Commutativity of Term Rewriting Systems*

Yoshihito TOYAMA
NTT Basic Research Laboratories
3-9-11 Midori-cho, Musashino-shi, Tokyo 180, Japan

Abstract

Commutativity is very useful in showing the Church-Rosser property for the union of term rewriting systems. This paper studies the critical pair technique for proving commutativity of term rewriting systems. Extending the concept of critical pairs between two term rewriting systems, a sufficient condition for commutativity is proposed. Using this condition, a new sufficient condition is offered for the Church-Rosser property of left-linear term rewriting systems.

1 Introduction

We consider the commutative property of two term rewriting systems R_{1} and R_{2} [12]. Hindley [3] and Rosen [12] first studied commutative reduction systems by considering how to infer the Church-Rosser property for a complex system from various properties of its parts. They showed that if R_{1} and R_{2} commute and have the Church-Rosser property, then the union $R_{1} \cup R_{2}$ also has the Church-Rosser property.

Simple sufficient conditions for commutativity or quasi-commutativity of linear term rewriting systems R_{1} and R_{2} have been proposed [2, 6, 7, 11, 13]: For example, if two left-linear term rewriting systems R_{1} and R_{2} do not overlap, then they commute [11, 13]. However, these works were done on the following restrictions: R_{1} and R_{2} are nonoverlapping with each other $[2,11,13]$, or R_{1} is ($E-$) terminating $[6,7]$. Hence new conditions are needed to prove commutativity if the systems do not satisfy these restrictions.

This paper studies commutativity of left-linear term rewriting systems R_{1} and R_{2} without the above restrictions. That is, two systems may overlap and be nonterminating. To treat the overlapping and terminating case, the critical pair concept used to infer the Church-Rosser property $[4,5,9,12]$ is extended. This extension is done by introducing the critical pairs between R_{1} and R_{2} and classifying them into

[^0]two kinds of pairs; outside pairs and inside pairs. These extended critical pairs are used to propose a sufficient condition for commutativity of term rewriting systems. The proposed result can also be applied to inferring the Church-Rosser property. A new sufficient condition is offered for the Church-Rosser property of left-linear term rewriting systems with overlapping rules.

In Section 2, we present preliminary concepts for term rewriting systems and extend the critical pair concept. Section 3 gives the sufficient conditions for commutativity and for the Church-Rosser property of left-linear term rewriting systems.

2 Term Rewriting Systems

We explain notions of reduction systems and term rewriting systems, and give definitions used in subsequent sections.

2.1 Reduction Systems

A reduction system is a structure $R=\langle A, \rightarrow\rangle$ consisting of some object set A and some binary relation \rightarrow on A (i.e. $\rightarrow \subseteq A \times A$), called a reduction relation. A reduction (starting with x_{0}) in R is a finite or infinite sequence $x_{0} \rightarrow x_{1} \rightarrow x_{2} \rightarrow \cdots$. \equiv denotes the identity of elements of A (or syntactical equality). $\xrightarrow{*}$ is the transitive reflexive closure of \rightarrow, $\xlongequal{\equiv}$ is the reflexive closure of \rightarrow, and $=$ is the equivalence relation generated by \rightarrow (i.e. the transitive reflexive symmetric closure of \rightarrow). If $x \in A$ is minimal with respect to \rightarrow, i.e. $\neg \exists y \in A[x \rightarrow y]$, then x is called a normal form. $N F \rightarrow$ or $N F$ is the set of normal forms. If $x \xrightarrow{*} y$ and $y \in N F$ then we say x has a normal form y and y is a normal form of x.

Definition. $R=\langle A, \rightarrow\rangle$ is terminating iff every reduction in R terminates, i.e. there is no infinite sequence $x_{0} \rightarrow x_{1} \rightarrow x_{2} \rightarrow \cdots$.

Definition. $R=\langle A, \rightarrow\rangle$ has the Church-Rosser property (denoted by $C R(R)$) iff $\forall x, y, z \in A[x \xrightarrow{*} y \wedge x \xrightarrow{*} z \Rightarrow \exists w \in A, y \xrightarrow{*} w \wedge z \xrightarrow{*} w]$.

We express this property with the diagram in Figure 1. In this sort of diagram, dashed arrows denote (existential) reductions depending on the (universal) reductions shown by full arrows.

Figure 1

The following properties are well known $[1,8,4]$.

Properties. Let R have the Church-Rosser property. Then
(1) the normal form of any element, if it exists, is unique;
(2) $\forall x, y \in A[x=y \Rightarrow \exists w \in A, x \xrightarrow{*} w \wedge y \xrightarrow{*} w]$.

