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Abstract

Commutativity is very useful in showing the Church-Rosser property for
the union of term rewriting systems. This paper studies the critical pair
technique for proving commutativity of term rewriting systems. Extending
the concept of critical pairs between two term rewriting systems, a sufficient
condition for commutativity is proposed. Using this condition, a new sufficient
condition is offered for the Church-Rosser property of left-linear term rewriting
systems.

1 Introduction

We consider the commutative property of two term rewriting systems R1 and R2

[12]. Hindley [3] and Rosen [12] first studied commutative reduction systems by
considering how to infer the Church-Rosser property for a complex system from
various properties of its parts. They showed that if R1 and R2 commute and have
the Church-Rosser property, then the union R1 ∪ R2 also has the Church-Rosser
property.

Simple sufficient conditions for commutativity or quasi-commutativity of linear
term rewriting systems R1 and R2 have been proposed [2, 6, 7, 11, 13]: For exam-
ple, if two left-linear term rewriting systems R1 and R2 do not overlap, then they
commute [11, 13]. However, these works were done on the following restrictions: R1

and R2 are nonoverlapping with each other [2, 11, 13], or R1 is (E−) terminating
[6, 7]. Hence new conditions are needed to prove commutativity if the systems do
not satisfy these restrictions.

This paper studies commutativity of left-linear term rewriting systems R1 and
R2 without the above restrictions. That is, two systems may overlap and be nonter-
minating. To treat the overlapping and terminating case, the critical pair concept
used to infer the Church-Rosser property [4, 5, 9, 12] is extended. This extension is
done by introducing the critical pairs between R1 and R2 and classifying them into

∗This is a revised version of the paper: Y. Toyama, On commutativity of term rewriting systems,
Trans. IECE Japan, J66-D, 12 (1983) 1370-1375, in Japanese.
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two kinds of pairs; outside pairs and inside pairs. These extended critical pairs are
used to propose a sufficient condition for commutativity of term rewriting systems.
The proposed result can also be applied to inferring the Church-Rosser property. A
new sufficient condition is offered for the Church-Rosser property of left-linear term
rewriting systems with overlapping rules.

In Section 2, we present preliminary concepts for term rewriting systems and
extend the critical pair concept. Section 3 gives the sufficient conditions for commu-
tativity and for the Church-Rosser property of left-linear term rewriting systems.

2 Term Rewriting Systems

We explain notions of reduction systems and term rewriting systems, and give defi-
nitions used in subsequent sections.

2.1 Reduction Systems

A reduction system is a structure R = 〈A,→〉 consisting of some object set A
and some binary relation → on A (i.e. →⊆ A × A), called a reduction relation. A
reduction (starting with x0) in R is a finite or infinite sequence x0 → x1 → x2 → · · ·.
≡ denotes the identity of elements of A (or syntactical equality).

∗→ is the transitive
reflexive closure of →,

≡→ is the reflexive closure of →, and = is the equivalence
relation generated by → (i.e. the transitive reflexive symmetric closure of →). If
x ∈ A is minimal with respect to →, i.e. ¬∃y ∈ A[x → y], then x is called a normal
form. NF→ or NF is the set of normal forms. If x

∗→ y and y ∈ NF then we say x
has a normal form y and y is a normal form of x.

Definition. R = 〈A,→〉 is terminating iff every reduction in R terminates, i.e.
there is no infinite sequence x0 → x1 → x2 → · · ·.

Definition. R = 〈A,→〉 has the Church-Rosser property (denoted by CR(R))
iff ∀x, y, z ∈ A[x

∗→ y ∧ x
∗→ z ⇒ ∃w ∈ A, y

∗→w ∧ z
∗→w].

We express this property with the diagram in Figure 1. In this sort of dia-
gram, dashed arrows denote (existential) reductions depending on the (universal)
reductions shown by full arrows.
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The following properties are well known [1, 8, 4].

Properties. Let R have the Church-Rosser property. Then

(1) the normal form of any element, if it exists, is unique;

(2) ∀x, y ∈ A[x = y ⇒ ∃w ∈ A, x
∗→w ∧ y

∗→w].

