
The Functional Strategy and Transitive Term RewritingSystemsYoshihito Toyama1�Sjaak Smetsers2 Marko van Eekelen2 Rinus Plasmeijer21 NTT Laboratories, Inunidani, Seika-cho, Soraku-gun, Kyoto 619-02, Japan.email: toyama@ntt-20.ntt.jp2 Department of Informatics, Faculty of Mathematics and Informatics, Universityof Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands.email: marko@cs.kun.nl, rinus@cs.kun.nl, sjakie@cs.kun.nlAbstractThe functional strategy has been widely used implicitly (Haskell, Miranda, LazyML) and explicitly (Clean) as an e�cient, intuitively easy to understand reduc-tion strategy for term (or graph) rewriting systems. However, little is known ofits formal properties since the strategy deals with priority rewriting which signi�-cantly complicates the semantics. Nevertheless, this paper shows that some formalresults about the functional strategy can be produced by studying the functionalstrategy entirely within the standard framework of orthogonal term rewriting sys-tems. A concept is introduced that is one of the key aspects of the e�ciency ofthe functional strategy: transitive indexes . The corresponding class of transitiveterm rewriting systems is characterized. An e�cient normalizing strategy is givenfor these rewriting systems. It is shown that the functional strategy is normalizingfor the class of left-incompatible term rewriting systems.1. IntroductionAn interesting common aspect of the functional languages Miranda1 (Turner (1985)),Haskell (Hudak et al. (1992)), Lazy ML (Augustsson (1984)) and Clean (Brus et al.(1987),N�ocker et al. (1991)) is the similarity between their reduction strategies. Thereduction order determined by these strategies can roughly be characterized as top-to-bottom left-to-right lazy pattern matching. This reduction order, in the followingreferred to as the functional strategy, is intuitively easy to understand and can e�-ciently be implemented. It is usually considered as an aspect of the language thatis transformed during the compilation process to some standard reduction strategy(e.g. normal order reduction) in the underlying computational model (e.g. lambda-calculus). Several authors have pursued studies of this reduction order with di�erent�Partially supported by grants from NWO, the Vrije Universiteit Amsterdam and the KatholiekeUniversiteit Nijmegen1MirandaTM is a trademark of Research Software Limited1

semantic transformations (Kennaway (1990),Laville (1987),Puel and Su�arez (1990)).The language Clean is close to its underlying computational model (i.e. term graphrewriting (Barendregt et al. (1987))). Therefore, it seems natural to de�ne the func-tional strategy directly in the computational model rather than using a transformationto an equivalent system with a well-known strategy.An important e�ciency aspect of the functional strategy lies in the fact that eval-uation of an actual argument is always forced (by applying the strategy recursively tothat actual argument) when this argument is tried to match a non-variable in the cor-responding formal pattern. A possible analysis of properties of the functional strategymay be performed using some kind of priority semantics as in Baeten et al. (1987). Aproblem with these priority semantics is however the fact that important theoreticalproperties of standard term rewriting theory do not easily carry over to the priorityworld.In this paper the functional strategy is investigated within the standard frameworkof orthogonal term rewriting systems. Thus we leave the overlapping situation betweenrules that usually appears in the functional strategy out of consideration. We believethat this approach is worth-while as a �rst step since by this restriction we can relyupon the well-known concept of indexes when we try to explain why the functionalstrategy works well for a wide class of orthogonal term rewriting systems. The conceptof indexes was proposed by Huet and L�evy (1979). They introduced the subclass ofstrongly sequential orthogonal term rewriting systems for which index reduction isnormalizing. However, for reasons of e�ciency their approach is not very feasible in apractical sense. An important problem they had to cope with is the fact that indexes ingeneral lack a certain transitivity property that seems to be essential for the e�ciencyof any reduction strategy.This paper studies transitivity properties of indexes by introducing so-called tran-sitive indexes. The transitive term rewriting systems are de�ned as a subclass of thestrongly sequential term rewriting systems for which each term not in strong headnormal form has a transitive index. Furthermore, the notion transitive direction isintroduced that is used in two di�erent ways. Firstly, it is shown that with the aid ofthese transitive directions a simple test on the left-hand-sides of the rewrite rules canbe expressed that is su�cient to characterize transitive term rewriting systems. Sec-ondly, transitive directions are the basis of a new strategy: the transitive strategy. Thisstrategy is normalizing for transitive term rewriting systems. Finally it is shown, usingthe introduced concepts, that the functional strategy is normalizing for a subclass oftransitive term rewriting systems: so-called left-incompatible term rewriting systems.2. PreliminariesIn the sequel we will assume that the reader is familiar with the basic concepts concern-ing term rewriting systems as introduced by Dershowitz and Jouannaud (1990),Klop(1992) or Huet and L�evy (1979).2.1. Term Rewriting SystemsThe following de�nitions are based on de�nitions given in Klop (1992). In contrastwith Klop (1992) we use the notion `constant symbol' for a symbol that cannot be2

