The Functional Strategy and Transitive Term Rewriting
Systems

Yoshihito Toyama!*
Sjaak Smetsers? Marko van Eekelen? Rinus Plasmeijer?

I NTT Laboratories, Inunidani, Seika-cho, Soraku-gun, Kyoto 619-02, Japan.
email: toyama@ntt-20.ntt.jp

Department of Informatics, Faculty of Mathematics and Informatics, University
of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands.
email: marko@cs.kun.nl, rinus@cs.kun.nl, sjakie@cs.kun.nl

Abstract

The functional strategy has been widely used implicitly (Haskell, Miranda, Lazy
ML) and explicitly (Clean) as an efficient, intuitively easy to understand reduc-
tion strategy for term (or graph) rewriting systems. However, little is known of
its formal properties since the strategy deals with priority rewriting which signifi-
cantly complicates the semantics. Nevertheless, this paper shows that some formal
results about the functional strategy can be produced by studying the functional
strategy entirely within the standard framework of orthogonal term rewriting sys-
tems. A concept is introduced that is one of the key aspects of the efficiency of
the functional strategy: transitive indexes. The corresponding class of transitive
term rewriting systems is characterized. An efficient normalizing strategy is given
for these rewriting systems. It is shown that the functional strategy is normalizing
for the class of left-incompatible term rewriting systems.

1. Introduction

An interesting common aspect of the functional languages Miranda' (Turner (1985)),
Haskell (Hudak et al. (1992)), Lazy ML (Augustsson (1984)) and Clean (Brus et al.
(1987),Nocker et al. (1991)) is the similarity between their reduction strategies. The
reduction order determined by these strategies can roughly be characterized as top-
to-bottom left-to-right lazy pattern matching. This reduction order, in the following
referred to as the functional strategy, is intuitively easy to understand and can effi-
ciently be implemented. It is usually considered as an aspect of the language that
is transformed during the compilation process to some standard reduction strategy
(e.g. normal order reduction) in the underlying computational model (e.g. lambda-
calculus). Several authors have pursued studies of this reduction order with different

*Partially supported by grants from NWO, the Vrije Universiteit Amsterdam and the Katholieke
Universiteit Nijmegen
"Miranda™ is a trademark of Research Software Limited

semantic transformations (Kennaway (1990),Laville (1987),Puel and Sudrez (1990)).
The language Clean is close to its underlying computational model (i.e. term graph
rewriting (Barendregt et al. (1987))). Therefore, it seems natural to define the func-
tional strategy directly in the computational model rather than using a transformation
to an equivalent system with a well-known strategy.

An important efficiency aspect of the functional strategy lies in the fact that eval-
uation of an actual argument is always forced (by applying the strategy recursively to
that actual argument) when this argument is tried to match a non-variable in the cor-
responding formal pattern. A possible analysis of properties of the functional strategy
may be performed using some kind of priority semantics as in Baeten et al. (1987). A
problem with these priority semantics is however the fact that important theoretical
properties of standard term rewriting theory do not easily carry over to the priority
world.

In this paper the functional strategy is investigated within the standard framework
of orthogonal term rewriting systems. Thus we leave the overlapping situation between
rules that usually appears in the functional strategy out of consideration. We believe
that this approach is worth-while as a first step since by this restriction we can rely
upon the well-known concept of indexes when we try to explain why the functional
strategy works well for a wide class of orthogonal term rewriting systems. The concept
of indexes was proposed by Huet and Lévy (1979). They introduced the subclass of
strongly sequential orthogonal term rewriting systems for which index reduction is
normalizing. However, for reasons of efficiency their approach is not very feasible in a
practical sense. An important problem they had to cope with is the fact that indexes in
general lack a certain transitivity property that seems to be essential for the efficiency
of any reduction strategy.

This paper studies transitivity properties of indexes by introducing so-called tran-
sitive indexes. The transitive term rewriting systems are defined as a subclass of the
strongly sequential term rewriting systems for which each term not in strong head
normal form has a transitive index. Furthermore, the notion transitive direction is
introduced that is used in two different ways. Firstly, it is shown that with the aid of
these transitive directions a simple test on the left-hand-sides of the rewrite rules can
be expressed that is sufficient to characterize transitive term rewriting systems. Sec-
ondly, transitive directions are the basis of a new strategy: the transitive strategy. This
strategy is normalizing for transitive term rewriting systems. Finally it is shown, using
the introduced concepts, that the functional strategy is normalizing for a subclass of
transitive term rewriting systems: so-called left-incompatible term rewriting systems.

2. Preliminaries

In the sequel we will assume that the reader is familiar with the basic concepts concern-
ing term rewriting systems as introduced by Dershowitz and Jouannaud (1990),Klop
(1992) or Huet and Lévy (1979).

2.1. Term Rewriting Systems

The following definitions are based on definitions given in Klop (1992). In contrast
with Klop (1992) we use the notion ‘constant symbol’ for a symbol that cannot be

rewritten, instead of for a function symbol with arity 0.

2.1. DEFINITION. A Term Rewriting System (TRS) is a pair (3, R) of an alphabet or
signature 32 and a set of rewrite rules R.

