ f (x ) ,  g ~ =_ g(h(x)). It is obvious that M ~ -~ N ~ does not hold. o 
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Now we will consider to translate indirectly an infinite reduction of Ro @ R1 into an infinite 

reduction of Ra. 

We write M - N when M and N have the same outermost-layer context, i.e., M - C ~ M 1 , . . .  
O 

M,,] and N =- C [ [ N 1 , . " ,  N,~] for some Mi,  Ni.  

L e m m a  4.3. Let A-% M, M-~0 N, A ~ M, and r o o t ( M ) ,  r o o t ( N )  E Fd. Then, for any A a i 
there exist B and B d such that 

M N 

A 

o 

i i 

O 
3 B  

A d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 B  d 

Proof .  Let A - C [ [ A 1 , . . . , A , , ~ ,  M - C ~ M I , . . . , M , ~ ,  N =- C ' ~ M i l , ' " , M i . ]  ( i j  e 

{1 , . . . ,m}) .  Take B = C ' [ A h , . . . , A I . ] .  Then, we can obtain A - - * B  and B - L N .  From 
o i 

A a - C[Adl, . . .  , A d] and B d - C ' [ A ~ , . . . ,  A~.], it follows that  A d --, B a, 1:3 

L e m m a  4.4. Let M - ! ,  N ,  r o o t ( N )  E Fd. Then, for any M d there exist A (A ~ N) and A d 

such that  
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M 

. i 

N 

3A 
(A~N) 

M d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3A d 

P roof .  We will prove the lemma by induction on rank(M) .  The case r a n k ( M )  = 1 is 

trivial by taking A - N.  Assume the lemma for r a n k ( M )  < k. Then we will prove the case 

r a n k ( M )  = k. We start from the following claim. 

Claim. The lemma holds if M 2, N. 
i 

Proof of the Claim. Let M - C [ M i , .  .. , M,~] -% N - C[Nx,' . ' ,  Nm] where Mi -% Ni for every 
i 

i. We may assume that N1 =- x , . . .  ,Np-1 - x, root(Ni)  e Fd (p <_ i < q - 1), and root(Ni)  E 

Fg (q < j < m) without loss of generality. Thus N - C [ x , . . . , z ,  Np , . . . ,Nq_~ ,  Nq , . . . ,N ,~] .  

Then, by using the induction hypothesis, every Mi (p <_ i <_ q - 1) has Ai (Ai ~ Ni) and A d 

such that 

%% 

3Ai 
(A, ? N~) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3A,  
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Now, take A =- C [ x , . . . , x ,  A p , . . . , A q _ l , M q , . . . , M m ] .  It is obvious that M-% A. From 

Lemma 2.3, we can have the reductions Mj 2+ Nj (q _ j <_ m) in which every term has a 

root symbol in Fd. Thus it follows that A 2 * N  and A = - N .  From Lemma 4.1 and Mi ,[--- x 
i o 

(1 _< i < p), M~ ~--- x. Therefore, since 

Md=- C [ M ( , . . . , M ~ _ I , M ~ , . . . , M a q _ D M d , . . . , M  d] 

, .. --~ A . (end of the claim) and A d .~ C [ x , . . .  x, Ad, . . .  d d ,Aq_I,M~, . , M d ] , i t  follows that M d * d 

Now we will prove the Lemma for r a n k ( M )  = k. Consider two cases. 

Case 1. root (M)  E Fd. 

From Lemma 2.3, we may assume that every term in the reduction .fV/2, N has a root symbol 

in Fd. By splitting M _5, N into M -~ --* -~ ~ . - .  ~ N and using the claim for diagram (1) and 
i o i o i 

Lemma 5.1 for diagram (2), we can draw the following diagram: 

M • , * N 

" i %, 0 '" ' 2' " 0 '~ ' i 

(1) ' ' 

i i b 
• • 

, ,  • (2) • (1) • i (2) • : i  (1) 
i i m 

" ' ,  iI iI iI 

J i 
• * i ',,. , , : , 

3A 

(A ~ N) 

M d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3A d 

Note that  if M '  2, M" --~ M "  then M'  -~ M " ;  thus, the claim can be applied to diagram (1) in 
i i i 

the above diagram. 