Let $R_{1}=\langle A, \overrightarrow{1}\rangle$ and $R_{2}=\langle A, \overrightarrow{2}\rangle$ be two abstract reduction systems having the same object set A.

Definition. $R_{1}=\langle A, \overrightarrow{1}\rangle$ commutes with $R_{2}=\langle A, \underset{2}{\rightarrow}\rangle\left(\right.$ denoted by $\left.\operatorname{COM}\left(R_{1}, R_{2}\right)\right)$ iff R_{1} and R_{2} satisfy the diagram in Figure 2.

Figure 2

Note that R has the Church-Rosser property iff R is self-commuting, i.e. R commutes with itself. Hindley [3] and Rosen [12] discovered the following useful theorem.

Commutative Union Theorem. Let $R_{i}=\langle A, \vec{i}\rangle \quad(i \in I)$ be reduction systems. Let R_{i} commute with R_{j} for all $i, j \in I$. Then $\underset{i \in I}{\cup} R_{i}$ has the ChurchRosser property, where $\cup_{i \in I} R_{i}=\langle A, \underset{i \in I}{ } \rightarrow\rangle$.

Hindley [3] and Rosen [12] also proposed the following sufficient condition for commutativity which enhances the usefulness of the above theorem.

Commutative Lemma. Let R_{1} and R_{2} satisfy the diagram in Figure 3. Then R_{1} commutes with R_{2}.

Figure 3

2.2 Term Rewriting Systems

The following explains term rewriting systems that are reduction systems having a term set as an object set A.

Let F be an enumerable set of function symbols denoted by f, g, h, \cdots. Let V be an enumerable set of variable symbols denoted by x, y, z, \cdots where $F \cap V=\phi$. $T(F, V)$ denotes the set of terms constructed from F and V. An arity function ρ is a mapping from F to natural numbers \mathbf{N}. If $\rho(f)=n$ then f is called an n-ary function symbol. In particular, a 0 -ary function symbol is called a constant.

The set $T(F, V)$ of terms on a function symbol set F is inductively defined as follows:
(1) $x \in T(F, V)$ if $x \in V$,
(2) $f \in T(F, V)$ if $f \in F$ and $\rho(f)=0$,
(3) $f\left(M_{1}, \ldots, M_{n}\right) \in T(F, V)$ if $f \in F, \rho(f)=n>0$, and $M_{1}, \ldots, M_{n} \in T(F, V)$.

We use T for $T(F, V)$ when F is clear and does not require identification.
A substitution θ is a mapping from a term set T to T such that;
(1) $\theta(f)=f$ if $f \in F$ and $\theta(f)=0$,
(2) $\theta\left(f\left(M_{1}, \ldots, M_{n}\right)\right) \equiv f\left(\theta\left(M_{1}\right), \ldots, \theta\left(M_{n}\right)\right)$ if $f\left(M_{1}, \ldots, M_{n}\right) \in T$.

Thus for term $M, \theta(M)$ is determined by its values on the variable symbols occurring in M. Following common usage, we write this as $M \theta$ rather than $\theta(M)$.

Consider an extra constant \square called a hole and the set $T(F \cup\{\square\}, V)$. Then $C \in T(F \cup\{\square\}, V)$ is called a context on F. We use the notation $C[, \ldots$,$] for the$
context containing n holes $(n \geq 0)$. If $N_{1}, \ldots, N_{n} \in T(F, V)$, then $C\left[N_{1}, \ldots, N_{n}\right]$ denotes the result of placing N_{1}, \ldots, N_{n} in the holes of $C[, \ldots$,$] from left to right.$ In particular, $C[]$ denotes a context containing precisely one hole.
N is called a subterm of $M \equiv C[N]$. If N be a subterm occurrence of M, then we write $N \subseteq M$. If $N \not \equiv M$, then we write $N \subset M$. If N_{1} and N_{2} are subterm occurrences of M having no common symbol occurrences, i.e. $M \equiv C\left[N_{1}, N_{2}\right]$, then N_{1}, N_{2} are called disjoint, denoted by $N_{1} \perp N_{2}$.