(i) The alphabet ¥ consists of:

(1) A countable infinite set of variables z, y, z,

(2) A non empty set Xy of function symbols or operator symbols f, g, ..., each
equipped with an ‘arity’ (a natural number), i.e. the number of ‘arguments’ it is sup-
posed to have. We have 0-ary, unary, binary, ternary etc function symbols.

(ii) The set of terms (or expressions) ‘over’ ¥ indicated by T(X) or, if ¥ is not
relevant by T, is defined inductively:

(1) z,y, 2z, ...€ T(X).

(2) If f € ¥y is an n-ary symbol, and ¢y, ..., t,€ T(X) (n > 0), then

flt,... tn) € T(X).

(iii) Terms not containing a variable are called ground terms (also: closed terms),
and Ty (X) is the set of ground terms. Terms in which no variable occurs twice or
more, are called linear.

(iv) A rewrite rule € R is a pair (I, r) of terms € T (X)such that [is not a variable,
and all variables in 7 are contained in /. It will be written as I — r. Often a rewrite
rule will get a name, e.g. r, and we writer : [— 7.

When the signature ¥ is not relevant, a TRS (X, R) is indicated by the rewrite rules
R only.

2.2. DEFINITION. (i) Consider an extra O-ary constant O called a hole and the set

T(XU{0O}). Then C € T(X U {O}) is called a context. We use the notation C ,...,]
for the context containing n holes (n > 1), and if ¢y, ..., t,€ T(X), then C[t1,. .., t,]
denotes the result of placing ¢, ..., ¢, in the holes of C[,...,] from left to right. In

particular, C[] denotes a context containing precisely one hole.
(ii) ¢ = s indicates the identity of two terms ¢ and s. s is called a subterm of ¢ if
t = Cls]. We write s C t. s is a proper subterm, denoted by s C ¢, if s Ctand t # s
(iii) If a term ¢ has an occurrence of some (function or variable) symbol e, we write
e € t. The variable occurrence z in C[z] is fresh if z ¢ C[|].

2.3. DEFINITION. (i) A substitution o is a map from T(X) to T (X) satisfying

o(f(trs-. s tn)) = flo(tr),...,0(tn))
for every n-ary function symbol f. We also write t7 instead of o(t).
(ii) The set of rewrite rules R defines a reduction relation — on T as follows:

t — s iff there exists a rule r : [— r, a context C| | and a substitution o
such that t = C[I°] and s = C[r?].

The term 19 is called a redex, or more precisely an r-redex. t itself is a redex if t =1°.
(iii) —» denotes the transitive reflexive closure of — .

(iv) Two terms ¢t and s € T are overlapping if there exist substitutions o1 and o9
such that t7 = s72.

(v) t € T is a normal form (with respect to —) if there exists no s € T" such that
t — s. NF denotes the set of normal forms of T'.

(vi) A term ¢ is in head-normal form if there exists no redex s € T' such that ¢ —» s.

2.4. DEFINITION. A term rewriting system R is orthogonal if:
(i) For all rewrite rulesr : I — r € R, [is linear
(ii) For any two rewrite rules ry : [y — ry and rg : ly — r9 € R:
(1) If ry and ry are different then I; and [, are non-overlapping.
(2) For all s C I5 such that s is not a single variable, [; and s are non-overlapping.

Note. From here on we assume that every term rewriting system R is orthogonal.

3. Strong Sequentiality

In Huet and Lévy (1979) a class of orthogonal TRS’s is defined wherein needed redex
are identified by looking at the left-hand-sides only. These so-called strongly sequential
TRS’s are based on the two notions Q-reduction and index of which the definition is
given in this section.

3.1. DEFINITION (§2-terms). (i) Consider an extra constant §2. The set T'(X U {Q}),
also denoted by Tq, is called the set of -terms. tq indicates the Q-term obtained from
a term ¢ by replacing each variable in ¢ with €.

(ii) The preordering > on Tq is defined as follows:

(1) t = Q for all t € Tq,
(2) f(t1,. o ytn) = f(s1,---y8) (n>0) ift;=s;fori=1,--- n.
We write ¢ > s if t = s and ¢ # s.

(iii) Two Q-terms ¢ and s are compatible, denoted by ¢ 1 s, if there exists some Q-term
r such that r > ¢ and r > s; otherwise, £ and s are incompatible, which is indicated by
t# s.

(iv) Let S C Tg. Then t > S (resp. t T .5) if there exists some s € S such that t > s
(resp. t 1 s); otherwise, t # S (resp. t # S).

3.2. DEFINITION (Q-systems). Let R be a term rewriting system.
(i) The set of redex schemata of R is Red = { lq |l — r € R}.
(ii) Q—reduction, denoted by —q , is defined on Tq as C[s] —q C[2] where s T Red
and s # (.
(iii) The Q-system Rq (corresponding to R) is defined as a reduction system on Tq
having —q as reduction relation.

3.3. LEMMA. For any R, Rq is complete (i.e. confluent and terminating)
PROOF. Easy. See Klop (1992). O

3.4. DEFINITION (§2-normal form). (i) w(¢) denotes the normal form of ¢ with respect
to —q . Note that due to lemma 3.3 w(t) is well-defined. N Fq denotes the set of
Q-normal forms.