rewritten, instead of for a function symbol with arity 0.2.1. Definition. A Term Rewriting System (TRS) is a pair (�, R) of an alphabet orsignature � and a set of rewrite rules R.(i) The alphabet � consists of:(1) A countable in�nite set of variables x, y, z,(2) A non empty set �0 of function symbols or operator symbols f , g, . . . , eachequipped with an `arity' (a natural number), i.e. the number of `arguments' it is sup-posed to have. We have 0-ary, unary, binary, ternary etc function symbols.(ii) The set of terms (or expressions) `over' � indicated by T (�) or, if � is notrelevant by T , is de�ned inductively:(1) x, y, z, . . .2 T (�).(2) If f 2 �0 is an n-ary symbol, and t1, . . . , tn2 T (�) (n � 0), thenf(t1; : : : ; tn) 2 T (�):(iii) Terms not containing a variable are called ground terms (also: closed terms),and T 0 (�) is the set of ground terms. Terms in which no variable occurs twice ormore, are called linear.(iv) A rewrite rule 2 R is a pair (l, r) of terms 2 T (�)such that l is not a variable,and all variables in r are contained in l. It will be written as l ! r. Often a rewriterule will get a name, e.g. r, and we write r : l ! r.When the signature � is not relevant, a TRS (�, R) is indicated by the rewrite rulesR only.2.2. Definition. (i) Consider an extra 0-ary constant 2 called a hole and the setT (� [f2g). Then C 2 T (� [f2g) is called a context. We use the notation C[; : : : ;]for the context containing n holes (n � 1), and if t1, . . . , tn2 T (�), then C[t1; : : : ; tn]denotes the result of placing t1, . . . , tn in the holes of C[; : : : ;] from left to right. Inparticular, C[] denotes a context containing precisely one hole.(ii) t � s indicates the identity of two terms t and s. s is called a subterm of t ift � C[s]. We write s � t. s is a proper subterm, denoted by s � t, if s � t and t 6� s(iii) If a term t has an occurrence of some (function or variable) symbol e, we writee 2 t. The variable occurrence z in C[z] is fresh if z 62 C[].2.3. Definition. (i) A substitution � is a map from T (�) to T (�) satisfying�(f(t1; : : : ; tn)) � f(�(t1); : : : ; �(tn))for every n-ary function symbol f . We also write t� instead of �(t).(ii) The set of rewrite rules R de�nes a reduction relation ! on T as follows:t ! s i� there exists a rule r : l ! r, a context C[] and a substitution �such that t � C[l�] and s � C[r�].The term l� is called a redex, or more precisely an r-redex. t itself is a redex if t � l�.(iii) !! denotes the transitive reexive closure of ! .3

(iv) Two terms t and s 2 T are overlapping if there exist substitutions �1 and �2such that t�1 � s�2 .(v) t 2 T is a normal form (with respect to !) if there exists no s 2 T such thatt ! s. NF denotes the set of normal forms of T .(vi) A term t is in head-normal form if there exists no redex s 2 T such that t !! s.2.4. Definition. A term rewriting system R is orthogonal if:(i) For all rewrite rules r : l ! r 2 R, l is linear(ii) For any two rewrite rules r1 : l1 ! r1 and r2 : l2 ! r2 2 R:(1) If r1 and r2 are di�erent then l1 and l2 are non-overlapping.(2) For all s � l2 such that s is not a single variable, l1 and s are non-overlapping.Note. From here on we assume that every term rewriting system R is orthogonal.3. Strong SequentialityIn Huet and L�evy (1979) a class of orthogonal TRS's is de�ned wherein needed redexare identi�ed by looking at the left-hand-sides only. These so-called strongly sequentialTRS's are based on the two notions
-reduction and index of which the de�nition isgiven in this section.3.1. Definition (
-terms). (i) Consider an extra constant
. The set T (� [f
g),also denoted by T
, is called the set of
-terms. t
 indicates the
-term obtained froma term t by replacing each variable in t with
.(ii) The preordering � on T
 is de�ned as follows:(1) t �
 for all t 2 T
,(2) f(t1; : : : ; tn) � f(s1; : : : ; sn) (n � 0) if ti � si for i = 1; � � � ; n.We write t � s if t � s and t 6� s.(iii) Two
-terms t and s are compatible, denoted by t " s, if there exists some
-termr such that r � t and r � s; otherwise, t and s are incompatible, which is indicated byt # s.(iv) Let S � T
. Then t � S (resp. t " S) if there exists some s 2 S such that t � s(resp. t " s); otherwise, t 6� S (resp. t # S).3.2. Definition (
-systems). Let R be a term rewriting system.(i) The set of redex schemata of R is Red = f l
 j l ! r 2 Rg.(ii)
�reduction, denoted by !
 , is de�ned on T
 as C[s] !
 C[
] where s " Redand s 6�
.(iii) The
-system R
 (corresponding to R) is de�ned as a reduction system on T
having !
 as reduction relation.3.3. Lemma. For any R, R
 is complete (i.e. conuent and terminating)Proof. Easy. See Klop (1992). 23.4. Definition (
-normal form). (i) !(t) denotes the normal form of t with respectto !
 . Note that due to lemma 3.3 !(t) is well-de�ned. NF
 denotes the set of
-normal forms. 4