Let R1 = 〈A,→
1
〉 and R2 = 〈A,→

2
〉 be two abstract reduction systems having

the same object set A.

Definition. R1 = 〈A,→
1
〉 commutes with R2 = 〈A,→

2
〉 (denoted by COM(R1, R2))

iff R1 and R2 satisfy the diagram in Figure 2.
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Note that R has the Church-Rosser property iff R is self-commuting, i.e. R
commutes with itself. Hindley [3] and Rosen [12] discovered the following useful
theorem.

Commutative Union Theorem. Let Ri = 〈A,→
i
〉 (i ∈ I) be reduction

systems. Let Ri commute with Rj for all i, j ∈ I. Then ∪
i∈I

Ri has the Church-

Rosser property, where ∪
i∈I

Ri = 〈A, ∪
i∈I
→
i
〉.

Hindley [3] and Rosen [12] also proposed the following sufficient condition for
commutativity which enhances the usefulness of the above theorem.

Commutative Lemma. Let R1 and R2 satisfy the diagram in Figure 3. Then
R1 commutes with R2.
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2.2 Term Rewriting Systems

The following explains term rewriting systems that are reduction systems having a
term set as an object set A.

Let F be an enumerable set of function symbols denoted by f, g, h, · · ·. Let V
be an enumerable set of variable symbols denoted by x, y, z, · · · where F ∩ V = φ.
T (F, V ) denotes the set of terms constructed from F and V . An arity function ρ
is a mapping from F to natural numbers N. If ρ(f) = n then f is called an n-ary
function symbol. In particular, a 0-ary function symbol is called a constant.

The set T (F, V ) of terms on a function symbol set F is inductively defined as
follows:

(1) x ∈ T (F, V ) if x ∈ V ,

(2) f ∈ T (F, V ) if f ∈ F and ρ(f) = 0,

(3) f(M1, . . . , Mn) ∈ T (F, V ) if f ∈ F, ρ(f) = n > 0, and M1, . . . , Mn ∈ T (F, V ).

We use T for T (F, V ) when F is clear and does not require identification.
A substitution θ is a mapping from a term set T to T such that;

(1) θ(f) = f if f ∈ F and θ(f) = 0,

(2) θ(f(M1, . . . , Mn)) ≡ f(θ(M1), . . . , θ(Mn)) if f(M1, . . . , Mn) ∈ T .

Thus for term M , θ(M) is determined by its values on the variable symbols
occurring in M . Following common usage, we write this as Mθ rather than θ(M).

Consider an extra constant called a hole and the set T (F ∪ { }, V ). Then
C ∈ T (F ∪ { }, V ) is called a context on F . We use the notation C[ , . . . , ] for the
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context containing n holes (n ≥ 0). If N1, . . . , Nn ∈ T (F, V ), then C[N1, . . . , Nn]
denotes the result of placing N1, . . . , Nn in the holes of C[ , . . . , ] from left to right.
In particular, C[ ] denotes a context containing precisely one hole.

N is called a subterm of M ≡ C[N ]. If N be a subterm occurrence of M , then
we write N ⊆ M . If N 6≡ M , then we write N ⊂ M . If N1 and N2 are subterm
occurrences of M having no common symbol occurrences, i.e. M ≡ C[N1, N2], then
N1, N2 are called disjoint, denoted by N1 ⊥ N2.

A rewriting rule on T is a pair 〈Ml,Mr〉 of terms in T such that Ml /∈ V and any
variable in Mr also occurs in Ml. . denotes a set of rewriting rules on T , and we
write Ml .Mr for 〈Ml,Mr〉 ∈ .. A →redex, or redex, is a term M1θ, where Ml .Mr.
In this case Mrθ is called a →contractum, of Mlθ. The set . of rewriting rules on T
defines a reduction relation → on T as follows:

M → N iff M ≡ C[Mlθ], N ≡ C[Mrθ], and Ml . Mr

for some Ml,Mr, C[ ], and θ.

M
A→N is written to specify the redex occurrence A ≡ Mlθ of M in this reduc-

tion.

Definition. A term rewriting system R on T is a reduction system R = 〈T,→〉
such that the reduction relation → is defined by a set . of rewriting rules on T . If
R has Ml . Mr, then we write Ml . Mr ∈ R.