(i) w(f(t1,.--ytn)) = flw(tr), ..., w(tn)).

The next technical lemma concerns 2-reduction and the related definition of w. It
will be used in the proofs later on in this paper.

3.5. LEMMA. (i) Ift = s then w(t) = w(s).
(ii) Let C[?) € NFq. Then for allt € NFq, C[t] € NFq
(i) If w(t) = O[] and C[z] # Red then C[z] € N Fq.

PROOF. (i) By induction on the size of ¢.

(ii) Suppose C[t] ¢ NFq. Then there exist a rule r € Red that is compatible with
a subterm of C[t]. This subterm is a result of the combination of C[{}] and ¢, i.e.
C[t] = C'[C"[t] such that C"[t] is compatible with Red for some C" and C”. But, then
C"[Q] is also compatible with Red which is a contradiction to C[S2] € N Fg.

(iii) Obvious. O

The intuitive idea of —q is that it ‘approximates’ ordinary reduction by consid-
ering left-hand-sides only. All right-hand-sides of rewrite rules in Rg are equal to €2
which represents any term. The ‘approximation’ is expressed in the following lemma:

3.6. LEMMA. Let R be a TRS, and t1,to € T. Then
t1 —» 1y = u)(t1) =< 1.
PrOOF. By induction on the length of the reduction sequence from ¢; to to. O

The head-normal form property (definition 2.3 (vi)) is in general undecidable. With
the aid of Q2-reduction we can define a decidable variant of this property.

3.7. DEFINITION. A term t is in strong head-normal form if w(t) # €.
3.8. LEMMA. Ift is in strong head normal form then t is in head-normal form.

PROOF. Let ' = w(t). Suppose ¢ is not in head-normal form. Then there exists a term
s such that ¢ — s and s = Red. Due to lemma 3.6 t < s so t' 1 Red. But also t' #Z Q
and therefore # —q Q which is a contradiction to ' € NFg. O

3.9. DEFINITION (Index). Let C[| be a context such that z € w(C[z]) where z is a
fresh variable. Then the displayed occurence of 2 in C[Q] is called an indez and we
write C[Q;]. Let C[Q;] and A be a redex occurrence in C[A]. This redex occurrence
is also called an index and we write C[Aj].

3.10. DEFINITION (Strong Sequentiality). Let R be a term rewriting system.

(i) R is strongly sequential if for each term ¢ ¢ NF, ¢ has an index (Huet and Lévy
(1979),Klop (1992)).

(ii) If A is an index of ¢ then ¢ 3 s is the index reduction.

3.11. PROPOSITION. Let R be strongly sequential. Then index reduction is normaliz-
ng.

PROOF. See Huet and Lévy (1979). O

3.12. PROPOSITION. For any strongly sequential TRS one has the following.
(1) C] [CQ[Q[H = C] [Q[] and CQ[Q[]

(ii) The reverse implication does not hold generally.

PROOF. (i) See Klop (1992).
(ii) See example 3.13 O

In Huet and Lévy (1979) an algorithm has been given that is capable of finding an
index in a term ¢ in O(|¢|) time. The main disadvantage of the algorithm is that after
an index has been rewritten to a term ¢’ the whole new term ¢’ has to be considered
again in order to determine the next index. So, in general, the search cannot be started
locally, i.e. at the position where the last index was found. This is in fact a consequence
of proposition 3.12 (ii). This problem is illustrated by the next example:

3.13. EXAMPLE. Let Red = {f(1,1),9(f(£2,2)),h}. Consider the term g(h). Clearly,
h is an index. Suppose h reduces to f(A1,Ay) where both Ay and Ay are redexes.
Locally (i.e. when leaving the surrounding context out of consideration), both redexes
are indexes. But for the whole term g(f(A1, As)) only Ay is an index.

3.14. LEMMA. (i) If C1[2] and Ci[z] = Cyz] (where z is fresh) then Co[S21].
(11) If Cl[Q} € NFg and CQ[Q[] then Cl[CQ[QIH

PROOF. (i) By lemma 3.5 (i), it follows that w(Ci[z]) < w(C2[z]). Thus, we get z €
w(Cylz]) as z € w(Cy[z])

(ii) By lemma 3.5 (ii) and C1[§2] € N Fq, for any t, w(C1[t]) = C1[w(t)]. Hence, one
has w(C1[Cy]z]]) = Ci{w(Ca[z])]. Since z € w(Cy[z]) also z € Ci{w(Cs[z])]. O

4. Transitive Indexes

Example 3.13 indicates why indexes in strongly sequential system are not always tran-
sitive. A certain subterm ¢ in a context C[t] may reduce to a term ¢’ without rewriting
all indexes in £, but, resulting in a term C[t'] that is compatible with one of the elements
of Red. In this section we formulate a restriction for TRS’s that avoids this problem.
As will be shown, this criterion is sufficient for the transitivity property for indexes.

We first introduce a new concept of transitive indexes.