A rewriting rule on T is a pair $\left\langle M_{l}, M_{r}\right\rangle$ of terms in T such that $M_{l} \notin V$ and any variable in M_{r} also occurs in M_{l}. \triangleright denotes a set of rewriting rules on T, and we write $M_{l} \triangleright M_{r}$ for $\left\langle M_{l}, M_{r}\right\rangle \in \triangleright$. A \rightarrow redex, or redex, is a term $M_{1} \theta$, where $M_{l} \triangleright M_{r}$. In this case $M_{r} \theta$ is called a \rightarrow contractum, of $M_{l} \theta$. The set \triangleright of rewriting rules on T defines a reduction relation \rightarrow on T as follows:

$$
\begin{array}{r}
M \rightarrow N \text { iff } M \equiv C\left[M_{l} \theta\right], N \equiv C\left[M_{r} \theta\right], \text { and } M_{l} \triangleright M_{r} \\
\quad \text { for some } M_{l}, M_{r}, C[], \text { and } \theta .
\end{array}
$$

$M \xrightarrow{A} N$ is written to specify the redex occurrence $A \equiv M_{l} \theta$ of M in this reduction.

Definition. A term rewriting system R on T is a reduction system $R=\langle T, \rightarrow\rangle$ such that the reduction relation \rightarrow is defined by a set \triangleright of rewriting rules on T. If R has $M_{l} \triangleright M_{r}$, then we write $M_{l} \triangleright M_{r} \in R$.

For a term rewriting system R, the parallel reduction \longrightarrow for disjoint redex occurrences is defined as follows. Let $M \equiv C\left[A_{1}, \cdots, A_{m}\right]$ and let $A_{i} \xrightarrow{A_{i}} B_{i} \quad(i=$ $1, \cdots, m)$. Let $N \equiv C\left[B_{1}, \cdots, B_{m}\right]$. Then we write $M \oiint N$ or $M \stackrel{A_{1}, \cdots, A_{m}}{\leftrightarrows} N$.

If every variable in term M occurs only once, then M is called linear. R is called left-linear iff M_{l} is linear for any $M_{l} \triangleright M_{r} \in R$.

Let $R_{1}=\langle T, \overrightarrow{1}\rangle$ with \triangleright and $R_{2}=\langle T, \overrightarrow{2}\rangle$ with \triangleright be two term rewriting systems. Then their union can be obtained by $R_{1} \cup R_{2}=\langle T, \rightarrow\rangle$ with $\underset{1}{\triangleright} \cup \stackrel{1}{2}$.

2.3 Critical Pairs

The critical pair concept [4, 5, 12] for a term rewriting system will be extended into a concept for two systems. Let R_{1} and R_{2} be two term rewriting systems and let $P \triangleright Q \in R_{1}$ and $M \triangleright N \in R_{2}$. It may be assumed that the variables have been renamed appropriately, so that P and M share no variables. Assume $S \notin V$ is a subterm occurrence in M, i.e. $M \equiv C[S]$, such that S and P are unifiable, i.e. $S \theta \equiv P \theta$, with a minimal unifier $\theta[4,9]$. Since $M \theta \equiv C[S] \theta \equiv C \theta[P \theta]$, two reductions starting with $M \theta$, i.e. $M \theta \underset{1}{\rightarrow} C \theta[Q \theta] \equiv C[Q] \theta$ and $M \theta \underset{2}{\rightarrow} N \theta$, can be obtained using $P \triangleright Q \in R_{1}$ and $M \triangleright N \in R_{2}$ respectively. Then $P \triangleright Q$ is said to overlap $M \triangleright N$, and the pair of terms $\langle C[Q] \theta, N \theta\rangle$ is a critical pair of $P \triangleright Q$ on $M \triangleright N$. The pair is inside (resp. outside) critical if $S \subset M$ (resp. $S \equiv M$). $P \triangleright Q \in R_{1}$ and $M \triangleright N \in R_{2}$ may be chosen to be the same rule, but in this case we shall not
consider the case $S \equiv M$, which gives the trivial pair $\langle N, N\rangle$. Note that two rules play asymmetrical role in this definition.
$\operatorname{crit}\left(R_{1}, R_{2}\right)$ denotes the set of the critical pairs for all $P \triangleright Q \in R_{1}$ and $M \triangleright N \in$ R_{2} such that $P \triangleright Q$ overlaps $M \triangleright N . \operatorname{crit}_{i n}\left(R_{1}, R_{2}\right)$ and $\operatorname{crit}_{\text {out }}\left(R_{1}, R_{2}\right)$ denote the set of inside critical pairs and the set of outside critical pairs respectively. Thus $\operatorname{crit}\left(R_{1}, R_{2}\right)=\operatorname{crit}_{\text {in }}\left(R_{1}, R_{2}\right) \cup \operatorname{crit} t_{\text {out }}\left(R_{1}, R_{2}\right)$. Note that generally $\operatorname{crit}\left(R_{1}, R_{2}\right) \neq$ $\operatorname{crit}\left(R_{2}, R_{1}\right)$ since the definition of overlapping is asymmetrical.
$\operatorname{crit}(R), \operatorname{crit}_{\text {in }}(R)$ and $\operatorname{crit}_{\text {out }}(R)$ indicate $\operatorname{crit}(R, R), \operatorname{crit}_{\text {in }}(R, R)$ and $\operatorname{crit}_{\text {out }}(R, R)$ respectively. Thus $\operatorname{crit}(R)$ coincides with the set of critical pairs of R defined in $[4,5,9]$.

