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Abstract. Huet and Lévy (1979) showed that needed reduction is a
normalizing strategy for orthogonal (i.e., left-linear and non-overlapping)
term rewriting systems. In order to obtain a decidable needed reduction
strategy, they proposed the notion of strongly sequential approximation.
Extending their seminal work, several better decidable approximations of
left-linear term rewriting systems, for example, NV approximation, shal-
low approximation, growing approximation, etc., have been investigated
in the literature. In all of these works, orthogonality is required to guar-
antee approximated decidable needed reductions are actually normaliz-
ing strategies. This paper extends these decidable normalizing strategies
to left-linear overlapping term rewriting systems. The key idea is the
balanced weak Church-Rosser property. We prove that approximated
external reduction is a computable normalizing strategy for the class
of left-linear term rewriting systems in which every critical pair can be
joined with root balanced reductions. This class includes all weakly or-
thogonal left-normal systems, for example, combinatory logic CL with
the overlapping rules pred · (succ · x) → x and succ · (pred · x) → x,
for which leftmost-outermost reduction is a computable normalizing
strategy.

1 Introduction

Normalizing reduction strategies of reduction systems, such as leftmost-
outermost evaluation of lambda calculus [2, 11], combinatory logic [7, 11], or-
dinal recursive program schemata [25] and left-normal term rewriting sys-
tems [8, 17, 22] guarantee a safe evaluation which reduces a given expression to
its normal form whenever it exists. Hence, normalizing reduction strategies play
an important role in the implementation of functional programming languages
based on reduction systems.

Strong sequentiality formalized by Huet and Lévy [8] is a well-known practi-
cal criterion guaranteeing an efficiently computable normalizing reduction strat-
egy for orthogonal (i.e., left-linear and non-overlapping) term rewriting systems.
They showed that for every strongly sequential orthogonal term rewriting sys-
tem R, strongly needed reduction is a computable normalizing strategy, that is,
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by rewriting a redex called a strongly needed redex at each step, every reduction
starting with a term having a normal form eventually terminates at the normal
from. Here, the strongly needed redex is defined as a needed redex concerning
an approximation of R which is obtained by analyzing the left-hand sides only
of the rewrite rules of R. Moreover, Huet and Lévy [8] proved the decidability
of strong sequentiality. A simpler proof by Klop and Middeldorp can be found
in [12] and a proof based on second order monadic logic and tree automata by
Comon in [3].

Inspired by the seminal work by Huet and Lévy [8], several better decidable
approximations of left-linear term rewriting systems, for example, NV approxi-
mation [21], shallow approximation [3], growing approximation [9, 15], etc., have
been investigated in the literature. Moreover, Durand and Middeldorp [6] pre-
sented a simple uniform framework for normalizing reduction strategies based
on decidable approximations. In all of these works [6, 9, 10, 15], however, the
non-overlapping restriction is still required to guarantee that approximated de-
cidable needed reductions are actually normalizing strategies; hence, they cannot
be applied to term rewriting systems with overlapping rules such as

{
pred(succ(x)) → x
succ(pred(x)) → x.

Though it is known [6, 9, 10, 15] that only the left-linearity restriction is necessary
for considering decidability issues, the question whether there exists an approx-
imated decidable normalizing strategy for left-linear overlapping term rewriting
systems has received quite a bit of attention.

The main purpose of this paper develops decidable normalizing reduction
strategies for left-linear overlapping term rewriting systems. The notion of se-
quentiality defined by Huet and Lévy [8] is naturally adapted to that of external-
ity. An external term rewriting system R guarantees that every reducible term
contains an outer needed redex, called an external redex, which remains at an
outer position until it is rewritten. Under this new framework, we show that
external reduction is normalizing for the class of external root balanced joinable
term rewriting systems. A root balanced joinable term rewriting system is defined
as a term rewriting system in which every critical pair can be joined with root
balanced reductions. We also show that for weakly orthogonal left-normal sys-
tems, the leftmost-outermost reduction strategy is normalizing. For example, the
leftmost-outermost reduction strategy is normalizing for combinatory logic CL
∪ {pred·(succ·x) → x, succ·(pred·x) → x}. Here, combinatory logic CL [2, 7, 11]
is the orthogonal term rewriting system having the following rewrite rules:

CL
{

((S · x) · y) · z → (x · z) · (y · z)
(K · x) · y → x.

Moreover, our result can be applied to term rewriting systems not having the
Church-Rosser property too. For example, the leftmost-outermost reduction
strategy is again normalizing for CL ∪
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⎧⎪⎪⎨
⎪⎪⎩

(K · A) · y → (K · B) · y
(K · B) · y → (K · A) · y
A → A
B → B,

though the system is not Church-Rosser since (K · A) · y can be reduced into
two constants A and B which cannot be joined.

The approach presented here is more accessible than that based on sequen-
tiality of orthogonal term rewriting systems by Huet and Lévy [8]. The key
idea is the balanced weak Church-Rosser property, which was first considered by
Toyama [24] for analyzing normalizing reduction strategies of strongly sequen-
tial left-linear overlapping term rewriting systems. We first explain this idea in
an abstract framework. Section 2 introduces preliminary concepts of abstract
reduction systems. In Section 3, we introduce the balanced weak Church-Rosser
property of abstract reduction systems and explain how this property is related to
a normalizing reduction strategy. Our results are carefully partitioned between
abstract properties depending solely on the reduction relation and properties de-
pending on term structure. In Section 4 we present preliminary concepts for term
rewriting systems and in the next section we introduce the notion of external-
ity of (possibly) overlapping term rewriting systems. In Section 6, by using the
balanced weak Church-Rosser property of external reduction, we prove that ex-
ternal reduction of root balanced joinable term rewriting systems is normalizing.
Section 7 extends external reduction to quasi-external reduction. In Section 8,
we present computable normalizing strategies based on decidable approximations.
Finally, Section 9 discusses a syntactic characterization of external overlapping
term rewriting systems.

2 Reduction Systems

Assuming that the reader is familiar with the basic concepts and notations con-
cerning reduction systems in [1, 18, 22], we briefly present notations and defini-
tions.

A reduction system (or an abstract reduction system) is a structure A =
〈D, →〉 consisting of some set D and some binary relation → on D (i.e.,
→ ⊆ D × D), called a reduction relation. A reduction (starting with x0) in
A is a finite or infinite sequence x0 → x1 → x2 → · · · . The identity of elements
x, y of D is denoted by x ≡ y. →≡ is the reflexive closure of →, ↔ is the
symmetric closure of →, →+ is the transitive closure of →, →∗ is the transitive
reflexive closure of →, and = is the equivalence relation generated by → (i.e.,
the transitive reflexive symmetric closure of →). x→my denotes a reduction of
m (m ≥ 0) steps from x to y. x↔my denotes a chain x↔∗y of length m, i.e.,
there exists a sequence x = x0 ↔ x1 ↔ · · · ↔ xm = y of m steps.

If x ∈ D is minimal with respect to →, i.e., ¬∃y ∈ D, [x → y], then we say
that x is a normal form; let NF be the set of all normal forms. If x→∗y and
y ∈ NF then we say x has a normal form y and y is a normal form of x. We say
x is reducible if x �∈ NF .
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A reduction system A = 〈D, →〉 (→ for short) is strongly normalizing (or
terminating) if every reduction in A terminates, i.e., there is no infinite se-
quence x0 → x1 → x2 → · · · . A is Church-Rosser (or confluent) if ∀x, y, z ∈
D, [x→∗y ∧ x→∗z ⇒ ∃w ∈ D, y→∗w ∧ z→∗w]. A is weakly Church-Rosser (or
locally confluent) if ∀x, y, z ∈ D, [x→y ∧ x→z ⇒ ∃w ∈ D, y→∗w ∧ z→∗w]. A is
complete if A is Church-Rosser (confluent) and strongly normalizing. A has the
normal form property if ∀x ∈ D, ∀y ∈ NF , [x = y ⇒ x→∗y]. A has the unique
normal form property if ∀x, y ∈ NF , [x = y ⇒ x ≡ y]. Note that the normal
form property implies the unique normal form property.