4.1. DEFINITION (Transitive Index). The displayed index in C1[§2;] is transitive if for
any Q-term Cy[Q], C2[C1[€2;]]. We indicate the transitive index with C;[Qr;]. We also
call the redex occurrence A in C1[A] a transitive index and indicate it with C1[Arg].

Note that replacing Cy[C1[Q21]] by C1][C2[€2]] in definition 4.1 would give a different
notion. For example, let Red = {f(g(2))}. Then f(Q7;) by definition 4.1 and the fact
that C2[f(€2r)] holds for any C2[€27]. But, if we exchange C; and C3 in this definition
the displayed Q in f(€2) is not transitive anymore. Take, for example, the context
C2[Q] = ¢(f2). Clearly, C2[27]. However, in f(g(£2)), 2 is not an index.

Transitive indexes have the following transitivity property.

4.2. LEMMA. If Cl [QTI] and CQ[QT[] then Cl[CQ[QT[”.

PROOF. Let C3[€27]. From Cy[Qdrf] it follows that C3[C2[Q2s]]. By the definition of
transitivity and C1[Qr;], C3]Co[Ch[Q]]]. O

As with indexes, transitivity of indexes remains valid for larger contexts.

4.3. LEMMA. If C1[Qq1] and Cy[z] < Calz] (where z is fresh) then Ca[Qry].

PROOF. This lemma follows immediately from the definition of transitive indexes and
lemma 3.14 (i). O

The importance of transitivity is that it allows to search locally for indexes. Once
an index has been found and rewritten, the search for the next index may continue at
the same location where the last index has been found. As a consequence, rewriting can
be performed in an efficient depth-first way. However, requiring that each term not in
normal form should have a transitive index (analogous to the way strongly sequential
systems are defined) appears to be too restrictive as can be seen in the next example:

4.4. EXAMPLE. Let R be a TRS with Red = {f(g(2))}. Consider the term g(A)
where A = f(g(1)). In this term A is not a transitive index, since A is not an index

in f(g(A)).

Now the question is: ‘How to weaken the transitivity criterion for TRS’s?’. The
answer is given in the following reasoning. Suppose we have a TRS R and a strategy,
for convenience called hnf, that delivers the redexes of a term ¢ that should be reduced
in order to obtain the head-normal form of . Then it is easy to construct a normalising
strategy, say nf, for R.

First, reduce a term ¢ to head-normal-form using hnf and then apply nf to
all the arguments of the result.

The fact that the head-normal form property is undecidable makes it impossible for
general TRS’s to give such a hnf strategy. The next definition of transitive TRS’s is
based on the decidable strong head-normal form property.

4.5. DEFINITION (Transitive Term Rewriting Systems). Let R be a term rewriting sys-
tem. R is transitive if each term ¢ not in strong head-normal form has a transitive index.

4.6. PROPOSITION. Let R be a TRS. If R is transitive then R is strongly sequential.

PrOOF. We have to prove that every term ¢ not in normal form contains an index.
Therefore, we distinguish the following two cases:

w(t) = Q: From the definition of transitivity of R it follows that ¢ has a transitive
index.

w(t) #Q: . Since t is not a normal form there exists a context CJ,---,] such that
t = Cltr, -, ty] and w(t) = C[Q,---, Q] with every t; = Q. Form the fact that
R is transitive and w(t;) = €, ¢; has an index. Applying lemma 3.14 (ii) ,
Cl[t1,9,---,8] has an index and therefore (by lemma 3.14 (i)) Clty,---,t,] has
also an index. O

The reverse of the previous proposition does not hold generally, i.e. not every
strongly sequential system is also transitive.

4.7. EXAMPLE. Let Red = {f(f(Q,0),1), f(2, f(3,Q))}. This TRS is strongly sequen-
tial. Now consider the term f(A1, Ay). Clearly, this term is not in strong head-normal
form. But, A; is not a transitive index. Take, for instance, the context f(€;,1). In
f(f(A1,Az),1) A; is not an index. For the same reason Asg is not a transitive index.

The next problem is: ‘How can we localize transitive indexes?’. The solution is
given with the aid of the following definition of transitive directions.

4.8. DEFINITION (Transitive Direction). (i) Let Q C Tq. The displayed € in C[Q]
is a direction for Q if C[z] # Q. We indicate a direction for Q) with C[Qg].

(ii) Let Red® = {p | 2 < p Cr for some r € Red}. A transitive direction is defined
as a direction for Red*. We denote a transitive direction with C[Qrp].

Transitive directions can be related to transitive indexes as follows.
4.9. LEMMA. Let C[Qqp] and Clz] € NFq. Then C[Qry].

PROOF. It is clear that C[€27]. We shall prove that the displayed index £ is transitive,
i.e. C'[C[Qy]] for any Q-term C'[Q;]. Let w(C'[z]) = C"[z]. Note that C"[z] € NFq
and that w(C'[C[2]]) = w(C"[C[2]]). Now we show that C"[C[z]] € NFq. Suppose
C"[C[z]] ¢ NFq. Then there exists some r € Red having a proper subterm 7’ not
being Q that is compatible with C[z]. However, this contradicts the assumption that

Clz] # Red*. O
The following lemma explains how to use the previous one for finding an index.