(ii) �!(f(t1; : : : ; tn)) � f(!(t1), . . . , !(tn)).The next technical lemma concerns
-reduction and the related de�nition of �!. Itwill be used in the proofs later on in this paper.3.5. Lemma. (i) If t � s then !(t) � !(s).(ii) Let C[
] 2 NF
. Then for all t 2 NF
, C[t] 2 NF
(iii) If �!(t) � C[
] and C[z] # Red then C[z] 2 NF
.Proof. (i) By induction on the size of t.(ii) Suppose C[t] 62 NF
. Then there exist a rule r 2 Red that is compatible witha subterm of C[t]. This subterm is a result of the combination of C[
] and t, i.e.C[t] � C 0[C 00[t]] such that C 00[t] is compatible with Red for some C 0 and C 00. But, thenC 00[
] is also compatible with Red which is a contradiction to C[
] 2 NF
.(iii) Obvious. 2The intuitive idea of !
 is that it `approximates' ordinary reduction by consid-ering left-hand-sides only. All right-hand-sides of rewrite rules in R
 are equal to
which represents any term. The `approximation' is expressed in the following lemma:3.6. Lemma. Let R be a TRS, and t1; t2 2 T . Thent1 !! t2) !(t1) � t2:Proof. By induction on the length of the reduction sequence from t1 to t2. 2The head-normal form property (de�nition 2.3 (vi)) is in general undecidable. Withthe aid of
-reduction we can de�ne a decidable variant of this property.3.7. Definition. A term t is in strong head-normal form if !(t) 6�
.3.8. Lemma. If t is in strong head normal form then t is in head-normal form.Proof. Let t0 � !(t). Suppose t is not in head-normal form. Then there exists a terms such that t !! s and s � Red. Due to lemma 3.6 t0 � s so t0 " Red. But also t0 6�
and therefore t0 !

 which is a contradiction to t0 2 NF
. 23.9. Definition (Index). Let C[] be a context such that z 2 !(C[z]) where z is afresh variable. Then the displayed occurence of
 in C[
] is called an index and wewrite C[
I]. Let C[
I] and � be a redex occurrence in C[�]. This redex occurrenceis also called an index and we write C[�I].3.10. Definition (Strong Sequentiality). Let R be a term rewriting system.(i) R is strongly sequential if for each term t 62 NF , t has an index (Huet and L�evy(1979),Klop (1992)).(ii) If � is an index of t then t �! s is the index reduction.3.11. Proposition. Let R be strongly sequential. Then index reduction is normaliz-ing. 5

Proof. See Huet and L�evy (1979). 23.12. Proposition. For any strongly sequential TRS one has the following.(i) C1[C2[
I]]) C1[
I] and C2[
I].(ii) The reverse implication does not hold generally.Proof. (i) See Klop (1992).(ii) See example 3.13 2In Huet and L�evy (1979) an algorithm has been given that is capable of �nding anindex in a term t in O(jtj) time. The main disadvantage of the algorithm is that afteran index has been rewritten to a term t' the whole new term t' has to be consideredagain in order to determine the next index. So, in general, the search cannot be startedlocally, i.e. at the position where the last index was found. This is in fact a consequenceof proposition 3.12 (ii). This problem is illustrated by the next example:3.13. Example. Let Red = ff(1; 1); g(f(
; 2)); hg. Consider the term g(h). Clearly,h is an index. Suppose h reduces to f(�1;�2) where both �1 and �2 are redexes.Locally (i.e. when leaving the surrounding context out of consideration), both redexesare indexes. But for the whole term g(f(�1;�2)) only �2 is an index.3.14. Lemma. (i) If C1[
I] and C1[z] � C2[z] (where z is fresh) then C2[
I].(ii) If C1[
] 2 NF
 and C2[
I] then C1[C2[
I]]Proof. (i) By lemma 3.5 (i), it follows that !(C1[z]) � !(C2[z]). Thus, we get z 2!(C2[z]) as z 2 !(C1[z])(ii) By lemma 3.5 (ii) and C1[
] 2 NF
, for any t, !(C1[t]) � C1[!(t)]. Hence, onehas !(C1[C2[z]]) � C1[!(C2[z])]. Since z 2 !(C2[z]) also z 2 C1[!(C2[z])]. 24. Transitive IndexesExample 3.13 indicates why indexes in strongly sequential system are not always tran-sitive. A certain subterm t in a context C[t] may reduce to a term t0 without rewritingall indexes in t, but, resulting in a term C[t0] that is compatible with one of the elementsof Red. In this section we formulate a restriction for TRS's that avoids this problem.As will be shown, this criterion is su�cient for the transitivity property for indexes.We �rst introduce a new concept of transitive indexes.4.1. Definition (Transitive Index). The displayed index in C1[
I] is transitive if forany
-term C2[
I], C2[C1[
I]]. We indicate the transitive index with C1[
TI]. We alsocall the redex occurrence � in C1[�] a transitive index and indicate it with C1[�TI].Note that replacing C2[C1[
I]] by C1[C2[
I]] in de�nition 4.1 would give a di�erentnotion. For example, let Red = ff(g(
))g. Then f(
TI) by de�nition 4.1 and the factthat C2[f(
I)] holds for any C2[
I]. But, if we exchange C1 and C2 in this de�nitionthe displayed
 in f(
) is not transitive anymore. Take, for example, the contextC2[
] � g(
). Clearly, C2[
I]. However, in f(g(
)),
 is not an index.Transitive indexes have the following transitivity property.6