For a term rewriting system R, the parallel reduction −→++ for disjoint redex

occurrences is defined as follows. Let M ≡ C[A1, · · · , Am] and let Ai
Ai→Bi (i =

1, · · · ,m). Let N ≡ C[B1, · · · , Bm]. Then we write M −→++ N or M
A1,···,Am−→++ N .

If every variable in term M occurs only once, then M is called linear. R is called
left-linear iff Ml is linear for any Ml . Mr ∈ R.

Let R1 = 〈T,→
1
〉 with .

1
and R2 = 〈T,→

2
〉 with .

2
be two term rewriting systems.

Then their union can be obtained by R1 ∪R2 = 〈T,→〉 with .
1
∪ .

2
.

2.3 Critical Pairs

The critical pair concept [4, 5, 12] for a term rewriting system will be extended
into a concept for two systems. Let R1 and R2 be two term rewriting systems and
let P . Q ∈ R1 and M . N ∈ R2. It may be assumed that the variables have
been renamed appropriately, so that P and M share no variables. Assume S /∈ V
is a subterm occurrence in M , i.e. M ≡ C[S], such that S and P are unifiable,
i.e. Sθ ≡ Pθ, with a minimal unifier θ [4, 9]. Since Mθ ≡ C[S]θ ≡ Cθ[Pθ], two
reductions starting with Mθ, i.e. Mθ→

1
Cθ[Qθ] ≡ C[Q]θ and Mθ→

2
Nθ, can be

obtained using P . Q ∈ R1 and M . N ∈ R2 respectively. Then P . Q is said to
overlap M .N , and the pair of terms 〈C[Q]θ, Nθ〉 is a critical pair of P .Q on M .N .
The pair is inside (resp. outside) critical if S ⊂ M (resp. S ≡ M). P . Q ∈ R1

and M . N ∈ R2 may be chosen to be the same rule, but in this case we shall not
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consider the case S ≡ M , which gives the trivial pair 〈N, N〉. Note that two rules
play asymmetrical role in this definition.

crit(R1, R2) denotes the set of the critical pairs for all P . Q ∈ R1 and M . N ∈
R2 such that P . Q overlaps M . N . critin(R1, R2) and critout(R1, R2) denote the
set of inside critical pairs and the set of outside critical pairs respectively. Thus
crit(R1, R2) = critin(R1, R2) ∪ critout(R1, R2). Note that generally crit(R1, R2) 6=
crit(R2, R1) since the definition of overlapping is asymmetrical.

crit(R), critin(R) and critout(R) indicate crit(R, R), critin(R, R) and critout(R, R)
respectively. Thus crit(R) coincides with the set of critical pairs of R defined in
[4, 5, 9].

We say that R1 and R2 are overlapping with each other if crit(R1, R2)∪crit(R2, R1) 6=
φ; R1 and R2 are nonoverlapping with each other if they are not overlapping with
each other. R is overlapping if crit(R) 6= φ; R is nonoverlapping if it is not overlap-
ping. [4, 5, 9].

Remark. Jouannaud and Kirchner [6] and Jouannaud and Munoz [7] also pro-
posed the idea of critical pairs between two systems R1 and R2 independently of
the author. However, they applied it in a different situation, to discuss the suffi-
cient conditions for the Church-Rosser property and for the termination property
of R1 ∪ R2 under the stronger assumptions that R1 is E-terminating and R2 is an
equational system E. This paper does not assume the termination property of term
rewriting systems.

The following sufficient conditions for the Church-Rosser property are well known
[4, 5, 9, 12].

Proposition 2.1 (Knuth-Bendix’s Condition). Let R be terminating, and
let P and Q have the same normal form for any critical pair 〈P, Q〉 in R. Then R
has the Church-Rosser property.

Proposition 2.2 (Rosen’s Condition). Let R be left-linear and nonoverlap-
ping. Then R has the Church-Rosser property.

Rosen’s condition is a particular case of Huet’s condition:

Proposition 2.3 (Huet’s Condition). Let R be left-linear. If P −→++ Q for
every critical pair 〈P, Q〉 in R, then R has the Church-Rosser property.