4.10. LEMMA. Let C[A] € T. If there exists some C'[z] < C[z] (where z is fresh)
such that C'[z] is divided into C'[z] = C1[Cq[--- Cplz]---]] (n > 1) where C;[Q2rp] for
i=2---nand Cj[z]) € NFq fori=1---n. Then C[Aj].

PROOF. By lemma 4.9, C;[Qr;] for i = 2---n. Since Ci[z] € NFq, we have C;[8;].
By definition 4.1 and lemma 4.2, C'[;]. From lemma 3.14 (i), it follows that C[€;].
O

It seems that the problem of finding transitive indexes has been postponed since we
need transitive directions to determine transitive indexes. Lemma 4.11 in combination
with lemma 4.13 shows us where to look for transitive directions in a term that might
be a candidate for being rewritten. Lemma 4.13 on its own, enables an efficient test
for deciding whether or not a certain TRS is transitive.

4.11. LEMMA. Let Red™ ={p | Q < p < r for some r € Red} and let any t € Red™
have a transitive direction. Then for every s € Tq such that s T Red A\ s ¥ Red, s has
a transitive direction.

PROOF. Since s T Red A s %/ Red there exists some r € Red such that r 1 s A s # r.
Without loss of generality we may state that r = C[s1, -+, 8,,8,---,Q] and s =
Cl - Smi1s -+ s Sman] where s; = Q fori=1---m+mn,m >0 and n > 0. Since
C[Q, -+, Q,9Q,---,9] € Red™, C[Q, ---, Q, Q, ---, Q] has a transitive direction. It
is clear that this transitive direction must appear in the first m occurrences of €2, say
ClQrp, -, 00, -, Q. Clz, Q, -, 2, Q, -, QA =Clz,Q -, Q, Spy1, -,
Sm+n], hence Clz , Q, -+ | Q, S;i1, 5 Sman] # Red®. O

4.12. LEMMA. . Let C[s] € Red, s = Q. Then C[$].

PROOF. From the non-overlapping property of R (definition 2.4) it follows that C[z] €
NFqy O

4.13. LEMMA. A TRS R is transitive iff every t € Red™ has a transitive direction.

PROOF. =: Let t € Red~. Then w(t) = Q. By assumption, ¢ has a transitive index,
say t = C[Qrr]. We will prove that C[z] # Red*. Assume that C[z] T Red".
Then there exists an s € Red” such that C[z] T s. This means that there exists a
r € Red such that » = C'[s]. Now consider the term C'[C[z]]. Since C'[C[z]] 1 r,
w(C'[C[z]]) = Q. From lemma 4.12 it follows that C'[Q;]. But then w(C'[C[2]]) =
2 contradicts to C[Q77]. Hence it follows that C[z] # Red".

<: By induction to the size of ¢ we will prove that if w(t) = Q then ¢ has a transitive
index. The basis step is trivial. For the induction step we make a distinction
between two cases:

t = Red: We can take ¢ itself as the transitive index.

t % Red: Let C],---,] be a context such that t = C[ty,- -, t,] with every t; = Q
and w(t) = C[Q,---, Q] in which all Q occurrences that correspond to sub-
terms s = Q of ¢ are displayed. Since C[Q,---,Q] # Red and C[Q,---,Q] 1
Red, by lemma 4.11, C[€2, - - -,] has a transitive direction. Applying lemma 3.5
(iii) and lemma 4.9 it follows that this transitive direction is a transitive in-
dex. Again we distinguish two cases:

(a) The transitive index € is displayed in C[Q,---,Q]. Without any loss
of generality we may assume that the first displayed €2 is the transitive
index, i.e. C[Qpy, -+, Q). Since w(t;) = Q we can apply the LH.: #; has

a transitive index. Thus, by lemma 4.2, Clt1,€2, - --, Q] has a transitive
index in t; and hence, by lemma 4.3, Clt1,t9,---,t,] has a transitive
index in #7.

(b) The transitive index € is not displayed in C[S2, - - -, Q]. This means that
this transitive index corresponds to an {2-occurrence in . Now we can

apply lemma 4.3 immediately so, C[t1,---,t,] has a transitive index.
O

4.14. REMARK. (i) Strongly sequential orthogonal constructor systems (Huet and Lévy
(1979),Klop (1992)) are clearly transitive. We will prove later on that left-normal or-
thogonal systems (Huet and Lévy (1979),Klop (1992),0’Donnell (1977)) are transitive
too.

(ii) Huet and Lévy (Huet and Lévy (1979)) defined simple systems as orthogonal
term rewriting systems satisfying V¢t € (Red*)~ : 3C[] : t = C[Qrp]. Here (Red*)~ =
{p | Q2 <p=<rforsomer e Red"}. It is clear that if R is simple then it is transitive,
but the reverse direction is not the case from the following example. Let R have Red =
{f(9(0,€)),h(g(2,0))}. It is clear that R is transitive. However, g(Q2,Q) € (Red*)~
cannot make an incompatible term to Red® by replacing an occurrence of §) with z.
Thus, R is not simple.

5. Transitive Strategy

This section presents a method for searching indexes of transitive systems. The key
idea of our method is a marking of occurrences of subterms which are known to be in
strong head normal form. Of course, these marks are valid through reductions. Hence,
we can repeatedly use the information indicated by marks for future searches of indexes.