The notions of confluent, strongly normalizing, complete on systems are re-
lated to the notions on elements. An element x ∈ D is confluent if ∀y, z ∈
D, [x→∗y ∧ x→∗z ⇒ ∃w ∈ D, y→∗w ∧ z→∗w]. x is strongly normalizing if every
reduction starting with x terminates. x is complete if x is confluent and strongly
normalizing.

Definition 1 (Reduction Strategy). Let A = 〈D, →〉 and let →s be a sub-
relation of →+ (i.e., if x→sy then x→+y) such that a normal form concerning
→s is also a normal form concerning → (i.e., the two binary relations →s and
→ have the same domain). Then, we say that →s is a reduction strategy for A
(or for →). If →s is a sub-relation of → then we call it a one step reduction
strategy; otherwise →s is called a many step reduction strategy.

Definition 2 (Normalizing Strategy). A reduction strategy →s is normal-
izing iff for each x having a normal form concerning →, there exists no infinite
sequence x ≡ x0→sx1→sx2→s · · · (i.e., every →s reduction starting with x must
eventually terminate at a normal form of x).

3 Balanced Weak Church-Rosser Property

This section introduces the balanced weak Church-Rosser property. Though in
later sections this concept will play an important role for analyzing normalizing
strategies of term rewriting systems, our results concerning the balanced weak
Church-Rosser property can be presented in an abstract framework depending
solely on the reduction relation.

Let A = 〈D, →〉 be an abstract reduction system.

Definition 3. A = 〈D, →〉 (or →) is balanced weakly Church-Rosser (BWCR)
iff ∀x, y, z ∈ D, [x → y ∧ x → z ⇒ ∃w ∈ D, ∃k ≥ 0, y→kw ∧ z→kw]
(Figure 1).

Lemma 1 (BWCR Lemma). Let A = 〈D, →〉 be BWCR. Let x = y and
y ∈ NF. Then,

(1) x is complete,
(2) all the reductions from x to y have the same length (i.e., the same number

of reduction steps).
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Proof. We first prove the following claim: if x→ny and y ∈ NF then x satisfies
the properties (1) and (2).

Proof of the claim. We show the claim by induction on n. The case n = 0 is
trivial. Let x → x′→n−1y ∈ NF . Take any one step reduction x → z starting
with x. By the balanced weak Church-Rosser property, there exists some w and
k such that z→kw and x′→kw. By the induction hypothesis, the properties (1)
and (2) hold at x′; hence x′→kw→∗y must have n − 1 steps in length. Thus,
w→n−1−ky; see Figure 2. Since z→kw, we obtain z→n−1y. By the induction
hypothesis, z satisfies the properties (1) and (2). Therefore, the claim follows.
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Fig. 2.

We next show that if x ↔n y and y ∈ NF then x→∗y. The proof is by
induction on n. The case n = 0 is trivial. Let x ↔ x′↔n−1y. By the induction
hypothesis, we have x′→∗y. The case x → x′ is trivial. Let x ← x′. By applying
the claim to x′→∗y ∈ NF , it is obtained that x′ is complete. Thus, x→∗y.

Therefore, from the claim it follows that if x = y and y ∈ NF then x satisfies
the properties (1) and (2). �

Lemma 1 (BWCR Lemma) is a generalization to Theorem 2 and Corollary
2.1 of Newman [16], which requires the following property instead of BWCR:
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∀x, y, z ∈ D, [x → y ∧ x → z ∧ y �≡ z ⇒ ∃w ∈ D, y→w ∧ z→w]. An extension of
BWCR is discussed in Van Oostrom [20].

Corollary 1. If an abstract reduction system A is BWCR then A has the normal
form property.

Proof. From the BWCR Lemma, it is trivial. �

Next we will explain how the balanced weak Church-Rosser property is related
to a normalizing reduction strategy. Let d(x) denote the length of a reduction
from x to a normal form if it exists. Note that if → is balanced weakly Church-
Rosser and x has a normal form then d(x) is well-defined according to the BWCR
Lemma. We write x←my if y→mx.

Lemma 2. Let → be balanced weakly Church-Rosser. Let x−→m1 ·←−n1 · −→m2 ·
←−n2 · · · −→mp · ←−npy for some p, m1, · · · , mp, n1, · · · , np ≥ 0 and let x
have a normal form. Then y has a normal form and d(x)−d(y) =

∑
mi −

∑
ni.

Proof. By the BWCR Lemma it is clear that y has a normal form. We prove
d(x) − d(y) =

∑
mi −

∑
ni by induction on p. The case p = 0 is trivial.

Let x−→m1 · ←−n1 · −→m2 · ←−n2 · · ·−→mp−1 · ←−np−1y′−→mpz←−npy. By
the BWCR Lemma, d(y′) and d(z) are well-defined and d(y′) − mp = d(z) =
d(y)−np. Thus, we have d(y′)−d(y) = mp −np. From the induction hypothesis,
d(x) − d(y′) =

∑p−1
i=1 mi −

∑p−1
i=1 ni. Therefore, d(x) − d(y) =

∑
mi −

∑
ni. �

We write x ←→→ y if there exists a connection x−→m1 · ←−n1 · −→m2 · ←−n2 · · ·
−→mp · ←−npy such that

∑
mi >

∑
ni. We sometimes write x ←→← y instead of

y ←→→ x.

Lemma 3. Let → be balanced weakly Church-Rosser. Let x ←→→ y and let x have
a normal form. Then y has a normal form and d(x) > d(y).

Proof. It is trivial from Lemma 2. �

The following lemma and corollary explain how the BWCR Lemma implies the
normalizing property of a reduction strategy →s for → (i.e., →s ⊆ → and the
two reduction relations →s and → have the same set of normal forms.)

Lemma 4. Let →s be a reduction strategy for → such that:

(1) →s is balanced weakly Church-Rosser,
(2) if x → y then;

(i) x=sy or,
(ii) x ←→→ s · ↔ · ←→← sy.

If x = y and y ∈ NF then we have x→∗
sy.
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Proof. We first show the claim: if x↔·→m
s y and y ∈ NF , then we have x=sy. The

proof is by induction on m. For the base step we let m = 0. Then x↔y ∈ NF .
Suppose that it satisfies the condition (ii), i.e., x ←→→ sx

′↔y′ ←→← sy holds for
some x′ and y′. Then by Lemma 3 and y ∈ NF we have d(y′) < d(y) = 0; it
contradicts d(y′) ≥ 0. Thus x↔y must satisfy the condition (i). Induction Step:
Let x ↔ z→m

s y ∈ NF (m > 0). Then x ↔ z must satisfy (i) or (ii) as each
condition is symmetric. If x=sz then x=sy is trivial. Assume that x ←→→ sx

′ ↔
z′ ←→← sz. By applying Lemma 3 to z ←→→ sz

′, we have z′→m′

s y with m′ < m; see
Figure 3. Applying the induction hypothesis of the claim to x′, we have x′=sy;
thus, x=sy because of x ←→→ sx

′=sy.
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x′ z′

m

s

s
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Fig. 3.

We next prove that if x↔ny and y ∈ NF , then x→∗
sy. The proof is by in-

duction on n. The case n = 0 is trivial. Let x ↔ x′↔n−1y ∈ NF . From the
induction hypothesis, we have x′→∗

sy. Thus, from the claim, x=sy. From the
BWCR Lemma, it follows that x→∗

sy. �

Corollary 2. Let →s be a reduction strategy for → such that:

(1) →s is balanced weakly Church-Rosser,
(2) if x → y then;

(i) x=sy or,
(ii) x ←→→ s · ↔ · ←→← sy.