4.2. Lemma. If C1[
TI] and C2[
TI] then C1[C2[
TI]].Proof. Let C3[
I]. From C2[
TI] it follows that C3[C2[
I]]. By the de�nition oftransitivity and C1[
TI], C3[C2[C1[
I]]]. 2As with indexes, transitivity of indexes remains valid for larger contexts.4.3. Lemma. If C1[
TI] and C1[z] � C2[z] (where z is fresh) then C2[
TI].Proof. This lemma follows immediately from the de�nition of transitive indexes andlemma 3.14 (i). 2The importance of transitivity is that it allows to search locally for indexes. Oncean index has been found and rewritten, the search for the next index may continue atthe same location where the last index has been found. As a consequence, rewriting canbe performed in an e�cient depth-�rst way. However, requiring that each term not innormal form should have a transitive index (analogous to the way strongly sequentialsystems are de�ned) appears to be too restrictive as can be seen in the next example:4.4. Example. Let R be a TRS with Red = ff(g(
))g. Consider the term g(�)where � � f(g(1)). In this term � is not a transitive index, since � is not an indexin f(g(�)).Now the question is: `How to weaken the transitivity criterion for TRS's?'. Theanswer is given in the following reasoning. Suppose we have a TRS R and a strategy,for convenience called hnf, that delivers the redexes of a term t that should be reducedin order to obtain the head-normal form of t. Then it is easy to construct a normalisingstrategy, say nf, for R.First, reduce a term t to head-normal-form using hnf and then apply nf toall the arguments of the result.The fact that the head-normal form property is undecidable makes it impossible forgeneral TRS's to give such a hnf strategy. The next de�nition of transitive TRS's isbased on the decidable strong head-normal form property.4.5. Definition (Transitive Term Rewriting Systems). Let R be a term rewriting sys-tem. R is transitive if each term t not in strong head-normal form has a transitive index.4.6. Proposition. Let R be a TRS. If R is transitive then R is strongly sequential.Proof. We have to prove that every term t not in normal form contains an index.Therefore, we distinguish the following two cases:!(t) �
: From the de�nition of transitivity of R it follows that t has a transitiveindex.!(t) 6�
: . Since t is not a normal form there exists a context C[; � � � ;] such thatt � C[t1; � � � ; tn] and !(t) � C[
; � � � ;
] with every ti �
. Form the fact thatR is transitive and !(t1) �
, t1 has an index. Applying lemma 3.14 (ii) ,C[t1;
; � � � ;
] has an index and therefore (by lemma 3.14 (i)) C[t1; � � � ; tn] hasalso an index. 2 7

The reverse of the previous proposition does not hold generally, i.e. not everystrongly sequential system is also transitive.4.7. Example. Let Red = ff(f(
; 0); 1); f(2; f(3;
))g. This TRS is strongly sequen-tial. Now consider the term f(�1;�2). Clearly, this term is not in strong head-normalform. But, �1 is not a transitive index. Take, for instance, the context f(
I ; 1). Inf(f(�1;�2); 1) �1 is not an index. For the same reason �2 is not a transitive index.The next problem is: `How can we localize transitive indexes?'. The solution isgiven with the aid of the following de�nition of transitive directions.4.8. Definition (Transitive Direction). (i) Let Q � T
. The displayed
 in C[
]is a direction for Q if C[z] # Q. We indicate a direction for Q with C[
Q].(ii) Let Red� = fp j
 � p � r for some r 2 Redg. A transitive direction is de�nedas a direction for Red�. We denote a transitive direction with C[
TD].Transitive directions can be related to transitive indexes as follows.4.9. Lemma. Let C[
TD] and C[z] 2 NF
. Then C[
TI].Proof. It is clear that C[
I]. We shall prove that the displayed index
 is transitive,i.e. C 0[C[
I]] for any
-term C 0[
I]. Let !(C 0[z]) � C 00[z]. Note that C 00[z] 2 NF
and that !(C 0[C[z]]) � !(C 00[C[z]]). Now we show that C 00[C[z]] 2 NF
. SupposeC 00[C[z]] 62 NF
. Then there exists some r 2 Red having a proper subterm r0 notbeing
 that is compatible with C[z]. However, this contradicts the assumption thatC[z] # Red�. 2The following lemma explains how to use the previous one for �nding an index.4.10. Lemma. Let C[�] 2 T . If there exists some C 0[z] � C[z] (where z is fresh)such that C 0[z] is divided into C 0[z] � C1[C2[� � �Cn[z] � � �]] (n � 1) where Ci[
TD] fori = 2 � � �n and Ci[z] 2 NF
 for i = 1 � � �n. Then C[�I].Proof. By lemma 4.9, Ci[
TI] for i = 2 � � �n. Since C1[z] 2 NF
, we have C1[
I].By de�nition 4.1 and lemma 4.2, C 0[
I]. From lemma 3.14 (i), it follows that C[
I].2 It seems that the problem of �nding transitive indexes has been postponed since weneed transitive directions to determine transitive indexes. Lemma 4.11 in combinationwith lemma 4.13 shows us where to look for transitive directions in a term that mightbe a candidate for being rewritten. Lemma 4.13 on its own, enables an e�cient testfor deciding whether or not a certain TRS is transitive.4.11. Lemma. Let Red� = fp j
 � p � r for some r 2 Redg and let any t 2 Red�have a transitive direction. Then for every s 2 T
 such that s " Red ^ s 6� Red, s hasa transitive direction.
8