5.1. DEFINITION. Let (X, R) be a TRS.
(i) root is a function from Tq to Xg such that root (f(t1,---,tn)) = f

(ii) Let D = {root(l) | | — r € R} be the set of defined function symbols. D* =
{f*| f € D} is the set of marked function symbols assumed that D*NY = () and f* has
the arity of f. Tt is clear that f* € D* is not a defined function symbol. T* = T (XUD*)
is the set of marked terms.

(iii) Let ¢ be a marked term. e(¢) denotes the term obtained from ¢ by erasing
all marks. ¢§(t) denotes the Q-term obtained from # by replacing all the maximal
subterms having defined function symbols at the roots with Q. §(f(t1,...,t,) =
F(6(tr), -+, 8(ta) for f € SUD*.

5.2. DEFINITION. ¢ € T* is well-marked if Vs C t [root(s) € D* = e(d(s)) € NFq)].
5.3. LEMMA. Ift € T* is well-marked then e(§(t)) € NFq.

PROOF. Trivial. O

5.4. LEMMA. Let Vs C t [root(s) € D* = e(d(s)) # Red]. Then t is well-marked.

PrROOF. We will prove the lemma by induction on the size of {. The basic step is
trivial. Induction step: Let ¢ = h(t1,---,t,). From LH., every ¢; is well-marked.
If h ¢ D* t is well-marked. Assume that h € D*, say h = f*. Then, e(i(t)) =
fle(d(ty)), --,e(0(t,))) # Red. Since every e(d(t;)) € NFq, it follows that e(d(t)) €
NFqg. O

5.5. LEMMA. Let t be well-marked and let e(6(t)) = C[Qrp]. Then C[z] € NFq.
PROOF. It follows directly from C|z] # Red and lemma 5.3. O

5.6. DEFINITION. Let t = Clt1, -+, tp, -+, tp] € T* and t' = e(C)[Q, ..., Qrp, ...,
Q). Then we say that t, is a directed subterm of t with respect to t'.

5.7. DEFINITION (Transitive Reduction Strategy). The transitive strategy has as input
aterm ¢t € T. s indicates a subterm occurrence of t.

10

(1) If ¢ has no defined function symbol, terminate with “e(t) is a normal form”.

(2) Take the leftmost-outermost subterm of ¢ having a defined function at the root
as s.

(3) If e(0(s)) = Red, terminate with “e(s) is an index of e(t)”.

(4) If e(6(s)) T Red, take a directed subterm of s with respect to e(d(s)) as s and go
to (3).

(5) Mark the root of s and go to (1).

5.8. THEOREM. Let R be transitive and let t € T.

(i) The transitive strategy applied to t terminates with either “t is a normal form”
(a) or with “s is an index of t” (b).

(ii) In case (a) t is a normal form. Otherwise (case (b)), s is an index of t.

PROOF. A sketch of our proof is as follows. The loop consisting of (3)-(4) decreases the
size of s. The loop consisting of (1)-(5) decreases the number of the defined function
symbols in ¢. Thus, the transitive strategy eventually terminates at (1) or (3). If ¢ is
a normal form, the strategy cannot terminate at (3). Thus, it terminates at (1). Let
t be not a normal form. Note that the root of a redex in ¢ cannot be marked. Hence,
the strategy eventually terminates at (3) with indicating “e(s) is an index of e(t)”
where “e(t) = e(C)[e(s);]”. From lemma 5.4, t is well-marked. If at (4) e(d(s)) T Red
and e(6(s)) = C'[Qrp], then, by lemma 5.5 we obtain C'[z] € NFq. If at (2) ¢
has no defined function symbol at the root, then e(§(t)) € NFq. Thus, by applying
lemma 4.10 it can be easily proven that e(s) is an index of e(¢). O

6. Functional Strategy

The reduction order determined by the functional strategy is obtained via top-to-
bottom, left-to-right pattern matching. In this section we will identify those TRS’s
for which this way of pattern matching always delivers a transitive direction. Note
that the fact that an Q-occurrence in a term ¢ is a transitive direction according to
some rule R may not be affected by the rules ‘below’ R. We will show that this
requirement is met if each rule R’ ‘below’ R is left-incompatible with R.

6.1. DEFINITION (Left-Incompatibility). Let s, € Tq. The left-incompatibility of s
and ¢, indicated by ¢ #. s, is defined as follows:
(i) t#£ s, t#£Qs#Q, and
(i) f=g=Fi[(V] <i,tj <sj) At #< si]
where t = f(t1,---,t,) and s = g(s1, ", Sm)-
Here, the above i is called the left-incompatible point.

6.2. EXAMPLE. Let Red = {f(,1), f(1,0)}. Then one has f(Q,1) #- f(1,0), but
not f(1,0) #< f(£2,1). Furthermore, notice that in f(A;,Ag) only Ay is an index. If
the rule f(2,1) is applied first then only Aj is indicated as an index. This is not the
case when f(1,0) is applied first; then both redexes are indicated.