Then → has the normal form property and →s is a normalizing strategy.

Proof. It is trivial from the BWCR Lemma and Lemma 4. ��

In Lemma 4 and Corollary 2 we cannot relax the condition (ii) x ←→→ s · ↔
· ←→← s y to x ←→→ s · ↔+ · ←→← sy. Consider the abstract reduction system A
with the reduction relation → and the reduction strategy →s for → presented in
Figure 4. Then A does not have the normal form property. Note that c→b satisfies
c ←→→ s ·↔+ · ←→← sb as c→sc → b→a←sb, and c→d satisfies c ←→→ s ·↔+ · ←→← sd
as c→sc → d→e←sd.
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In Corollary 2 if we need only to show that →s is a normalizing strategy for
→, we may replace the symmetric condition (ii) x ←→→ s · ↔ · ←→← sy with an
asymmetric weaker condition as follows.

Corollary 3. Let →s be a reduction strategy for → such that:

(1) →s is balanced weakly Church-Rosser,
(2) if x → y then;

(i) x=sy or,
(ii) x=s · → · ←→← sy.

Then →s is a normalizing strategy.

Proof. Similarly to the proof of Lemma 4, we can show the claim: if x→∗y ∈ NF
then x→∗

sy. Thus from the BWCR Lemma the corollary holds. ��

In Corollary 3 the normal form property of → need not hold. Consider the
abstract reduction system A with the reduction relation → and the reduction
strategy →s for → presented in Figure 5. Then A does not have the normal form
property though →s is a normalizing strategy for →. Note that b→c satisfies
b=s · → · ←→← sc as b→c→sc, and d→c satisfies d=s · → · ←→← sc as d→c→sc.

� � � �
��

a b c d e
s s

s

Fig. 5.

4 Term Rewriting Systems

We assume familiarity with the basis of term rewriting systems [1, 18, 22]. Let
F be a set of function symbols denoted by f, g, h, · · · , and let V be a countably
infinite set of variable symbols denoted by x, y, z, · · · where F ∩ V = ∅. By
T (F , V), we denote the set of all terms constructed from F and V . Terms not
containing variables are called ground terms. The set of all ground terms built
from F is denoted by T (F). A term t is linear if every variable in t occurs only
once.

Consider an extra constant � called a hole and the set T (F ∪ {�}, V). Then
C ∈ T (F ∪ {�}, V) is called a context over F . We use the notation C[ , . . . , ]
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for the context containing n holes (n ≥ 0), and if t1, . . . , tn ∈ T (F , V), then
C[t1, . . . , tn] denotes the result of placing t1, . . . , tn in the holes of C[ , . . . , ]
from left to right. In particular, C[ ] denotes a context containing precisely one
hole. A term s is called a subterm of t if t ≡ C[s], denoted by s � t. A subterm
s of t is proper, denoted by s � t, if s �≡ t. If a term t has an occurrence of some
(function or variable) symbol e, we write e ∈ t.

A substitution θ is a mapping from V to T (F , V). Substitutions are extended
into homomorphisms from T (F , V) into T (F , V). We write tθ instead of θ(t). We
write s � t if sθ ≡ t for some substitution θ.

A rewrite rule over F is a pair 〈l, r〉 of terms in T (F , V) such that l /∈ V and
any variable in r also occurs in l. We write l → r for 〈l, r〉. A redex is a term lθ,
where l → r.

A term rewriting system (TRS for short) R over F is a set of rewrite rules
over F . (We often simply write R when F can be inferred from the context.) A
TRS R over F is finite if both R and F are finite. The rewrite rules of R over
F define a reduction relation →R on T (F , V) as follows: t→Rs iff t ≡ C[lθ] and
s ≡ C[rθ] for some l → r ∈ R, C[ ] and θ. When we want to specify the redex
occurrence ∆ ≡ lθ of t in this reduction, we write t→∆

Rs. All the notions defined
in the previous sections for abstract reduction systems carry over to TRSs by
associating a reduction system 〈T (F , V), →R〉 with R. We will simply write →
instead of →R when no confusion arises.

Let l → r and l′ → r′ be two rules in R. We assume that they are renamed
to have no common variables. Suppose that s /∈ V is a subterm occurrence in l,
i.e., l ≡ C[s], such that s and l′ are unifiable with a most general unifier θ. Then
we say that l → r and l′ → r′ are overlapping, and that the pair 〈C[r′]θ, rθ〉 of
terms is critical in R [22]. We may choose l → r and l′ → r′ to be the same rule,
but in this case we shall not consider the case s ≡ l.

If R has a critical pair, then we say that R is overlapping; otherwise, non-
overlapping. We say that R is left-linear if for any l → r ∈ R, l is linear. R is
orthogonal if R is left-linear and non-overlapping. R is weakly orthogonal if R is
left-linear and every critical pair 〈s, t〉 of R is trivial (i.e., s ≡ t).

From here on we assume that R is a finite left-linear TRS over F which may
have overlapping rules. Furthermore, we view R as a TRS over F ∪ {�} when
we consider a reduction relation on T (F ∪ {�}, V).

5 Externality

The fundamental concept of neededness for orthogonal TRSs was introduced
by Huet and Lévy [8]. In an orthogonal TRS, every reducible term contains a
needed redex and needed reduction (i.e., call-by-need evaluation) is a normalizing
strategy [8]. This section presents a similar framework of externality for left-linear
overlapping TRSs. An external TRS R guarantees that every reducible term
contains an outer needed redex, called an external redex, which remains at an
outer position until R rewrites it. In the next section we shall show that external
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reduction works as a normalizing strategy for a class of left-linear overlapping
TRSs, like needed reduction for orthogonal TRSs.

Consider a left-linear TRS R over F .

Definition 4 (Outer redex). A context C[ ] is outer if C[ ] has no redex
occurrence ∆′ such that � ∈ ∆′. A redex occurrence ∆ of C[∆] is called outer
if C[ ] is outer. The set of all outer contexts with respect to R is denoted by
OUT (R). An outer redex ∆ of a term t is outermost if there exists no redex ∆′

of t such that ∆ � ∆′.

Definition 5 (External context). An outer context C[ ] is external with re-
spect to R if any s obtained by C[ ]→∗

Rs is an outer context. The set of all
external contexts with respect to R is denoted by EXT (R).

If the hole in C[ ] is deleted or duplicated through a reduction then C[ ] is
not external, since some non-outer context must arise previous to deletion or
duplication of the hole.

Definition 6 (External redex). Let ∆ be a redex occurrence in C[∆] such
that C[ ] is external. Then the redex occurrence ∆ is called external. If ∆ is an
external redex of C[∆] then we write C[∆E ]; otherwise C[∆NE ].

The notion of externality for orthogonal TRSs originates with Huet and Lévy [8].
Externality for non-orthogonal TRSs is presented in Van Oostrom and De
Vrier [19], which defines externality as a reduction step from a term whose residu-
als are not nested by other redexes. The definition in Van Oostrom and De Vrier
is slightly more abstract than ours, but the two notions are externally same (see
9.2.3 in [19]). The following example is given in [19].

Example 1. Let R = {f(x, b)→x, a→b}. Then the context f(a, �) is external
but f(�, a) is not, since f(�, a)→f(�, b) �∈ OUT (R). Thus, in the term f(a, a)
the rightmost redex occurrence a is external but the leftmost occurrence a is
not, i.e., f(aNE , aE).

From the definition of external redex it is obvious that in orthogonal TRSs any
two external redex occurrences in a term must be disjoint. On the other hand,
if a left-linear TRS is overlapping then two external redexes may be overlapping
as follows.