Proof. Since s " Red ^ s 6� Red there exists some r 2 Red such that r " s ^ s 6� r.Without loss of generality we may state that r � C[s1; � � � ; sm;
; � � � ;
] and s �C[
; � � � ;
; sm+1; � � � , sm+n] where si �
 for i = 1 � � �m+ n;m > 0 and n � 0. SinceC[
; � � � ,
,
, � � � ,
] 2 Red�, C[
, � � � ,
,
, � � � ,
] has a transitive direction. Itis clear that this transitive direction must appear in the �rst m occurrences of
, sayC[
TD, � � � ,
,
, � � � ,
]. C[z,
, � � � ,
,
, � � � ,
] � C[z ,
, � � � ,
, sm+1, � � � ,sm+n], hence C[z ,
, � � � ,
, sm+1, � � � , sm+n] # Red�. 24.12. Lemma. . Let C[s] 2 Red, s �
. Then C[
I].Proof. From the non-overlapping property of R (de�nition 2.4) it follows that C[z] 2NF
 24.13. Lemma. A TRS R is transitive i� every t 2 Red� has a transitive direction.Proof.): Let t 2 Red�. Then !(t) �
. By assumption, t has a transitive index,say t � C[
TI]. We will prove that C[z] # Red�. Assume that C[z] " Red�.Then there exists an s 2 Red� such that C[z] " s. This means that there exists ar 2 Red such that r � C 0[s]. Now consider the term C 0[C[z]]. Since C 0[C[z]] " r,!(C 0[C[z]]) �
. From lemma 4.12 it follows that C 0[
I]. But then !(C 0[C[z]]) �
 contradicts to C[
TI]. Hence it follows that C[z] # Red�.(: By induction to the size of t we will prove that if !(t) �
 then t has a transitiveindex. The basis step is trivial. For the induction step we make a distinctionbetween two cases:t � Red: We can take t itself as the transitive index.t 6� Red: Let C[; � � � ;] be a context such that t � C[t1; � � � ; tn] with every ti �
and �!(t) � C[
; � � � ;
] in which all
 occurrences that correspond to sub-terms s �
 of t are displayed. Since C[
; � � � ;
] 6� Red and C[
; � � � ;
] "Red, by lemma 4.11, C[
; � � � ;
] has a transitive direction. Applying lemma 3.5(iii) and lemma 4.9 it follows that this transitive direction is a transitive in-dex. Again we distinguish two cases:(a) The transitive index
 is displayed in C[
; � � � ;
]. Without any lossof generality we may assume that the �rst displayed
 is the transitiveindex, i.e. C[
TI ; � � � ;
]. Since !(t1) �
 we can apply the I.H.: t1 hasa transitive index. Thus, by lemma 4.2, C[t1;
; � � � ;
] has a transitiveindex in t1 and hence, by lemma 4.3, C[t1; t2; � � � ; tn] has a transitiveindex in t1.(b) The transitive index
 is not displayed in C[
; � � � ;
]. This means thatthis transitive index corresponds to an
-occurrence in t. Now we canapply lemma 4.3 immediately so, C[t1; � � � ; tn] has a transitive index.24.14. Remark. (i) Strongly sequential orthogonal constructor systems (Huet and L�evy(1979),Klop (1992)) are clearly transitive. We will prove later on that left-normal or-thogonal systems (Huet and L�evy (1979),Klop (1992),O'Donnell (1977)) are transitivetoo. 9