We say that R_{1} and R_{2} are overlapping with each other if $\operatorname{crit}\left(R_{1}, R_{2}\right) \cup \operatorname{crit}\left(R_{2}, R_{1}\right) \neq$ $\phi ; R_{1}$ and R_{2} are nonoverlapping with each other if they are not overlapping with each other. R is overlapping if $\operatorname{crit}(R) \neq \phi ; R$ is nonoverlapping if it is not overlapping. $[4,5,9]$.

Remark. Jouannaud and Kirchner [6] and Jouannaud and Munoz [7] also proposed the idea of critical pairs between two systems R_{1} and R_{2} independently of the author. However, they applied it in a different situation, to discuss the sufficient conditions for the Church-Rosser property and for the termination property of $R_{1} \cup R_{2}$ under the stronger assumptions that R_{1} is E-terminating and R_{2} is an equational system E. This paper does not assume the termination property of term rewriting systems.

The following sufficient conditions for the Church-Rosser property are well known [4, 5, 9, 12].

Proposition 2.1 (Knuth-Bendix's Condition). Let R be terminating, and let P and Q have the same normal form for any critical pair $\langle P, Q\rangle$ in R. Then R has the Church-Rosser property.

Proposition 2.2 (Rosen's Condition). Let R be left-linear and nonoverlapping. Then R has the Church-Rosser property.

Rosen's condition is a particular case of Huet's condition:

Proposition 2.3 (Huet's Condition). Let R be left-linear. If $P \leftrightarrows Q$ for every critical pair $\langle P, Q\rangle$ in R, then R has the Church-Rosser property.

For more discussion concerning the Church-Rosser property of term rewriting systems, see $[4,6,10,15]$.

3 Sufficient Condition for Commutativity

This section shows a sufficient condition for commutativity of two left-linear term rewriting systems R_{1} and R_{2} on $T(F, V)$. From here on, \vec{i} and $\underset{i}{\longrightarrow}$ denote the reduction relation and the parallel reduction relation of $R_{i}(i=1,2)$ respectively.

Lemma 3.1. If we have the diagram in Figure 4 then R_{1} commutes with R_{2}.

Figure 4

Proof. From $\xrightarrow[1]{\stackrel{*}{\longrightarrow}}=\frac{*}{1}$, we obtain

$$
\forall M, N, P[M \underset{1}{\underset{\longrightarrow}{\longrightarrow}} N \wedge M \underset{2}{\underset{\longrightarrow}{\Perp}} P \Rightarrow \exists Q, N \underset{2}{\underset{\longrightarrow}{\longrightarrow}} Q \wedge P \underset{1}{\stackrel{*}{\Perp}} Q] .
$$

By applying the Commutativity Lemma, we can prove commutativity of $\underset{1}{\stackrel{*}{\longrightarrow}}$ and $\xrightarrow[2]{\stackrel{*}{H}}$. Since $\underset{i}{\stackrel{*}{H}}=\underset{i}{*}(i=1,2)$, it follows that R_{1} commutes with R_{2}.

Let $A \equiv C\left[x_{1}, \cdots, x_{n}\right]$ where no variable occurs in C. Then we say the subterm occurrence P of $A \theta \equiv C\left[x_{1} \theta, \cdots, x_{n} \theta\right]$ occurs in the substitution θ if P occurs in some $x_{i} \theta$.

Lemma 3.2. Let $M \equiv A \theta \xrightarrow[1]{M} N \equiv B \theta, A \triangleright B \in R_{1}$, and $M \equiv A \theta \underset{2}{\stackrel{P_{1}, \cdots, P_{p}}{\longrightarrow}} P$ where $P_{i}(i=1, \cdots, p)$ occurs in θ. Then a term Q can be obtained such that $N \underset{2}{\underset{\sim}{\longrightarrow}} Q$ and $P \underset{1}{\longrightarrow} Q$ (Figure 5).