For more discussion concerning the Church-Rosser property of term rewriting
systems, see [4, 6, 10, 15].
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3 Sufficient Condition for Commutativity

This section shows a sufficient condition for commutativity of two left-linear term
rewriting systems R1 and R2 on T (F, V ). From here on, →

i
and −→++

i
denote the

reduction relation and the parallel reduction relation of Ri (i = 1, 2) respectively.

Lemma 3.1. If we have the diagram in Figure 4 then R1 commutes with R2.

?

-

-?

M P

N Q

2

‖

2

‖

1= 1 ∗

Figure 4

Proof. From
∗−→++
1

=
∗→
1

, we obtain

∀M, N, P [M −→++
1

N ∧M −→++
2

P ⇒ ∃Q,N −→++
2

Q ∧ P
∗−→++
1

Q].

By applying the Commutativity Lemma, we can prove commutativity of
∗−→++
1

and
∗−→++
2

. Since
∗−→++
i

=
∗→
i

(i = 1, 2), it follows that R1 commutes with R2.

Let A ≡ C[x1, · · · , xn] where no variable occurs in C. Then we say the subterm
occurrence P of Aθ ≡ C[x1θ, · · · , xnθ] occurs in the substitution θ if P occurs in
some xiθ.

Lemma 3.2. Let M ≡ Aθ
M−→
1

N ≡ Bθ, A . B ∈ R1, and M ≡ Aθ
P1,···,Pp−→++

2
P

where Pi (i = 1, · · · , p) occurs in θ. Then a term Q can be obtained such that
N −→++

2
Q and P −→

1
Q (Figure 5).
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Figure 5

Proof. Since Pi (i = 1, · · · , p) occurs in θ, P ≡ Aθ′ can be denoted for some
θ′ such that xθ−→++

2
xθ′ for any x in A. Take Q ≡ Bθ′. Then it follows that

N ≡ Bθ−→++
2

Q ≡ Bθ′ and P ≡ Aθ′−→
1

Q ≡ Bθ′.

Theorem 3.1. Let R1 and R2 be left-linear term rewriting systems. Then R1

commutes with R2 if R1 and R2 satisfy the following conditions:

(1) ∀〈P, Q〉 ∈ crit(R1, R2) ∃S [P −→++
2

S ∧Q
∗→
1

S],

(2) ∀〈Q,P 〉 ∈ critin(R2, R1) [Q−→++
1

P ].

Proof. Let M
A1,···,Am−→++

1
N and M

B1,···,Bn−→++
2

P . If we have the diagram in Figure 6,

then the theorem follows from Lemma 3.1. Hence we will show the existence of the
term Q in Figure 6 under the above conditions.
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2

‖

2

‖

1= 1 ∗

B1, · · · , Bn

A1, · · · , Am

Figure 6

Let Γ = {Ai|∃Bj, Ai ⊆ Bj} ∪ {Bi|∃Aj, Bi ⊆ Aj} and ∆ = {Ai|∀Bj, Ai 6⊆ Bj} ∪
{Bi|∀Aj, Bi 6⊆ Aj}. Then the redex occurrences A1, · · · , Am and B1, · · · , Bn of M
are classified into two sets Γ and ∆. The length |M | of a term M is defined by the
number of symbols in M . |Γ| denotes

∑
M∈Γ |M |. By using induction on |Γ|, we will

prove the existence of Q in Figure 6.
The case |Γ| = 0 is trivial since A1, · · · , Am and B1, · · · , Bn are disjoint. As-

sume the theorem for |Γ| < k (k > 0). We consider the case |Γ| = k. Let
∆ = {M1, · · · , Mp}. Then we can write M ≡ C[M1, · · · ,Mp], N ≡ C[N1, · · · , Np],
P ≡ C[P1, · · · , Pp] where Mi−→++

1
Ni and Mi−→++

2
Pi (i = 1, · · · , p). We will now show

that for every Mi, we can obtain Qi satisfying the diagram in Figure 7.

?

-

-?

Mi Pi

Ni Qi

2

‖

2

‖

1= 1 ∗

Figure 7
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There are two cases.