Example 2. Let R = {p(s(x))→x, s(p(x))→x}. Then we have the overlapping
external redexes f(s(p(s(x))E)E) since f(�) and f(s(�)) are external. Thus,
external redexes need not be outermost [19].

One might think that overlapping redex occurrences always make overlapping
external redexes if one of them is external, but this is not the case from the
following example.

Example 3. Let R = {b→c, f(b)→c, g(f(x), c)→x}. Then we have
g(f(bNE )E , bE). Note that two redex occurrences f(b) and b are overlap-
ping but the redex b occurring in f(b) is not external since the context
g(f(�), b) is not external.
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In a left-linear overlapping TRS, external redexes need not exist; for example,
in R = {a→b, f(b, x)→c, f(x, b)→c} the reducible term f(a, a) has no external
redexes [19].

Definition 7 (External TRS). A reduction t→∆s is external if ∆ is an ex-
ternal redex of t. We write t→Es if there exists an external reduction t→∆s for
some external redex ∆; otherwise t→NEs. We say that R is external if for each
term t �∈ NF, t has an external redex.

We shortly mention the relationship between neededness and externality of left-
linear TRSs. For details of neededness and externality not treated here we refer
to Van Oostrom and De Vrier [19]. The following definition of neededness is due
to [6].

Definition 8 (Needed redex). A context C[ ] is needed with respect to R if
any s obtained by C[ ]→∗

Rs is not a normal form in T (F , V). A redex occurrence
∆ in a term C[∆] is called needed if C[ ] is needed. A reduction t→∆s is needed
if ∆ is a needed redex of t.

As external contexts have no normal forms in T (F , V), external redexes are
(outermost) needed redexes; however, the revers need not hold. In Example 1,
the leftmost redex occurrence a of the term f(a, a) is (outermost) needed but not
external [19]. For orthogonal TRSs we have the following properties of externality
(neededness) [19].

– Any reducible term contains an external redex (a needed redex).
– External (needed) reduction is a normalizing strategy.
– Externality (neededness) of a redex is undecidable.

For a left-linear external TRS R, external reduction is a reduction strategy
as every reducible term has an external redex. However, external reduction need
not be a normalizing strategy if R is non-orthogonal. (See 9.2.4 in [19] too).

Example 4. Consider R = {a→b, f(x)→f(x), f(b)→b}. Clearly, R is external. In
the term f(a) the outermost redex occurrence f(a) is external but the innermost
redex occurrence a not. Then, external reduction starting with f(a) produces an
infinite sequence f(a)→Ef(a)→Ef(a)→E · · · . For normalizing f(a)→f(b)→b,
we need a non-external reduction step f(a)→NEf(b).

Externality of arbitrary left-linear TRSs is not decidable and external reduction
is not computable in general. Hence, in order to obtain computable external
reduction, we need to strengthen the notion of externality by decidable approx-
imations. We address this problem in Section 8.

6 Normalization of External Reduction

We will now explain how to prove the normalizing property of external reduction
for overlapping TRSs by using the BWCR Lemma. We first define root balanced
joinable TRSs.
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Root reduction t→rs is defined as a reduction t→s contracted at the root
position of t (i.e., t→∆s and ∆ ≡ t).

Lemma 5. Let C[∆E ] for some ∆ and let t→rs. Then C[t]→EC[s].

Proof. It is trivial from the definition of the root reduction. �

Definition 9. A critical pair 〈s, t〉 is root balanced joinable if s→k
r t′ and t→k

r t′

for some t′ and k ≥ 0. A TRS R is root balanced joinable if every critical pair
is root balanced joinable.

In general it is undecidable whether a critical pair is root balanced joinable. The
following example illustrates this problem.

Example 5. Consider a TRS R containing a constant b in normal forms and a
ground term s such that reachability of root reduction s→∗

rb is undecidable.
(Such a TRS R and a ground term s exist due to universal computation capabil-
ity of TRSs; for example, see an encoding of Turing machine to a TRS in [22]).
Let R′ be R ∪ {a→s, a→b, b→b} where a is a fresh constant. Then, the critical
pair 〈s, b〉 of R′ is root balanced joinable iff s→∗

rb; this is undecidable.

Note that every weakly orthogonal TRS is trivially root balanced joinable since
every critical pair is root balanced joinable with k = 0. We show that the root
balanced joinability is sufficient to guarantee the balanced weak Church-Rosser
property of left-linear TRSs.

Definition 10. Let ∆ and ∆′ be two redex occurrences in a term t, and let
∆ ≡ C[x1θ, · · · , xmθ] where C[x1, · · · , xm] is the left-hand side of a rewrite
rule and no variables occur in C[ , · · · , ]. Then ∆ and ∆′ (or ∆′ and ∆) are
overlapping if ∆′ � ∆ and ∆′�/ xiθ for any subterm occurrence xiθ.

Lemma 6. Let R be left-linear root balanced joinable. Let t→∆
E t′ and t→∆′

t′′,
where ∆′ � ∆ and ∆ and ∆′ are overlapping. Then, we have t′→k

Es and t′′→k
Es

for some s and k ≥ 0.

Proof. Let t ≡ C[∆] ≡ C[C′[∆′]], t′ ≡ C[p], t′′ ≡ C[q]. From the root balanced
joinability of the critical pair concerning ∆ and ∆′, we have p→k

rs′ and q→k
rs′

for some s′ and k ≥ 0, similarly to the Critical Pair Lemma [1, 18, 22]. Thus,
from C[∆E ] and Lemma 5, it follows that C[p]→k

EC[s′] and C[q]→k
EC[s′]. �

Lemma 7. Let C[∆E , s]. Then C[∆E , t] for any s→∗t.

Proof. Since C[�, s] is external and C[�, s]→∗C[�, t], C[�, t] is external. Thus
we have C[∆E , t]. �

Lemma 8. Let R be left-linear root balanced joinable. Then external reduction
→E has the balanced weak Church-Rosser property.
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Proof. Let t→∆
E t′, t→∆′

E t′′. We shall show that t′→k
Es and t′′→k

Es for some s
and k ≥ 0 (Figure 6). If ∆ and ∆′ are disjoint, then from Lemma 7 the theorem
clearly holds with k = 1. Assume that ∆ and ∆′ are not disjoint, say ∆′ � ∆.
Then, ∆ and ∆′ must be overlapping as they both are external. Apply Lemma 6.

��

We next consider the relation between external reduction →E and arbitrary
reduction. Since external reduction →E is balanced weakly Church-Rosser, the
normalization of external reduction is obtained if we can apply Corollary 2 by
taking →E as →s. However, this is impossible as (ii) in the corollary is not
satisfied because of duplication of redexes through reduction by a non-right-
linear rewrite rule. To overcome this problem, we use parallel reduction of disjoint
redexes.

Parallel reduction t−→++ s is defined by t ≡ C[∆1, · · · , ∆n]→∆1 · · · →∆ns for
some disjoint redexes ∆1, · · · , ∆n (n ≥ 0). A parallel reduction t−→++ s is proper
if n > 0, and we write t−→++ ′s. Since → and −→++ ′ have the same set of normal
forms and →E ⊆ −→++ ′, it is obvious that →E is a reduction strategy for → iff it
is a reduction strategy for −→++ ′. In the following lemmas we use −→++ instead of
−→++ ′ because of technical convenience.

Lemma 9. Let R be left-linear root balanced joinable and external, and let
t−→++ s. Then t=Es or t ←→→ E · −→++ · ←→← Es.

Proof. Let t−→++ ∆1···∆ns (n ≥ 0). The proof is by induction on n. The case n = 0
is trivial as t′ ≡ t ≡ s ∈ NF . Induction Step:

Case 1: Some ∆i, say without loss of generality ∆1, is external. We have
t→∆1

E t′−→++ ∆2···∆ns. By applying the induction hypothesis to t′−→++ ∆2···∆ns, we
obtain the lemma.