Figure 5

Proof. Since $P_{i}(i=1, \cdots, p)$ occurs in $\theta, P \equiv A \theta^{\prime}$ can be denoted for some θ^{\prime} such that $x \theta \underset{2}{\longrightarrow} x \theta^{\prime}$ for any x in A. Take $Q \equiv B \theta^{\prime}$. Then it follows that $N \equiv B \theta \underset{2}{\underset{~}{\longrightarrow}} Q \equiv B \theta^{\prime}$ and $P \equiv A \theta^{\prime} \underset{1}{\longrightarrow} Q \equiv B \theta^{\prime}$.

Theorem 3.1. Let R_{1} and R_{2} be left-linear term rewriting systems. Then R_{1} commutes with R_{2} if R_{1} and R_{2} satisfy the following conditions:
(1) $\forall\langle P, Q\rangle \in \operatorname{crit}\left(R_{1}, R_{2}\right) \exists S[P \underset{2}{\longrightarrow} S \wedge Q \underset{1}{\stackrel{*}{\longrightarrow}} S]$,
(2) $\forall\langle Q, P\rangle \in \operatorname{crit}_{i n}\left(R_{2}, R_{1}\right) \quad[Q \underset{1}{\longrightarrow} P]$.

Proof. Let $M \underset{1}{\stackrel{A_{1}, \cdots, A_{m}}{\longrightarrow}} N$ and $M \underset{2}{\stackrel{B_{1}, \cdots, B_{n}}{\longrightarrow}} P$. If we have the diagram in Figure 6, then the theorem follows from Lemma 3.1. Hence we will show the existence of the term Q in Figure 6 under the above conditions.

Figure 6

Let $\Gamma=\left\{A_{i} \mid \exists B_{j}, A_{i} \subseteq B_{j}\right\} \cup\left\{B_{i} \mid \exists A_{j}, B_{i} \subseteq A_{j}\right\}$ and $\Delta=\left\{A_{i} \mid \forall B_{j}, A_{i} \nsubseteq B_{j}\right\} \cup$ $\left\{B_{i} \mid \forall A_{j}, B_{i} \nsubseteq A_{j}\right\}$. Then the redex occurrences A_{1}, \cdots, A_{m} and B_{1}, \cdots, B_{n} of M are classified into two sets Γ and Δ. The length $|M|$ of a term M is defined by the number of symbols in $M .|\Gamma|$ denotes $\sum_{M \in \Gamma}|M|$. By using induction on $|\Gamma|$, we will prove the existence of Q in Figure 6.

The case $|\Gamma|=0$ is trivial since A_{1}, \cdots, A_{m} and B_{1}, \cdots, B_{n} are disjoint. Assume the theorem for $|\Gamma|<k(k>0)$. We consider the case $|\Gamma|=k$. Let $\Delta=\left\{M_{1}, \cdots, M_{p}\right\}$. Then we can write $M \equiv C\left[M_{1}, \cdots, M_{p}\right], N \equiv C\left[N_{1}, \cdots, N_{p}\right]$, $P \equiv C\left[P_{1}, \cdots, P_{p}\right]$ where $M_{i} \underset{1}{\longrightarrow} N_{i}$ and $M_{i} \underset{2}{\longrightarrow} P_{i}(i=1, \cdots, p)$. We will now show that for every M_{i}, we can obtain Q_{i} satisfying the diagram in Figure 7.

Figure 7

There are two cases.
Case 1. $M_{i} \notin\left\{B_{1}, \cdots, B_{n}\right\}$.
Then $M_{i} \xrightarrow[1]{M_{i}} N_{i}$ and $M_{i} \xrightarrow[2]{\stackrel{B_{1}^{\prime}, \cdots, B_{q}^{\prime}}{H}} P_{i}$, where $B_{j}^{\prime} \in\left\{B_{1}, \cdots, B_{n}\right\}$ and $B_{j}^{\prime} \subset M_{i}$ for all B_{j}^{\prime}. Let $A \triangleright B \in R_{1}, M_{i} \equiv A \theta$, and $N_{i} \equiv B \theta$. If every redex occurrence B_{j}^{\prime} of M_{i} occurs in θ then we can obtain Q_{i} by Lemma 3.2.