Case ~. root(M) ~ F~. 

Then we have some essential subterm Q E Ed(M)  such that M _5, Q .5, N. From Lemma 4.2, 

it follows that  M ~ -~ Qd. It is obvious that rank(Q)  < k. Hence, we have the following diagram, 

where diagram (1) is obtained by the induction hypothesis: 
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M 
Q ~, 

m 

"",,,, (1) 
N m a 

i 
i 
i 

i 
i • 

o 
o 
a 
J 
t 

?A 
( A = N )  

o 

d , Qd , 
M . . . . . . . . . . . . . . . . . . . . . . . . . . .  SAd 

Now we can prove the following theorem: 

T h e o r e m  4.1. No term M has an infinite reduction. 

Proof .  We will prove the theorem by induction on rank(M). The case rank(M) = 1 is 

trivial. Assume the theorem for rank(M) < k. Then, we will show the case rank(M) = k. 

Suppose M has an infinite reduction M ---+-+-* .- -. From the induction hypothesis, we can have 

no infinite inner reduction -~ -* -~ . . .  in this reduction. Thus, -+o must infinitely appear in the 

infinite reduction. From the induction hypothesis, all of the terms appearing in this reduction 

have the same rank; hence, their root symbols are in Fz if root(M) E Fd. Hence, by a similar 

construction of diagrams as for Case 1 in the proof of Lemma 4.4, it follows that M e has an 

infinite reduction. This contradicts that Rd is terminating. El 

Coro l l a ry  4.1. Two term rewriting systems R0 and R1 are left-linear and complete iff the 

direct sum R0 (~ R1 is so. 

P roof .  4= is trivial. =~ follows from Theorem 4.1 and the theorem in Toyama [8] stating 

that two term rewriting systems R0 and R1 are confluent iff the direct sum R0 @ R1 is so. [] 

R e f e r e n c e s  

[1] G. Huet and D. C. Oppen, Equations and rewrite rules: a survey, in: R. Book, ed., Formal 



491 

languages: perspectives and open problems (Academic Press, 1980) 349-393. 

[2] N. Dershowitz. Termination of linear rewriting systems: Preliminary version, Lecture Note8 

in Comput. Sei. 115 (Springer-Verlag, 1981) 448-458. 

[3] H. Ganzinger and R. Giegerich, A note on termination in combinations of heterogeneous 

term rewriting systems, EATCS Bulletin 31 (1987) 22-28. 

[4] J. W. Klop and H. P. Bavendregt, Private communication (January 19, 1986). 

[5] A. Middeldorp, A sufficient condition for the termination of the direct sum of term rewriting 

systems, Preliminary Draft, Report IR-150, Free University, Amsterdam (1988). 

[6] A. Middeldorp, Modular aspects of properties of term rewriting systems related to normal 

forms~ Preliminary Draft, Free University~ Amsterdam (September 1988). 

[7] M. Rusinowitch, On termination of the direct sum of term rewriting systems~ Inform. Pro- 

cess. Left. ~6 (1987) 65-70. 

[8] Y. Toyama, On the Church-Rosser property for the direct sum of term rewriting systems, 

J. ACM 34 (1987) 128-143. 

[9] Y. Toyama, Counterexamples to termination for the direct sum of term rewriting systems, 

Inform. Process. I, ett. 25 (1987) 141-143. 

[10] Y. Toyama, Commutativity of term rewriting systems, in: K. Fuchi and L. Kott, eds., 

Programming of Future Generation Computer II (Norht Holland 1988) 393-407. 

[11] Y. Toyama, J.W. Klop, H.P. Baxendregt, Termination for the direct sum of left-linear term 

rewriting systems: Preliminary draft~ IEICE technical report COM88-30 (July 1988) 47-55. 