Case 2: No ∆i is external. From externality there must exist an external redex,
say ∆, in t. Let t→∆

E t′′ and consider the following two cases.
Case 2-1: ∆ and ∆i (i = 1 · · ·n) are non-overlapping. By using left-linearity

of R, we can easily show that t′′−→++ s′ and s→Es′ for some s′ (Figure 7).
Case 2-2: ∆ and some ∆i, say without loss of generality ∆1, are overlapping.

Let t→∆1
NE t′−→++ ∆2···∆ns. Note that ∆1 � ∆. From Lemma 6, it follows that
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t′′→k
Es′ and t′→k

Es′ for some s′ and k ≥ 0 (Figure 8). Thus, we can obtain
t ←→→ Et′. Apply the induction hypothesis to t′−→++ ∆2···∆ns. �
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Theorem 1. Let a TRS R be left-linear root balanced joinable and external.
Then, R has the normal form property, and external reduction →E is a normal-
izing strategy.

Proof. Note that by externality, we have NF = NFE (NFE denotes the set of
the normal forms concerning →E). Thus, →E is a reduction strategy for →, and
also for −→++ ′. From Lemma 8 →E is BWCR. From Lemma 9 it follows that if
t−→++ ′s then t=Es or t ←→→ E · −→++ ′ · ←→← Es. Taking →E as →s and −→++ ′ as →
respectively, we can apply Corollary 2. Thus, −→++ ′ has the normal form property
and →E is a normalizing strategy for −→++ ′. From →+ = −→++ ′+, the theorem
follows. �

We remark that in Definition 9 root reduction imposed for balanced joinability of
critical pairs can be relaxed to stably external reduction. The notion of stable ex-
ternality was considered first as stable index by Nagaya, Sakai and Toyama [14].
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An external context C[ ] in EXT (R) is stable if C′[C[ ]θ] is in EXT (R) for any
C′[ ] in EXT (R) and substitution θ. A redex occurrence ∆ in C[∆] is called sta-
bly external if C[ ] is stably external. A reduction t→∆s is stably external if ∆ is
a stably external redex of t. (Note that root reduction is clearly stably external
as the hole � is a stably external context; thus, root redaction can be viewed
as a special case of stably external reduction.) By replacing root reduction in
Definition 9 with stably external reduction, we define stable balanced joinabil-
ity. Then, all the proofs relied on root balanced joinability work also for stable
balanced joinability. For example, Theorem 1 is improved by replacing “root bal-
anced joinable” with “stable balanced joinable”. Unfortunately, stably external
redexes are not decidable; thus, appropriate decidable approximations of them
are necessary for computable normalizing strategy. For decidable approximations
of stable index reduction, we refer to [14].

7 Normalization of Quasi-External Reduction

This section improves the result of Theorem 1 by extending external reduction
to quasi-external reduction; that is, there exist no infinite reduction sequences
starting with a term having a normal form in which infinitely many external re-
dexes are contracted. Quasi-external reduction (or hyper-external reduction [19])
is defined as →∗

NE · →E · →∗
NE [22]. We first prove the next lemma.

Lemma 10. Let R be left-linear root balanced joinable and external. Let t→n
Es ∈

NF for some n ≥ 0 and t→∗t′. Then, we have t′→m
E s for some m ≤ n (Figure 9).

�

��
�
�
�
�
�
�
���

t
s ∈ NF

t′

n

E

E

m∗

Fig. 9.

Proof. The proof is by induction on n. The case n = 0 is trivial as t ≡ s ∈ NF .
Induction Step: We first prove the following claim: if t→n

Es ∈ NF and t→t′ then
t′→m

E s for some m ≤ n (Figure 10).

Proof of the claim. Let t→∆
E t′′→n−1

E s ∈ NF and t→∆′
t′ (Figure 11).

Case 1: ∆ and ∆′ are non-overlapping. By left-linearity of R, we can easily
show that t′→Es′ and t′′→∗s′ for some s′. From the induction hypothesis, it
follows that s′→m′

E s for some m′ ≤ n − 1. Thus, we obtain t′→m′+1
E s.
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Case 2: ∆ and ∆′ are overlapping. By using Lemma 6, we have t′→i
Es′ and

t′′→i
Es′ for some s′ and i ≥ 0. Applying the BWCR Lemma to t′′, we have

s′→n−1−i
E s. Thus, it holds that t′→n−1

E s. Therefore, the claim follows.

We next prove that if t→n
Es ∈ NF and t→kt′ then t′→m

E s for some m ≤ n.
The proof is by induction on k. The case k = 0 is trivial. Induction Step: Let
t→t̂→k−1t′. From the claim we have t̂→n′

E s for some n′ ≤ n. Thus, from the
induction hypothesis with respect to k in case n′ = n or with respect to n in
case n′ < n, it follows that t′→m

E s for some m ≤ n. �

Theorem 2. Let a TRS R be left-linear root balanced joinable and external.
Then quasi-external reduction →∗

NE · →E · →∗
NE is a normalizing strategy.

Proof. Let t have a normal form s. Then by Theorem 1 we have t→n
Es for some

n. By using induction on n we prove that every quasi-external reduction starting
with t is normalizing. The case n = 0 is trivial as t ≡ s. Let t→n

Es (n > 0). Take
any one-step quasi-external reduction starting with t, say t→∗

NE t′→Et′′→∗
NE t̂.

From Lemma 10 we have t′→n′

E s for some n′ ≤ n. Thus, by applying the BWCR
Lemma to t′ we obtain t′′→n′′

E s for some n′′ < n as n′′ + 1 = n′. Again from
Lemma 10 it holds that t̂→m

E s for some m ≤ n′′. From m < n and the induc-
tion hypothesis it follows that every quasi-external reduction starting with t̂ is
normalizing. Therefore the theorem holds. �

8 Decidable Approximations of Externality

In this section we address the problem to find decidable approximations of ex-
ternal reduction. Durand and Middeldorp [6] presented a simple framework of
decidable approximations to show normalizing strategies of orthogonal TRSs.
We adapt this framework to left-linear overlapping (i.e., non-orthogonal) TRSs,
based on the notions of balanced weak Church-Rosser property and externality.
The framework of decidable approximations presented in [6] heavily relies on
tree automata techniques. We first recall the basic notions concerning tree au-
tomata [4].
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A tree automaton is a tuple A = (F , Q, Qf , Π) where F is a finite set of
function symbols, Q is a finite set of states, Qf ⊆ Q is a set of final states and Π
is a set of ground rewrite rules of the form f(q1, . . . , qn)→q or q→q′ where f ∈ F ,
q1, . . . , qn, q, q′ ∈ Q. We use →A for the reduction relation →Π on T (F ∪ Q). A
term t ∈ T (F) is accepted by A if t→∗

Aq for some q ∈ Qf . The tree language
L(A) recognized by A is the set of all terms accepted by A. A set L is regular if
there exists a tree automaton A such that L = L(A). The following properties
of tree automata are well-known [4]:

– The class of regular languages is effectively closed under union, intersection,
difference, and complementation.

– The membership and the emptiness problems for regular languages are de-
cidable.

Consider a TRS R over F . We denote the set of all normal forms of R in
T (F , V) by NF (R) and the set of all redexes of R in T (F , V) by RED(R). We
introduce a fresh constant ◦ �∈ F and let F◦ = F ∪ {◦}. We view R as a TRS
over F◦ when a reduction relation on T (F◦) is considered. Note that NF (R)
and RED(R) have no terms containing ◦ since they are defined as subsets of
T (F , V).