Now assume that some B_{j}^{\prime} exists which does not occur in θ. Without loss of generality, it may be assumed that B_{1}^{\prime} does not occur in θ. Then there exists $A^{\prime} \triangleright B^{\prime} \in R_{2}$ such that $B_{1}^{\prime} \equiv A^{\prime} \theta^{\prime}$. Since $A^{\prime} \triangleright B^{\prime}$ overlaps $A \triangleright B$ and $B_{1}^{\prime} \subset M_{i}$, there is an inside critical pair, say $\langle D, E\rangle$, in $\operatorname{crit}_{i n}\left(R_{2}, R_{1}\right)$. Let $M_{i} \underset{2}{\frac{B_{1}^{\prime}}{3}} \tilde{M}_{i}$. Then $\tilde{M}_{i} \equiv D \theta^{\prime \prime}$ and $N_{i} \equiv E \theta^{\prime \prime}$ for some $\theta^{\prime \prime}$. From condition (2) of the theorem, $D \underset{1}{\Perp} E$. Hence we have $\tilde{M}_{i} \xrightarrow[1]{C_{1}, \cdots, C_{r}}{ }_{1}^{\longrightarrow}$. Also, $\tilde{M}_{i} \xrightarrow[1]{\stackrel{B_{2}^{\prime}, \cdots, B_{q}^{\prime}}{\longrightarrow}} P_{i}$. For the redex occurrences C_{1}, \cdots, C_{r} and $B_{2}^{\prime}, \cdots, B_{q}^{\prime}$ of \tilde{M}_{i}, we take $\Gamma^{\prime}=\left\{C_{i} \mid \exists B_{j}^{\prime}, C_{i} \subseteq B_{j}^{\prime}\right\} \cup\left\{B_{i}^{\prime} \mid \exists C_{j}, B_{i}^{\prime} \subseteq C_{j}\right\}$. Since $\forall \tilde{B} \in \Gamma^{\prime} \exists B_{j}^{\prime}(2 \leq j \leq q), \tilde{B} \subseteq B_{j}^{\prime}$, we can easily show that $\left|\Gamma^{\prime}\right| \leq \sum_{j=2}^{q}\left|B_{j}^{\prime}\right|$. Thus $\left|\Gamma^{\prime}\right| \leq \sum_{j=2}^{q}\left|B_{j}^{\prime}\right|<\sum_{j=1}^{q}\left|B_{j}^{\prime}\right| \leq|\Gamma|$. Using the induction hypothesis, we obtain the diagram in Figure 8.

Figure 8

Case 2. $M_{i} \in\left\{B_{1}, \cdots, B_{n}\right\}$.
Then $M_{i} \xrightarrow[1]{\stackrel{A_{1}^{\prime}}{\prime}, \cdots, A_{q}^{\prime}} N_{i}$ and $M_{i} \stackrel{M_{i}}{\underset{2}{2}} P_{i}$, where $A_{j}^{\prime} \in\left\{A_{1}, \cdots, A_{m}\right\}$ and $A_{j}^{\prime} \subseteq M_{i}$ for all A_{j}^{\prime}. Let $A \triangleright B \in R_{2}, M_{i} \equiv A \theta$, and $P_{i} \equiv B \theta$. If every redex occurrence A_{j}^{\prime} of M_{i} occurs in θ then we can obtain Q_{i} by Lemma 3.2.

It may be assumed that A_{1}^{\prime} does not occur in θ for the same reason as in case (1). Then there exists $A^{\prime} \triangleright B^{\prime} \in R_{1}$ such that $A_{1}^{\prime} \equiv A^{\prime} \theta^{\prime}$. Since $A^{\prime} \triangleright B^{\prime}$ overlaps $A \triangleright B$ and $A_{1}^{\prime} \subseteq M_{i}$, we can obtain a critical pair, say $\langle D, E\rangle$, in $\operatorname{crit}\left(R_{1}, R_{2}\right)$ from this overlapping. Let $M_{i} \xrightarrow[1]{A_{1}^{\prime}} \tilde{M}_{i}$. Then $P_{i} \equiv E \theta^{\prime \prime}$ and $\tilde{M}_{i} \equiv D \theta^{\prime \prime}$ for some $\theta^{\prime \prime}$. From
condition (1) of the theorem, there is some S such that $D \underset{2}{\longrightarrow} S$ and $D \xrightarrow[1]{*} S$. Take $\tilde{P}_{i} \equiv S \theta^{\prime \prime}$. Then we have $\tilde{M}_{i} \xrightarrow[2]{C_{1}, \cdots, C_{r}} \tilde{P}_{i}$ and $P_{i} \xrightarrow[1]{*} \tilde{P}_{i}$. Also, $\tilde{M}_{i} \xrightarrow[1]{\stackrel{A_{2}^{\prime}, \cdots, A_{q}^{\prime}}{\rightarrow}} N_{i}$. For the redex occurrences $A_{2}^{\prime}, \cdots, A_{q}^{\prime}$ and C_{1}, \cdots, C_{r} of \tilde{M}_{i}, we take Γ^{\prime} in the same way as in case (1); it can be proven that $\left|\Gamma^{\prime}\right|<|\Gamma|$. Using the induction hypothesis, we obtain the diagram in Figure 9.