(ii) Huet and L�evy (Huet and L�evy (1979)) de�ned simple systems as orthogonalterm rewriting systems satisfying 8t 2 (Red�)� : 9C[] : t � C[
TD]. Here (Red�)� =fp j
 � p � r for some r 2 Red�g. It is clear that if R is simple then it is transitive,but the reverse direction is not the case from the following example. Let R have Red =ff(g(0;
)); h(g(
; 0))g. It is clear that R is transitive. However, g(
;
) 2 (Red�)�cannot make an incompatible term to Red� by replacing an occurrence of
 with z.Thus, R is not simple.5. Transitive StrategyThis section presents a method for searching indexes of transitive systems. The keyidea of our method is a marking of occurrences of subterms which are known to be instrong head normal form. Of course, these marks are valid through reductions. Hence,we can repeatedly use the information indicated by marks for future searches of indexes.5.1. Definition. Let (�, R) be a TRS.(i) root is a function from T
 to �0 such that root (f(t1; � � � ; tn)) = f(ii) Let D = froot(l) j l ! r 2 Rg be the set of de�ned function symbols. D� =ff� j f 2 Dg is the set of marked function symbols assumed that D�\� = ; and f� hasthe arity of f . It is clear that f� 2 D� is not a de�ned function symbol. T � = T (�[D�)is the set of marked terms.(iii) Let t be a marked term. e(t) denotes the term obtained from t by erasingall marks. �(t) denotes the
-term obtained from t by replacing all the maximalsubterms having de�ned function symbols at the roots with
. ��(f(t1; : : : ; tn) �f(�(t1); � � � ; �(tn)) for f 2 � [D�.5.2. Definition. t 2 T � is well-marked if 8s � t [root(s) 2 D�) e(�(s)) 2 NF
].5.3. Lemma. If t 2 T � is well-marked then e(�(t)) 2 NF
.Proof. Trivial. 25.4. Lemma. Let 8s � t [root(s) 2 D�) e(�(s)) # Red]. Then t is well-marked.Proof. We will prove the lemma by induction on the size of t. The basic step istrivial. Induction step: Let t � h(t1; � � � ; tn). From I.H., every ti is well-marked.If h 62 D�, t is well-marked. Assume that h 2 D�, say h = f�. Then, e(�(t)) �f(e(�(t1)); � � � ; e(�(tn))) # Red. Since every e(�(ti)) 2 NF
, it follows that e(�(t)) 2NF
. 25.5. Lemma. Let t be well-marked and let e(��(t)) = C[
TD]. Then C[z] 2 NF
.Proof. It follows directly from C[z] # Red and lemma 5.3. 25.6. Definition. Let t � C[t1; � � � ; tp; � � � ; tn] 2 T � and t0 � e(C)[
, . . . ,
TD, . . . ,
]. Then we say that tp is a directed subterm of t with respect to t0.5.7. Definition (Transitive Reduction Strategy). The transitive strategy has as inputa term t 2 T . s indicates a subterm occurrence of t.10

(1) If t has no de�ned function symbol, terminate with \e(t) is a normal form".(2) Take the leftmost-outermost subterm of t having a de�ned function at the rootas s.(3) If e(��(s)) � Red, terminate with \e(s) is an index of e(t)".(4) If e(��(s)) " Red, take a directed subterm of s with respect to e(��(s)) as s and goto (3).(5) Mark the root of s and go to (1).5.8. Theorem. Let R be transitive and let t 2 T .(i) The transitive strategy applied to t terminates with either \t is a normal form"(a) or with \s is an index of t" (b).(ii) In case (a) t is a normal form. Otherwise (case (b)), s is an index of t.Proof. A sketch of our proof is as follows. The loop consisting of (3)-(4) decreases thesize of s. The loop consisting of (1)-(5) decreases the number of the de�ned functionsymbols in t. Thus, the transitive strategy eventually terminates at (1) or (3). If t isa normal form, the strategy cannot terminate at (3). Thus, it terminates at (1). Lett be not a normal form. Note that the root of a redex in t cannot be marked. Hence,the strategy eventually terminates at (3) with indicating \e(s) is an index of e(t)"where \e(t) � e(C)[e(s)I]". From lemma 5.4, t is well-marked. If at (4) e(��(s)) " Redand e(��(s)) � C 0[
TD], then, by lemma 5.5 we obtain C 0[z] 2 NF
. If at (2) thas no de�ned function symbol at the root, then e(�(t)) 2 NF
. Thus, by applyinglemma 4.10 it can be easily proven that e(s) is an index of e(t). 26. Functional StrategyThe reduction order determined by the functional strategy is obtained via top-to-bottom, left-to-right pattern matching. In this section we will identify those TRS'sfor which this way of pattern matching always delivers a transitive direction. Notethat the fact that an
-occurrence in a term t is a transitive direction according tosome rule R may not be a�ected by the rules `below' R. We will show that thisrequirement is met if each rule R0 `below' R is left-incompatible with R.6.1. Definition (Left-Incompatibility). Let s; t 2 T
. The left-incompatibility of sand t, indicated by t #< s, is de�ned as follows:(i) t 6� s, t 6�
 s 6�
, and(ii) f = g) 9i[(8j < i; tj � sj) ^ ti #< si]where t � f(t1; � � � ; tn) and s � g(s1; � � � ; sm).Here, the above i is called the left-incompatible point.6.2. Example. Let Red = ff(
; 1); f(1; 0)g. Then one has f(
; 1) #< f(1; 0), butnot f(1; 0) #< f(
; 1). Furthermore, notice that in f(�1;�2) only �2 is an index. Ifthe rule f(
; 1) is applied �rst then only �2 is indicated as an index. This is not thecase when f(1; 0) is applied �rst; then both redexes are indicated.11