Let t◦ denote the term in T (F◦) obtained from a term t ∈ T (F , V) by replac-
ing each variable in t with the constant ◦. We write T ◦ = {t◦ | t ∈ T } for a set
T ⊆ T (F , V). We say a term set T ⊆ T (F , V) is variable insensitive if, for all
t ∈ T (F , V), t ∈ T iff t◦ ∈ T ◦. These notions are naturally extended to contexts
over F . Note that if T is a variable insensitive set of terms (or contexts) over F
and T ◦ is regular then T is decidable.

Lemma 11. Let R be a left-linear TRS. Then, RED(R), NF (R) and OUT (R)
are variable insensitive. Moreover, NF (R)◦, RED(R)◦ and OUT (R)◦ are
regular.

Proof. From left-linearity of R it holds that s is a redex iff s◦ is a redex for any
s ∈ T (F , V). Thus, RED(R) is variable insensitive. Similarly we can show that
NF (R) and OUT (R) are variable insensitive. From [4] it is clear that NF (R)◦,
RED(R)◦ and OUT (R)◦ are regular. �
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Definition 11 (Externality approximation mapping). An externality ap-
proximation mapping α is a function mapping from a TRS R to a set of contexts
such that α(R) ⊆ EXT (R). We say that α is decidable if α(R) is decidable for
all R, and α is regular if, for all R, (i) α(R)◦ is regular and (ii) α(R) is variable
insensitive.

Note that if an externality approximation mapping α is regular then it is decid-
able.

Definition 12 (α-external TRS). We say a context C[ ] is α-external with
respect to R if C[ ] ∈ α(R). A redex occurrence ∆ in C[∆] is called α-external
if C[ ] is α-external. A reduction t→∆s is α-external if ∆ is an α-external
redex of t. We say that a TRS R is α-external if each term t ∈ T (F , V) −
NF (R) has an α-external redex (i.e., an α-external reduction of R is a reduction
strategy).

As an α-external redex occurrence ∆ is an external redex and an α-external TRS
R is external, we have the following theorem.

Theorem 3. Let α be an externality approximation mapping (resp. an exter-
nality regular approximation mapping), and let a TRS R be left-linear root
balanced joinable and α-external. Then, R has the normal form property, and
α-external reduction is a normalizing strategy (resp. a computable normalizing
strategy).

Proof. From Theorem 1 it is trivial. �

The following theorem shows that the class of α-external TRSs is decidable if α
is regular.

Theorem 4. Let α be an externality regular approximation mapping. Then it
is decidable whether a left-linear TRS R is α-external.

Proof. Let R be a left-linear TRS over F . Let L = { C[∆] | ∆ ∈
RED(R) and C[ ] ∈ α(R)}. Since RED(R) and α(R) are variable insensible, L is
variable insensible and we can write L◦ = { C′[∆′] | ∆′ ∈ RED(R)◦ and C′[ ] ∈
α(R)◦}. Since RED(R)◦ and α(R)◦ are regular, there exist two tree automata
Ared = (F◦, Qred, Q

f
red, Πred) and Aα = (F◦ ∪ {�}, Qα, Qf

α, Πα), where
Qred ∩ Qα = ∅, which recognize RED(R)◦ and α(R)◦ respectively. Without
loss of generality we may suppose Qf

red = {qred} and Qf
α = {qα} [4]. Let

A = (F◦, Qred ∪ Qα, {qα}, ΠL) where ΠL = Πred ∪ (Πα − {�→p | �→p ∈
Πα}) ∪ {qred→p | �→p ∈ Πα}. Then it can be shown that L◦ = L(A); thus
L◦ is regular. From the definition of α-externality, the TRS R is α-external iff
(T (F , V) − NF (R)) − L = ∅. Since T (F , V), NF (R) and L are variable in-
sensitive, we have that (T (F , V) − NF (R)) − L is variable insensitive. Thus, it
holds that (T (F , V) − NF (R)) − L = ∅ iff (T (F◦) − NF (R)◦) − L◦ = ∅. Since
(T (F◦) − NF (R)◦) − L◦ is regular, the emptiness of (T (F◦) − NF (R)◦) − L◦ is
decidable. �
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We next consider decidable approximations of TRSs to find an externality regular
approximation mapping α. An extended TRS (eTRS for short) R over F is a finite
set of extended rewrite rules l→r in which the right-hand side r may have extra
variables not occurring in the left-hand side l. Similarly to TRSs, we can view
R as an eTRS over F◦ ∪ {�} when a reduction relation on T (F◦ ∪ {�}) is
considered, imposing the restriction that when an extended rewrite rule l → r
is applied, the extra variables in r are instantiated by arbitrary terms in T (F◦);
thus, a reduction does not generate new holes.

Following Durand and Middeldorp [6], we say that an eTRS R over F is
regularity preserving if (R−1)∗(L) = { t | ∃s ∈ L t→∗

Rs } is regular for every
regular tree language L over F (resp. F◦ ∪ {�}), where →R is the reduction
relation on T (F) (resp. T (F◦ ∪ {�}) ) defined by R.

An eTRS Ra over F is an approximation of a TRS R over F if →∗
R ⊆ →∗

Ra
.

Note that the definition of approximation is slightly different from that in [6]
which imposes the extra condition NF (R) = NF (Ra). The following definition
is due to [6].

Definition 13 (Regularity preserving approximation mapping). A reg-
ularity preserving approximation mapping τ is a function mapping from a left-
linear TRS R to a left-linear eTRS τ(R) such that (i) τ(R) is an approximation
of R and (ii) τ(R) is regularity preserving.

Definition 14 (τ-external context). Let τ be a regularity preserving approx-
imation mapping. An outer context C[ ] is τ-external with respect to R if any s
obtained by C[ ]→∗

τ(R)s is in OUT (R). The set of all τ-external contexts with
respect to R is denoted by ατ (R).

Lemma 12. Let τ be a regularity preserving approximation mapping and R a
left-linear TRS over F . Let s ∈ T (F ∪ {�}, V) and s◦→∗

τ(R)u. Then there exists
some t ∈ T (F ∪ {�}, V) such that s→∗

τ(R)t and t◦ ≡ u.

Proof. Let s◦→k
τ(R)u. We prove the claim by induction on k. The case k = 0 is

trivial. Induction Step: Let s◦→τ(R)p→k−1
τ(R)u. From left-linearity of τ(R), there

exists some q ∈ T (F ∪ {�}, V) such that s→τ(R)q and q◦ ≡ p. Thus, form
q◦→k−1

τ(R)u and the induction hypothesis, we have t ∈ T (F ∪ {�}, V) such that
q→∗

τ(R)t and t◦ ≡ u. �

Lemma 13. Let τ be a regularity preserving approximation mapping and R a
left-linear TRS over F . Then ατ (R) is variable insensitive.

Proof. We show that C[ ] ∈ ατ (R) iff C[ ]◦ ∈ ατ (R)◦. If-part: Let C[ ]◦ ∈ ατ (R)◦

and C[ ]→∗
τ(R)s. Then we have C[ ]◦→∗

τ(R)s
◦. Since C[ ]◦ ∈ ατ (R)◦, it holds

that s◦ ∈ OUT (R)◦. As OUT (R) is variable insensitive, s ∈ OUT (R). Thus,
C[ ] ∈ ατ (R). Only-if-part: Let C[ ] ∈ ατ (R) and C[ ]◦→∗

τ(R)u. By Lemma 12
there exists some t such that C[ ]→∗

τ(R)t and t◦ ≡ u. Since C[ ] ∈ ατ (R), it holds
that t ∈ OUT(R). As OUT (R) is variable insensitive, u ∈ OUT (R)◦. Thus,
C[ ]◦ ∈ ατ (R)◦. �
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Lemma 14. Let τ be a regularity preserving approximation mapping. Then ατ

is an externality regular approximation mapping. Hence, ατ (R) is a computable
approximation of EXT (R).