11

6.3. LEMMA. Let C[Q] 1 p and let C[Qyy,] be the leftmost direction for {p}. Letp #< q.

PROOF. By induction on the size of C[]. Basic step C[] = O is trivial. Induction step:
Let C[Q] = f(t1,---,tq,---,tn) where the indicated Q occurs in t4, say t; = Cy[€].

Since C[Q] Tpa p= f(ph"'apda"'apn) and bi T t; for i = 1---n. Since p #< q, we
have the left-incompatible point k£ for p and gq.

d < k: Then pg = qq. Since Cy[z] # pg, we have C[z] # qq. Hence, C|z] # q.

d = k: Since Cy[Qy, 1] is the leftmost direction for {pq} and pg #< g4, we can apply
LH. to them. Thus, Cy[€2¢, 1] is obtained. Thus, C[z] # q.

d > k: Since C[Qy,] is the leftmost direction for {p}, we obtain #; = pi. Since py, #<
gk, we obtain that ¢y # q,. Hence, C[z] # ¢q. O

6.4. DEFINITION. An orthogonal TRS (X, R) is left-incompatible if it satisfies the fol-
lowing two conditions:

(i) Red can be expressed as a list [p1,---,pn] with p; #< p; if i <,
(ii) Vp; € Red, q € Red™ [p; #< q], where Redt = Red* — Red.

6.5. LEMMA. Let R be a left-incompatible TRS with Red = [p1,--+,pn]. Let C[] be a
context such that C[Q] 1 pq, C[Q] # p; (1 < i < d) and let C[Qy,] display the leftmost
direction for {pq}. Then C[Qrp].

ProOF. Since C[Q] # p; (1 < i < d), we have C[Qqy,] (1 <i < d). From the left-
incompatibility, it follows that pg #< p; (d < j <n) and pg #< q for g € Red™. Thus,
by lemma 6.3 we can show that C[Qy,] for any ¢ € Red*. O

6.6. COROLLARY. Fuvery left-incompatible system is transitive.

PROOF. According to lemma 4.13 it is sufficient to prove that each ¢ € Red™ has a
transitive direction. Let ¢ € Red™. Then there exists some py € Red such that ¢ # p;
(i < d) and t T pg. Since t # pq, t must have a direction for {p,;}. By lemma 6.5, the
leftmost direction of ¢ for {p,} is a transitive direction. O

6.7. DEFINITION. Let R be a left-incompatible TRS with Red = [p1,---,pn) and let t =
Clt1, ooty ooy ty] €ET*and t' = C[Q, ..., Q, ..., Q]. Furthermore, let d be a number
such that e(C)[Q, -+, Q, -, Q] # pifor1 <i < dande(C)[Q,---,Q, -, Q] 1 pg (which
means that p, is the first compatible pattern in the list), and let e(C)[€2, - -+, Qg 1, -+, Q]
display the leftmost direction for {p,;}. Then we say that t; is the leftmost directed
subterm of t with respect to t' and py.

6.8. DEFINITION (Functional Reduction Strategy). The functional strategy has as in-
put a term ¢ € T and a TRS R which is left-incompatible with Red = [p1,---,pn] . s
indicates a subterm occurrence of ¢.

(1) If ¢ has no defined function symbol, terminate with “e(t) is a normal form”.

12

(2) Take the leftmost-outermost subterm of ¢ having a defined function at the root
as s.

(3) Find the first compatible pattern p; to e(d(s)) in the list Red if it exists; otherwise,
mark the root of s and go to (1).

(4) If e(d(s)) = pg, terminate with “e(s) is an index of e(t)”.

(5) Take as s the leftmost directed subterm of s with respect to e(d(s)) and pg, and
go to (3).

6.9. THEOREM. Let R be left-incompatible system and let t € T'.

(i) The functional strategy applied to t terminates with either “t is a normal form”
(a) or with “s is an index of t” (b).

(ii) In case (a) t is a normal form. Otherwise (case (b)), s is an index of t.

PrOOF. Note that if R is left-incompatible, then by lemma 6.5 it is clear that the
functional strategy is essentially same to the transitive strategy. Thus, by Theorem 5.8
we can easily prove the theorem. O

O’Donnell (O’Donnell (1977)) proved that if an orthogonal term rewriting system
R is left-normal then R is strongly sequential and leftmost-outermost reduction is
normalizing. We now show that his result is a special case of the above theorem.

6.10. DEFINITION (Left-normal TRS’s). (i) The set 77, of the left-normal terms is in-
ductively defined as follows:

(1) z € Ty, if z is a variable,

(2) f(t]a“'atpfhtpatp‘F] "‘atn) € TL (0 Sp < TL)
if t1,---,tp—1 € Ty (i.e. t1,---,tp—1 are groud terms), ¢, € Ty, and tpq,---,t, are
variables.

(ii) The set of the left-normal schemata is Tpo = {tq | t € T1}.

(iii) R is left-normal (O’Donnell (1977),Huet and Lévy (1979),Klop (1992)) iff for
any rule [— r in R, [is a left-normal term, i.e. Red C Trq.