6.3. Lemma. Let C[
] " p and let C[
fpg] be the leftmost direction for fpg. Let p #< q.Then C[
fqg].Proof. By induction on the size of C[]. Basic step C[] � 2 is trivial. Induction step:Let C[
] � f(t1; � � � ; td; � � � ; tn) where the indicated
 occurs in td, say td � Cd[
].Since C[
] " p, p � f(p1; � � � ; pd; � � � ; pn) and pi " ti for i = 1 � � �n. Since p #< q, wehave the left-incompatible point k for p and q.d < k: Then pd � qd. Since Cd[z] # pd, we have C[z] # qd. Hence, C[z] # q.d = k: Since Cd[
fpdg] is the leftmost direction for fpdg and pd #< qd, we can applyI.H. to them. Thus, Cd[
fqdg] is obtained. Thus, C[z] # q.d > k: Since C[
fpg] is the leftmost direction for fpg, we obtain tk � pk. Since pk #<qk, we obtain that tk # qk. Hence, C[z] # q. 26.4. Definition. An orthogonal TRS (�, R) is left-incompatible if it satis�es the fol-lowing two conditions:(i) Red can be expressed as a list [p1; � � � ; pn] with pi #< pj if i < j,(ii) 8pi 2 Red; q 2 Red+ [pi #< q], where Red+ = Red� �Red.6.5. Lemma. Let R be a left-incompatible TRS with Red = [p1; � � � ; pn]. Let C[] be acontext such that C[
] " pd, C[
] # pi (1 � i < d) and let C[
fpdg] display the leftmostdirection for fpdg. Then C[
TD].Proof. Since C[
] # pi (1 � i < d), we have C[
fpig] (1 � i < d). From the left-incompatibility, it follows that pd #< pj (d < j � n) and pd #< q for q 2 Red+. Thus,by lemma 6.3 we can show that C[
fqg] for any q 2 Red�. 26.6. Corollary. Every left-incompatible system is transitive.Proof. According to lemma 4.13 it is su�cient to prove that each t 2 Red� has atransitive direction. Let t 2 Red�. Then there exists some pd 2 Red such that t # pi(i < d) and t " pd. Since t 6� pd, t must have a direction for fpdg. By lemma 6.5, theleftmost direction of t for fpdg is a transitive direction. 26.7. Definition. Let R be a left-incompatible TRS with Red = [p1; � � � ; pn] and let t �C[t1; . . . , tk, . . . , tn] 2 T � and t0 � C[
; . . . ,
, . . . ,
]. Furthermore, let d be a numbersuch that e(C)[
; � � � ;
; � � � ;
] # pi for 1 � i < d and e(C)[
; � � � ;
; � � � ;
] " pd (whichmeans that pd is the �rst compatible pattern in the list), and let e(C)[
; � � � ;
fpdg; � � � ;
]display the leftmost direction for fpdg. Then we say that tk is the leftmost directedsubterm of t with respect to t0 and pd.6.8. Definition (Functional Reduction Strategy). The functional strategy has as in-put a term t 2 T and a TRS R which is left-incompatible with Red = [p1; � � � ; pn] . sindicates a subterm occurrence of t.(1) If t has no de�ned function symbol, terminate with \e(t) is a normal form".12

(2) Take the leftmost-outermost subterm of t having a de�ned function at the rootas s.(3) Find the �rst compatible pattern pd to e(��(s)) in the list Red if it exists; otherwise,mark the root of s and go to (1).(4) If e(��(s)) � pd, terminate with \e(s) is an index of e(t)".(5) Take as s the leftmost directed subterm of s with respect to e(��(s)) and pd, andgo to (3).6.9. Theorem. Let R be left-incompatible system and let t 2 T .(i) The functional strategy applied to t terminates with either \t is a normal form"(a) or with \s is an index of t" (b).(ii) In case (a) t is a normal form. Otherwise (case (b)), s is an index of t.Proof. Note that if R is left-incompatible, then by lemma 6.5 it is clear that thefunctional strategy is essentially same to the transitive strategy. Thus, by Theorem 5.8we can easily prove the theorem. 2O'Donnell (O'Donnell (1977)) proved that if an orthogonal term rewriting systemR is left-normal then R is strongly sequential and leftmost-outermost reduction isnormalizing. We now show that his result is a special case of the above theorem.6.10. Definition (Left-normal TRS's). (i) The set TL of the left-normal terms is in-ductively de�ned as follows:(1) x 2 TL if x is a variable,(2) f(t1; � � � ; tp�1; tp; tp+1 � � � ; tn) 2 TL (0 � p � n)if t1; � � � ; tp�1 2 T0 (i.e. t1; � � � ; tp�1 are groud terms), tp 2 TL, and tp+1; � � � ; tn arevariables.(ii) The set of the left-normal schemata is TL
 = ft
 j t 2 TLg.(iii) R is left-normal (O'Donnell (1977),Huet and L�evy (1979),Klop (1992)) i� forany rule l! r in R, l is a left-normal term, i.e. Red � TL
.6.11. Lemma. Let p; q 2 TL
 and p # q. Then p #< q.Proof. By induction on the size of q. Let p � f(p1; � � � ; pm;
; � � �
) and q � f(q1,� � �, qn,
, � � � ,
) where pi (i < m) and qj (j < n) have no
 occurrences. Since p # q,there exists some k (k � m;n) such that pi � qi (i < k) and pk # qk. Note thatpk; qk 2 TL
. Thus, from I.H., pk #< qk follows. Therefore, p #< q. 26.12. Theorem. Let R be a left-normal orthogonal term rewriting system. Then, Ris a left-imcompatible system.Proof. From Red� � TL
, the orthogonality of R, and lemma 6.11, we can easilyshow that R is left-incompatible. 26.13. Corollary. Let R be a left-normal orthogonal term rewriting system. Then thefunctional strategy applied to t 62 NF indicates the leftmost-outermost redex of t as anindex. 13