Proof. Since →∗
R ⊆ →∗

τ(R), it is trivial that ατ (R) ⊆ EXT (R). By Lemma 13,
ατ (R) is variable insensitive. Hence, we shall show that ατ (R)◦ is regular. Let
CONT be the set of all contexts over F containing precisely one hole and
let NOUT(R) = CONT − OUT (R). Then we have NOUT(R)◦ = CONT ◦ −
OUT (R)◦. Since CONT ◦ and OUT (R)◦ are regular, NOUT (R)◦ is regular. Let
Lτ = {s ∈ T (F∪{�}, V) | ∃C[ ] ∈ NOUT (R), s→∗

τ(R)C[ ]}. Then, by Lemma 12
it is easily shown that s→∗

τ(R)C[ ] for some C[ ] ∈ NOUT (R) iff s◦→∗
τ(R)C

′[ ]
for some C′[ ] ∈ NOUT(R)◦. Thus, we have L◦

τ = {s′ ∈ T (F◦ ∪ {�}) | ∃C′[ ] ∈
NOUT(R)◦, s′→∗

τ(R)C
′[ ]}. Since τ(R) is regularity preserving, we have L◦

τ =
(τ(R)−1)∗(NOUT(R)◦); thus, L◦

τ is regular. From ατ (R)◦ = CONT ◦ − L◦
τ , it

follows that ατ (R)◦ is regular. �

Definition 15 (τ-external TRS). We say C[ ] is τ-external with respect to
R if C[ ] ∈ ατ (R). A redex occurrence ∆ in C[∆] is called τ-external if C[ ]
is τ-external. A reduction t→∆s is τ-external if ∆ is a τ-external redex of t.
We say that a TRS R is τ-external if each term t ∈ T (F , V) − NF (R) has a
τ-external redex.

Theorem 5. Let τ be a regularity preserving approximation mapping and let a
TRS R be left-linear root balanced joinable and τ-external. Then, R has the
normal form property, and τ-external reduction is a computable normalizing
strategy.

Proof. From Theorem 3 and Lemma 14 it is clear. �

The following theorem shows that the class of τ -external TRSs is decidable.

Theorem 6. Let τ be a regularity preserving approximation mapping. Then it
is decidable whether a left-linear TRS R is τ-external.

Proof. From Theorem 4 and Lemma 14 it is clear. �

The first idea of regularity preserving approximations was proposed by Huet and
Lévy [8] as the strong approximation of orthogonal TRSs, which is obtained by
replacing the right-hand side of every rewrite rule with a fresh variable not oc-
curring in the left-hand side. Oyamaguchi [21] gave a better approximation, the
NV approximation, which is obtained by replacing all variables in the right-hand
side of every rewrite rule with distinct fresh variables. Jacquemard [9], Nagaya
and Toyama [15] introduced the growing approximation, which is obtained by
replacing all variables in the left-hand sides of every rewrite rule that occur
at a depth greater than 1 with distinct fresh variables [15]. In these approxi-
mations, the regularity preserving property depends only on left-linearity, but
not on orthogonality [9, 15, 6]. Thus, we can use them as regularity preserving
approximations for arbitrary left-linear TRSs.
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An approximation mapping τ is strong (resp. NV, growing) if τ(R) is a strong
(resp. NV, growing) approximation of R for every TRS R. Then, from Theo-
rems 5 and 6, the following corollaries hold.

Corollary 4. Let a TRS R be left-linear root balanced joinable and strong-
external (resp. NV-external, growing-external). Then, R has the normal form
property, and strong-external (resp. NV-external, growing-external) reduction is
a computable normalizing strategy.

Corollary 5. It is decidable whether a left-linear TRS R is strong-external
(resp. NV-external, growing-external).

Example 6. Let R be combinatory logic CL ∪⎧⎪⎪⎨
⎪⎪⎩

f(g(x, K), K) → (K · ((K · x) · x)) · x
f(g(x, K), K) → ((S · K) · x) · x
f(g(K, y), S) → g(y, y)
g(S, S) → S.

As R has overlapping redexes at the root of f(g(x, K), K), we obtain the critical
pair 〈(K ·((K ·x)·x))·x, ((S ·K)·x)·x〉. The critical pair meets by root reductions
(K · ((K · x) · x)) · x→r(K · x) · x→rx and ((S · K) · x) · x→r(K · x) · (x · x)→rx.
Thus R is root balanced joinable. Let the strong approximation of combinatory
logic CL be τ(CL): {

((S · x) · y) · z → w
(K · x) · y → z.

Then the strong approximation τ(R) of R is τ(CL)∪⎧⎪⎪⎨
⎪⎪⎩

f(g(x, K), K) → z
f(g(x, K), K) → z
f(g(K, y), S) → z
g(S, S) → z.

Since R is transitive [14, 23] (forward-branching [5]), it is strong-external. Thus,
from Corollary 4, R has the normal form property, and strong-external re-
duction is a computable normalizing strategy. Consider a term of the form
f(g(∆1, ∆2), ∆3) in R, where ∆i (i = 1, 2, 3) are redex occurrences. Then neither
∆1 nor ∆2 is a strong-external redex, as f(g(�, ∆2), ∆3) →τ(R) f(g(�, K), ∆3)
→τ(R) f(g(�, K), K) �∈ OUT (R) and f(g(∆1, �), ∆3) →τ(R) f(g(K, �), ∆3)
→τ(R) f(g(K, �), S) �∈ OUT (R) respectively. The rightmost redex occurrence
∆3 is strong-external since one can easily check f(g(∆1, ∆2), �) →∗

τ(R) s

∈ OUT (R) for any term s.

Example 7. Let R be combinatory logic CL ∪⎧⎨
⎩

f(x, S) → x · S
f(S, y) → S · y
f(x, y) → x · y.
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Since R is weakly orthogonal, it is trivially root balanced joinable. Let the strong
approximation τ(R) of R be τ(CL)∪⎧⎨

⎩
f(x, S) → z
f(S, y) → z
f(x, y) → z.

Since a term of the form f(s, t) in R certainly gives a redex independent on s
and t, one can easily check strong-externality of R, ignoring the first two rules
f(x, S) → z and f(S, y) → z. Thus, from Corollary 4, R has the normal form
property, and strong-external reduction is a computable normalizing strategy.
Note that if the third rule f(x, y) → z does not exist, then R is not strong-
external as f(∆1, ∆2) has no strong-external redexes.

9 Left-Normal Systems

In this section we discuss a syntactic characterization of external overlapping
TRSs. Such a syntactical characterization was found by O’Donnell [17] for or-
thogonal TRSs. He proved that if an orthogonal TRS R is left-normal then
leftmost-outermost reduction is normalizing. We show that his result can be nat-
urally extended to root balanced joinable TRSs.

Definition 16. The set TL(F , V) of the left-normal terms constructed from F
and V is inductively defined as follows:

1. x ∈ TL(F , V) if x ∈ V,
2. f(t1, · · · , tp−1, sp, xp+1 · · · , xn) ∈ TL(F , V) (0 ≤ p ≤ n)

if f ∈ F , t1, · · · , tp−1 ∈ T (F), sp ∈ TL(F , V), xp+1, · · · , xn ∈ V,
and f(t1, · · · , tp−1, sp, xp+1 · · · , xn) is linear.

A TRS R over F is left-normal [8, 17, 22] if for any rule l → r in R, l is a left-
normal term in TL(F , V). From the definition of left-normal terms, a left-normal
TRS R is left-linear, and it may be overlapping.

Definition 17 (Left-outer context). A context C[ ] is left-outer if every redex
∆′ of C[ ] occurs right of � (i.e., C[ ] ≡ C′[�, ∆′] for some C′[ , ]) whenever it
exists.

Definition 18 (Left-outer redex). A redex occurrence ∆ of C[∆] is called
left-outer if C[ ] is left-outer. A reduction t→∆s is left-outer if ∆ is a left-outer
redex of t.