Figure 9

Take $Q \equiv C\left[Q_{1}, \cdots, Q_{p}\right]$. Then it follows that $N \underset{2}{\longrightarrow} Q$ and $P \xrightarrow[1]{*} Q$.

The following corollary is given in $[11,13]$.

Corollary 3.1. Let left-linear term rewriting systems R_{1} and R_{2} be nonoverlapping with each other. Then R_{1} commutes with R_{2}.

Proof. It is obvious from Theorem 3.1.

Example 3.1. Consider the left-linear term rewriting systems R_{1} and R_{2} :

$$
\begin{aligned}
& R_{1} \quad\left\{\begin{array}{l}
f(x) \triangleright h(f(x)) \\
g(x) \triangleright h(g(x))
\end{array}\right. \\
& R_{2} \quad\left\{\begin{array}{l}
f(x) \triangleright g(x) \\
h(f(x)) \triangleright h(g(x))
\end{array}\right.
\end{aligned}
$$

Then $\operatorname{crit}\left(R_{1}, R_{2}\right)=\{\langle h(f(x)), g(x)\rangle,\langle h(h(f(x))), h(g(x))\rangle\}$ and $\operatorname{crit}_{\text {in }}\left(R_{2}, R_{1}\right)=$ ϕ. It can be shown that $h(f(x)) \underset{2}{\rightarrow} h(g(x))$ and $g(x) \underset{1}{\rightarrow} h(g(x))$ for the critical pair $\langle h(f(x)), g(x)\rangle$, and that $h(h(f(x))) \underset{2}{\rightarrow} h(h(g(x)))$ and $h(g(x)) \underset{1}{\rightarrow} h(h(g(x)))$ for the critical pair $\langle h(h(f(x))), h(g(x))\rangle$. By applying Theorem 3.1, it follows that $\operatorname{COM}\left(R_{1}, R_{2}\right)$.

Let $R=R_{1} \cup R_{2}$. It can easily be shown that $C R\left(R_{1}\right)$ by Proposition 2.2 (Rosen's condition) and $C R\left(R_{2}\right)$ by Proposition 2.1 (Knuth-Bendix's condition). Thus $C R(R)$ can be obtained from the Commutative Union Theorem. Note that non of Propositions 2.1, 2.2, or 2.3 can be directly applied to R.

Example 3.2. Consider the left-linear term rewriting systems R_{1} and R_{2} :

$$
\begin{aligned}
& R_{1} \quad\left\{\begin{array}{l}
f(x) \triangleright g(f(x)) \\
h(x) \triangleright p(h(x))
\end{array}\right. \\
& R_{2} \quad\left\{\begin{array}{l}
f(x) \triangleright h(f(x)) \\
g(x) \triangleright p(p(h(x)))
\end{array}\right.
\end{aligned}
$$

Then $\operatorname{crit}\left(R_{1}, R_{2}\right)=\{\langle g(f(x)), h(f(x))\rangle\}$ and $\operatorname{crit}_{\text {in }}\left(R_{2}, R_{1}\right)=\phi$. It can be shown that $g(f(x)) \underset{2}{\rightarrow} p(p(h(f(x))))$ and $h(f(x)) \underset{1}{\rightarrow} p(h(f(x))) \underset{1}{\rightarrow} p(p(h(f(x))))$ for the critical pair $\langle g(f(x)), h(f(x))\rangle$; by applying Theorem 3.1, it follows that R_{1} commutes with R_{2}.

Let $R=R_{1} \cup R_{2}$. We can easily show $C R\left(R_{1}\right)$ and $C R\left(R_{2}\right)$ by Proposition 2.2 (Rosen's condition). Thus $C R(R)$ can be obtained from the Commutative Union Theorem. It is obvious that non of Propositions $2.1,2.2$, or 2.3 can be directly applied to R.

Since self-commuting $\operatorname{COM}(R, R)$ and the Church-Rosser property $C R(R)$ are equivalent, we can obtain the following sufficient condition for the Church-Rosser property from Theorem 3.1.