Proof. Follows directly from the de�nition of the functional strategy. 26.14. Example. The following R is left-incompatible but not left-normal. Hence, thefunctional strategy is normalizing for R. However, the leftmost-outermost reductionstrategy is not.R 8><>: f(c(x; 0); c(0; x))! 1g ! 0! ! !Now consider the term f(c(!; g); c(g; !)). It is clear that the functional strategy isnormalizing and leftmost-outermost reduction not.7. Future WorkWith respect to the functional reduction strategy there exist two major problems thathave to be solved. Firstly, since the functional strategy is initially intended as a strategyfor Priority Rewriting Systems, the adequacy of this strategy for Priority Term Rewrit-ing Systems has to be investigated. An additional problem comes from the fact thatthere exists not always a well-de�ned semantics for a Priority Term Rewriting System.Secondly, implementations of (lazy) functional languages that are using this strategyappear to be e�cient. It should be investigated whether this practical e�ciency canbe founded theoretically.ReferencesAugustsson, L. (1984). A compiler for lazy ml, Proc. of ACM Symposium on LISP andFunctional Programming , pp. 218{227.Baeten, J.C.M., J.A. Bergstra and J.W. Klop (1987). Term rewriting systems with pri-orities, Proc. of Conference on Rewriting Techniques and Applications , Bordaux,Springer Verlag, LNCS 256, pp. 83{94.Barendregt, H.P., M.C.J.D. van Eekelen, J.R.W. Glauert, J.R. Kennaway, M.J. Plas-meijer and M.R. Sleep (1987). Term graph reduction, Proc. of Parallel Archi-tectures and Languages Europe (PARLE), Eindhoven, The Netherlands, SpringerVerlag, LNCS 259 II, pp. 141{158.Brus, T., M.C.J.D. van Eekelen, M. van Leer, M.J. Plasmeijer and H.P. Barendregt(1987). Clean - a language for functional graph rewriting, Proc. of Conferenceon Functional Programming Languages and Computer Architecture (FPCA '87),Portland, Oregon, USA, Springer Verlag, LNCS 274, pp. 364{384.Dershowitz, N. and J.P. Jouannaud (1990). Rewrite systems, in: Leeuwen (ed.), FormalModels and Semantics , Elsevier, Handbook of Theoretical Computer Science B,pp. 243{320.Hudak, P., S.L. Peyton Jones, P.L. Wadler, Arvind, B Boutel, J. Fairbairn, J. Fasel,K. Guzman, K. Hammond, J. Hughes, T. Johnsson, R. Kieburtz, R.S. Nikhil,W. Partain and J. Peterson (1992). Report on the functional programming lan-guage haskell, version 1.2, Special Issue of SIGPLAN Notices .14

Huet, G. and J.J. L�evy (1979). Call by need computations in non-ambiguous linearterm rewriting systems, Technical Report 359 , INRIA.Kennaway, J.R. (1990). The speci�city rule for lazy pattern-matching in ambigu-ous term rewriting systems, Proc. of 3rd European Symposium on Programming(ESOP), Springer Verlag, 432.Klop, J.W. (1992). Term rewriting systems, in: Gabbay Abramsky and Maibaum(eds.), Handbook of Logic in Computer Science, Oxford University Press, I.Laville, A. (1987). Lazy pattern matching in the ml language, Proc. of 7th Conferenceon Software Technology and Theoretical Computer Science, Pune, India, SpringerVerlag, 287, pp. 400{419.N�ocker, E.G.J.M.H., J.E.W. Smetsers, M.C.J.D. van Eekelen and M.J. Plasmeijer(1991). Concurrent clean, Proc. of Parallel Architectures and Languages Europe(PARLE'91), Eindhoven, The Netherlands, Springer Verlag, LNCS 505, pp. 202{219.O'Donnell, M.J. (1977). Computing in Systems Described by Equations , LNCS 58,Springer Verlag.Puel, L. and A. Su�arez (1990). Compiling pattern matching by term decomposition,Proc. of ACM conference on LISP and Functional Programming , pp. 273{281.Turner, D.A. (1985). Miranda: A non-strict functional language with polymorphictypes, Proc. of Conference on Functional Programming Languages and ComputerArchitecture (FPCA '85), Nancy, France, Springer Verlag, LNCS 201, pp. 1{16.

15