Let αL(R) be the set of all left-outer contexts with respect to a TRS R. Then
the decidability of αL(R) is trivial. We shall show that αL(R) is a decidable
approximation of EXT (R) if R is left-normal.

Lemma 15. Let a TRS R be left-normal. If C[ ] is left-outer and C[ ]→∗s, then:

(1) s is a left-outer context,
(2) for any t ∈ TL(F , V), if t � s then t � C[ ].
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Proof. By induction on the size of C[ ], we will prove (1) and (2) simultaneously.

Basic step: C[ ] ≡ �. Then (1) and (2) are trivial.
Induction step: Since C[ ] �≡ �, we can write C[ ] ≡ f(t1, · · · , tp−1, Cp[ ], tp+1,

· · · , tn), where t1, · · · , tp−1 are normal forms and Cp[ ] is left-outer.
(1) Suppose that s is not left-outer. As C[ ] is a left-outer context, there

exists some non-left-outer context C̃[ ] ≡ f(t1, · · · , tp−1, C̃p[ ], t̃p+1, · · · , t̃n) such
that C[ ]→∗C̃[ ]→∗s where Cp[ ]→∗C̃p[ ] and tp+1→∗t̃p+1, · · · , tn→∗t̃n. From
the induction hypothesis with respect to (1) and Cp[ ]→∗C̃p[ ], C̃p[ ] is left-
outer. Since C̃[ ] is not left-outer, there exists a redex ∆ such that � ∈ ∆ �
C̃[ ]. As C̃p[ ] is left-outer, ∆�/ C̃p[ ]. Thus, we have ∆ ≡ C̃[ ]. Hence, l �
C̃[ ] ≡ f(t1, · · · , tp−1, C̃p[ ], t̃p+1, · · · , t̃n) for some l→r ∈ R such that l ≡
f(t1, · · · , tq−1, sq, xq+1, · · · , xn) ∈ TL(F , V). Since C[ ] is left-outer, it holds that
l ��C[ ]; thus, q ≥ p. Since ti ��C̃p[ ] for any ground term ti, q ≤ p holds. So we
have p = q. From the induction hypothesis with respect to (2) and sp � C̃p[ ], we
have sp � Cp[ ]. Thus, f(t1, · · · , tp−1, sp, xp+1, · · · , xn) � f(t1, · · · , tp−1, Cp[ ],
tp+1, · · · , tn) ≡ C[ ]; it contradicts to the fact that C[ ] is left-outer. Hence, s
must be left-outer.

(2) From (1) it follows that every s′ must be left-outer for C[ ]→∗s′→∗s;
thus, we can write s ≡ f(t1, · · · , tp−1, C′

p[ ], t′p+1, · · · , t′n) where Cp[ ]→∗C′
p[ ]

and tp+1→∗t′p+1, · · · , tn→∗t′n. Let t � s for some t ≡ f(t1, · · · , tq−1, sq, xq+1,
· · · , xn) ∈ TL(F , V). If q < p then it is clear that t � C[ ]. If q = p then sq ≡ sp

� C′
p[ ]. From the induction hypothesis with respect to (2) we have sp � Cp[ ].

Thus, t � C[ ]. �

Lemma 16. Let a TRS R be left-normal. Then αL(R) ⊆ EXT (R).

Proof. Note that the left-outer contexts are outer. Thus from Lemma 15 (1) the
left-outer contexts are external. �

Thus, αL is an externality decidable approximation mapping for the class of
left-normal TRSs.

Lemma 17. Let a TRS R be left-normal. Then R is αL-external (i.e., every
reducible term has a left-outer redex).

Proof. Trivial. �

Theorem 7. Let a TRS R be root balanced joinable and left-normal. Then, R
has the normal form property, and left-outer reduction is a computable normal-
izing strategy.

Proof. It follows from Theorem 1, Lemmas 16 and 17. �

Definition 19 (Leftmost-outermost redex). A redex occurrence ∆ of t is
called leftmost-outermost if ∆ is the leftmost of the outermost redexes of t. A
reduction t→∆s is leftmost-outermost if ∆ is a leftmost-outermost redex of t.
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As leftmost-outermost redexes are clearly left-outer redexes, we have the following
corollary.

Corollary 6. Let a TRS R be root balanced joinable and left-normal. Then, R
has the normal form property, and leftmost-outermost reduction is a computable
normalizing strategy.

Note that every weakly orthogonal left-normal TRS is root balanced joinable.
Thus the following corollary holds.

Corollary 7. Let a TRS R be weakly orthogonal and left-normal. Then, R has
the normal form property, and leftmost-outermost reduction is a computable nor-
malizing strategy.

Example 8. Let R be combinatory logic CL ∪{
pred · (succ · x) → x
succ · (pred · x) → x.

It is clear that R is weakly orthogonal and left-normal. Thus, from Corollary 7, R
has the normal form property, and leftmost-outermost reduction is a computable
normalizing strategy.

Example 9. Let R be combinatory logic CL ∪{
(A · x) · y → ((x · K) · x) · y
(A · S) → (S · K) · A.

Clearly, R is left-normal and it has overlapping redexes in (A · S) · y. Thus, we
have the critical pair 〈((S · K) · A) · y, ((S · K) · S) · y〉. Since the critical pair can
join by root reductions of two steps ((S · K) · A) · y→r(K · y) · (A · y)→ry and
((S · K) · S) · y→r(K · y) · (S · y)→ry, R is root balanced joinable. Thus, from
Corollary 6, R has the normal form property, and leftmost-outermost reduction
is a computable normalizing strategy.

Example 10. Let R be combinatory logic CL ∪⎧⎪⎪⎨
⎪⎪⎩

(K · A) · y → (K · B) · y
(K · B) · y → (K · A) · y
A → A
B → B.

It is clear that R is left-normal and it has the two critical pairs 〈(K · A) · y,
(K · B) · y〉 and 〈(K · B) · y, (K · A) · y〉. We have root reduction (K · A) · y
→r (K · B) · y →rB and (K · B) · y→rB→rB for the critical pair 〈(K · A) · y,
(K · B) · y〉, and (K · B) · y→r(K · A) · y→rA and (K · A) · y→rA→rA for the
critical pair 〈(K ·B)·y, (K ·A)·y〉 respectively. Thus, R is root balanced joinable.
Therefore, from Corollary 6, R has the normal form property, and leftmost-
outermost reduction is a computable normalizing strategy. Note that though R
has the unique normal form property due to the normal form property, R is not
Church-Rosser as (K · A) · y can be reduced into two constants A and B which
cannot be joined.
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10 Conclusion

In this paper we have investigated normalizing strategies for left-linear overlap-
ping TRSs. We have introduced the concept of the balanced weak Church-Rosser
(BWCR) property and related it to a normalizing strategy based on the BWCR
Lemma, which is presented in an abstract framework depending solely on the re-
duction relation. Applying this abstract framework to TRSs, we have shown that
external reduction is a normalizing strategy for the class of left-linear TRSs in
which every critical pair can be joined with root balanced reductions and every
reducible term has an external redex. Further, we have presented computable
normalizing strategies based on decidable approximations of external redexes.

An interesting direction for further research is application to higher-order
rewriting systems, like Klop’s combinatory reduction system [11]. We believe
the BWCR lemma can provide an accessible means of developing computable
normalizing strategies uniformly for various higher-order rewriting systems. An-
other interesting issue is root-external reduction for non-orthogonal TRSs, which
is very parallel to root-needed reduction for orthogonal TRSs developed by Mid-
deldorp [13]. As root-normalizing strategy is more fundamental and complicated
than normalizing strategy, we need to generalize the theoretical framework for
dealing with approximated decidable reduction based on root-externality.
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