Case 1. Mi 6∈ {B1, · · · , Bn}.
Then Mi

Mi→
1

Ni and Mi

B′1,···,B′q−→++
2

Pi, where B′
j ∈ {B1, · · · , Bn} and B′

j ⊂ Mi for all

B′
j. Let A . B ∈ R1, Mi ≡ Aθ, and Ni ≡ Bθ. If every redex occurrence B′

j of Mi

occurs in θ then we can obtain Qi by Lemma 3.2.
Now assume that some B′

j exists which does not occur in θ. Without loss of
generality, it may be assumed that B′

1 does not occur in θ. Then there exists
A′ .B′ ∈ R2 such that B′

1 ≡ A′θ′. Since A′ .B′ overlaps A.B and B′
1 ⊂ Mi, there is

an inside critical pair, say 〈D, E〉, in critin(R2, R1). Let Mi
B′1→
2

M̃i. Then M̃i ≡ Dθ′′

and Ni ≡ Eθ′′ for some θ′′. From condition (2) of the theorem, D−→++
1

E. Hence

we have M̃i

C1,···,Cr−→++
1

Ni. Also, M̃i

B′2,···,B′q−→++
1

Pi. For the redex occurrences C1, · · · , Cr and

B′
2, · · · , B′

q of M̃i, we take Γ′ = {Ci|∃B′
j, Ci ⊆ B′

j} ∪ {B′
i|∃Cj, B

′
i ⊆ Cj}. Since

∀B̃ ∈ Γ′ ∃B′
j(2 ≤ j ≤ q), B̃ ⊆ B′

j, we can easily show that |Γ′| ≤ ∑q
j=2 |B′

j|. Thus
|Γ′| ≤ ∑q

j=2 |B′
j| <

∑q
j=1 |B′

j| ≤ |Γ|. Using the induction hypothesis, we obtain the
diagram in Figure 8.

?

- -

-?

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Mi Pi

Ni Qi

M̃i
B′

1

2

B′
2, · · · , B′

q

2

‖

2

‖

Mi 1 = 1
C1, · · · , Cr

1 ∗

Figure 8

Case 2. Mi ∈ {B1, · · · , Bn}.
Then Mi

A′1,···,A′q−→++
1

Ni and Mi
Mi→
2

Pi, where A′
j ∈ {A1, · · · , Am} and A′

j ⊆ Mi for all

A′
j. Let A . B ∈ R2, Mi ≡ Aθ, and Pi ≡ Bθ. If every redex occurrence A′

j of Mi

occurs in θ then we can obtain Qi by Lemma 3.2.
It may be assumed that A′

1 does not occur in θ for the same reason as in case (1).
Then there exists A′ . B′ ∈ R1 such that A′

1 ≡ A′θ′. Since A′ . B′ overlaps A . B
and A′

1 ⊆ Mi, we can obtain a critical pair, say 〈D,E〉, in crit(R1, R2) from this

overlapping. Let Mi
A′1→
1

M̃i. Then Pi ≡ Eθ′′ and M̃i ≡ Dθ′′ for some θ′′. From
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condition (1) of the theorem, there is some S such that D−→++
2

S and D
∗→
1

S. Take

P̃i ≡ Sθ′′. Then we have M̃i

C1,···,Cr−→++
2

P̃i and Pi
∗→
1

P̃i. Also, M̃i

A′2,···,A′q−→++
1

Ni. For the

redex occurrences A′
2, · · · , A′

q and C1, · · · , Cr of M̃i, we take Γ′ in the same way as in
case (1); it can be proven that |Γ′| < |Γ|. Using the induction hypothesis, we obtain
the diagram in Figure 9.

?

?

-

-

-

?

?

Mi

M̃i

Pi

P̃i

Ni Qi

C1, · · · , Cr

2

Mi

2

‖

2

‖

1A′
1

1=

A′
2, · · · , A′

q

1 ∗

1 ∗

Figure 9

Take Q ≡ C[Q1, · · · , Qp]. Then it follows that N −→++
2

Q and P
∗→
1

Q.

The following corollary is given in [11, 13].