6.11. LEMMA. Let p,q € Trq and p # q. Then p #< q.

PROOF. By induction on the size of q. Let p = f(p1,-,Pm,2,---Q) and g = f(q1,
cy s Q, -+ Q) where p; (i < m) and g (j < n) have no Q occurrences. Since p # ¢,
there exists some k (kK < m,n) such that p; = ¢; (1 < k) and pp # qr. Note that
Pky qx € Trq. Thus, from L.H., pr #< qi follows. Therefore, p #. ¢q. O

6.12. THEOREM. Let R be a left-normal orthogonal term rewriting system. Then, R
s a left-imcompatible system.

PROOF. From Red* C Trq, the orthogonality of R, and lemma 6.11, we can easily
show that R is left-incompatible. O

6.13. COROLLARY. Let R be a left-normal orthogonal term rewriting system. Then the
functional strategy applied to t & NF indicates the leftmost-outermost redex of t as an
index.

13

PrROOF. Follows directly from the definition of the functional strategy. O

6.14. EXAMPLE. The following R is left-incompatible but not left-normal. Hence, the
functional strategy is normalizing for R. However, the leftmost-outermost reduction
strategy is not.

flc(x,0),¢(0,2)) =1

R g—0

W= w
Now consider the term f(c(w,g),c(g,w)). It is clear that the functional strategy is
normalizing and leftmost-outermost reduction not.

7. Future Work

With respect to the functional reduction strategy there exist two major problems that
have to be solved. Firstly, since the functional strategy is initially intended as a strategy
for Priority Rewriting Systems, the adequacy of this strategy for Priority Term Rewrit-
ing Systems has to be investigated. An additional problem comes from the fact that
there exists not always a well-defined semantics for a Priority Term Rewriting System.
Secondly, implementations of (lazy) functional languages that are using this strategy
appear to be efficient. It should be investigated whether this practical efficiency can
be founded theoretically.

References

Augustsson, L. (1984). A compiler for lazy ml, Proc. of ACM Symposium on LISP and
Functional Programming, pp. 218-227.

Baeten, J.C.M., J.A. Bergstra and J.W. Klop (1987). Term rewriting systems with pri-
orities, Proc. of Conference on Rewriting Techniques and Applications, Bordaux,
Springer Verlag, LNCS 256, pp. 83-94.

Barendregt, H.P., M.C.J.D. van Eekelen, J.R.W. Glauert, J.R. Kennaway, M.J. Plas-
meijer and M.R. Sleep (1987). Term graph reduction, Proc. of Parallel Archi-
tectures and Languages Europe (PARLE), Eindhoven, The Netherlands, Springer
Verlag, LNCS 259 II, pp. 141 158.

Brus, T., M.C.J.D. van Eekelen, M. van Leer, M.J. Plasmeijer and H.P. Barendregt
(1987). Clean - a language for functional graph rewriting, Proc. of Conference
on Functional Programming Languages and Computer Architecture (FPCA ’87),
Portland, Oregon, USA, Springer Verlag, LNCS 274, pp. 364-384.

Dershowitz, N. and J.P. Jouannaud (1990). Rewrite systems, in: Leeuwen (ed.), Formal
Models and Semantics, Elsevier, Handbook of Theoretical Computer Science B,
pp. 243-320.

Hudak, P., S.L.. Peyton Jones, P.L. Wadler, Arvind, B Boutel, J. Fairbairn, J. Fasel,
K. Guzman, K. Hammond, J. Hughes, T. Johnsson, R. Kieburtz, R.S. Nikhil,
W. Partain and J. Peterson (1992). Report on the functional programming lan-
guage haskell, version 1.2, Special Issue of SIGPLAN Notices.

14

Huet, G. and J.J. Lévy (1979). Call by need computations in non-ambiguous linear
term rewriting systems, Technical Report 359, INRIA.

Kennaway, J.R. (1990). The specificity rule for lazy pattern-matching in ambigu-
ous term rewriting systems, Proc. of 3rd FEuropean Symposium on Programming
(ESOP), Springer Verlag, 432.

Klop, J.W. (1992). Term rewriting systems, in: Gabbay Abramsky and Maibaum
(eds.), Handbook of Logic in Computer Science, Oxford University Press, I.

Laville, A. (1987). Lazy pattern matching in the ml language, Proc. of 7th Conference
on Software Technology and Theoretical Computer Science, Pune, India, Springer
Verlag, 287, pp. 400-419.

Nocker, E.G.J.M.H., J.EEW. Smetsers, M.C.J.D. van Eekelen and M.J. Plasmeijer
(1991). Concurrent clean, Proc. of Parallel Architectures and Languages Europe
(PARLE’91), Eindhoven, The Netherlands, Springer Verlag, LNCS 505, pp. 202
219.

O’Donnell, M.J. (1977). Computing in Systems Described by Equations, LNCS 58,
Springer Verlag.

Puel, L. and A. Sudrez (1990). Compiling pattern matching by term decomposition,
Proc. of ACM conference on LISP and Functional Programming, pp. 273 281.

Turner, D.A. (1985). Miranda: A non-strict functional language with polymorphic
types, Proc. of Conference on Functional Programming Languages and Computer
Architecture (FPCA ’85), Nancy, France, Springer Verlag, LNCS 201, pp. 1 16.

15