Corollary 3.2. Let R be a left-linear term rewriting system. Then R has the Church-Rosser property if:
(1) $\forall\langle P, Q\rangle \in \operatorname{crit}_{\text {out }}(R) \exists S[P \oiint S \wedge Q \xrightarrow{*} S]$,
(2) $\forall\langle Q, P\rangle \in \operatorname{crit}_{i n}(R)[Q \nVdash P]$.

Proof. Take $R=R_{1}=R_{2}$. Since $\operatorname{crit}(R)=\operatorname{crit}_{\text {out }}(R) \cup \operatorname{crit}_{\text {in }}(R)$, we can replace condition (1) of Theorem 3.1 with condition (1) of the corollary. Hence the corollary holds.

Note that Proposition 2.3 (Huet's condition) gives a particular case of Corollary 3.2.

Example 3.3. Consider the left-linear term rewriting system R :

$$
R\left\{\begin{array}{l}
p(x) \triangleright q(x) \\
p(x) \triangleright r(x) \\
q(x) \triangleright s(p(x)) \\
r(x) \triangleright s(p(x)) \\
s(x) \triangleright f(p(x))
\end{array}\right.
$$

Then $\operatorname{crit}_{\text {out }}(R)=\{\langle q(x), r(x)\rangle,\langle r(x), q(x)\rangle\}$ and $\operatorname{crit}_{\text {in }}(R)=\phi$. Since $q(x) \rightarrow s(p(x))$ and $r(x) \rightarrow s(p(x))$, we can apply Corollary 3.2. Thus it is obtained that R has the Church-Rosser property. Note that the Church-Rosser property of R cannot be proven by applying Proposition 2.1, 2.2, or 2.3.

4. Conclusion

In this paper we have proposed a new sufficent condition to prove commutativity of left-linear term rewriting systems, by extending the critical pair concept to overlapping rewriting rules. It has been shown that this condition can be applied to proving the Church-Rosser property of left-linear term rewriting systems to which the sufficient conditions proposed by Knuth and Bendix [9], Rosen [12], and Huet [4] cannot directly apply. The proposed result offers a useful means to analyze a complex term rewriting system as the union of simpler systems.

References

[1] H.P. Barendregt, The lambda calculus, its syntax and semantics, (NorthHolland, 1981).
[2] L. Bachmair and N. Dershowitz, Commutation, transformation, and termination, Lecture Notes in Comput. Sci. Vol. 230 (Springer-Verlag, 1986) 5-20.
[3] J.R. Hindley, The Church-Rosser property and a result in combinatory logic, Ph.D. Thesis, Univ. of Newcastle-upon-Tyne (1964).
[4] G. Huet, Confluent reductions: abstract properties and applications to term rewriting systems, J. ACM 27 (1980) 797-821.
[5] G. Huet and D.C. Oppen, Equations and rewrite rules: a survey, in: R.V. Book, ed., Formal languages: perspectives and open problems, (Academic Press, 1980) 349-405.
[6] J.P. Jouannaud and H. Kirchner, Completion of a set of rules modulo a set of equations, SIAM J. Comput. 15 (1986) 1155-1194.
[7] J.P. Jouannaud and M. Munoz, Termination of a set of rules modulo a set of equations, Lecture Notes in Comput. Sci. Vol. 170 (Springer-Verlag, 1984) 175-193.
[8] J.W. Klop, Combinatory reduction systems, Dissertation, Univ. of Utrecht, 1980.
[9] D.E. Knuth and P.G. Bendix, Simple word problems in universal algebras, in: J. Leech, ed., Computational problems in abstract algebra (Pergamon Press, 1970) 263-297.
[10] M. O'Donnell, Computing in systems described by equations, Lecture Notes in Comput. Sci. Vol. 58 (Springer-Verlag, 1977).
[11] J.C. Raoult and J. Vuillemin, Operational and semantic equivalence between recursive programs, J. ACM 27 (1980) 772-796.
[12] B.K. Rosen, Tree-manipulating systems and Church-Rosser theorems, J. ACM 20 (1973) 160-187.
[13] Y. Sugiyama, K. Taniguchi, and T. Kasami, A specification defined as as extension of a base algebra, Trans. IECE Japan, J64-D, 4 (1981) 324-331, in Japanese.
[14] J. Staples, Church-Rosser theorem for replacement systems, Lecture Notes in Mathematics 450 (Springer-Verlag, 1975) 291-307.
[15] Y. Toyama, On the Church-Rosser property for the direct sum of term rewriting systems, J. ACM 34 (1987) 128-143.

[^0]: *This is a revised version of the paper: Y. Toyama, On commutativity of term rewriting systems, Trans. IECE Japan, J66-D, 12 (1983) 1370-1375, in Japanese.