Corollary 3.1. Let left-linear term rewriting systems R1 and R2 be nonover-
lapping with each other. Then R1 commutes with R2.

Proof. It is obvious from Theorem 3.1.

Example 3.1. Consider the left-linear term rewriting systems R1 and R2:

R1

{
f(x) . h(f(x))
g(x) . h(g(x))

R2

{
f(x) . g(x)
h(f(x)) . h(g(x))
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Then crit(R1, R2) = {〈h(f(x)), g(x)〉, 〈h(h(f(x))), h(g(x))〉} and critin(R2, R1) =
φ. It can be shown that h(f(x))→

2
h(g(x)) and g(x)→

1
h(g(x)) for the critical

pair 〈h(f(x)), g(x)〉, and that h(h(f(x)))→
2

h(h(g(x))) and h(g(x))→
1

h(h(g(x))) for

the critical pair 〈h(h(f(x))), h(g(x))〉. By applying Theorem 3.1, it follows that
COM(R1, R2).

Let R = R1 ∪ R2. It can easily be shown that CR(R1) by Proposition 2.2
(Rosen’s condition) and CR(R2) by Proposition 2.1 (Knuth-Bendix’s condition).
Thus CR(R) can be obtained from the Commutative Union Theorem. Note that
non of Propositions 2.1, 2.2, or 2.3 can be directly applied to R.

Example 3.2. Consider the left-linear term rewriting systems R1 and R2:

R1

{
f(x) . g(f(x))
h(x) . p(h(x))

R2

{
f(x) . h(f(x))
g(x) . p(p(h(x)))

Then crit(R1, R2) = {〈g(f(x)), h(f(x))〉} and critin(R2, R1) = φ. It can be
shown that g(f(x))→

2
p(p(h(f(x)))) and h(f(x))→

1
p(h(f(x)))→

1
p(p(h(f(x)))) for

the critical pair 〈g(f(x)), h(f(x))〉; by applying Theorem 3.1, it follows that R1

commutes with R2.
Let R = R1 ∪ R2. We can easily show CR(R1) and CR(R2) by Proposition 2.2

(Rosen’s condition). Thus CR(R) can be obtained from the Commutative Union
Theorem. It is obvious that non of Propositions 2.1, 2.2, or 2.3 can be directly
applied to R.

Since self-commuting COM(R, R) and the Church-Rosser property CR(R) are
equivalent, we can obtain the following sufficient condition for the Church-Rosser
property from Theorem 3.1.

Corollary 3.2. Let R be a left-linear term rewriting system. Then R has the
Church-Rosser property if:

(1) ∀〈P, Q〉 ∈ critout(R) ∃S [P −→++ S ∧Q
∗→S],

(2) ∀〈Q,P 〉 ∈ critin(R) [Q−→++ P ].

Proof. Take R = R1 = R2. Since crit(R) = critout(R)∪critin(R), we can replace
condition (1) of Theorem 3.1 with condition (1) of the corollary. Hence the corollary
holds.
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Note that Proposition 2.3 (Huet’s condition) gives a particular case of Corol-
lary 3.2.

Example 3.3. Consider the left-linear term rewriting system R:

R





p(x) . q(x)
p(x) . r(x)
q(x) . s(p(x))
r(x) . s(p(x))
s(x) . f(p(x))

Then critout(R) = {〈q(x), r(x)〉, 〈r(x), q(x)〉} and critin(R) = φ. Since q(x)→ s(p(x))
and r(x) → s(p(x)), we can apply Corollary 3.2. Thus it is obtained that R has
the Church-Rosser property. Note that the Church-Rosser property of R cannot be
proven by applying Proposition 2.1, 2.2, or 2.3.

4. Conclusion

In this paper we have proposed a new sufficent condition to prove commutativity
of left-linear term rewriting systems, by extending the critical pair concept to over-
lapping rewriting rules. It has been shown that this condition can be applied to
proving the Church-Rosser property of left-linear term rewriting systems to which
the sufficient conditions proposed by Knuth and Bendix [9], Rosen [12], and Huet
[4] cannot directly apply. The proposed result offers a useful means to analyze a
complex term rewriting system as the union of simpler systems.
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