
Term Rewriting Systems

and

the Church-Rosser Property

by

Yoshihito Toyama

May 1990



Abstract

Our research concerns term rewriting systems having the Church-Rosser property.

First, we develop modular aspects for term rewriting systems for systematic analysis

of the behavior of combined term rewriting systems. The main outcome of this

research is establishment of the modularity of the Church-Rosser property, which is

very helpful for dealing with complex term rewriting systems.

We also develop a simple method for proving the equivalence of two given term

rewriting systems without the explicit use of induction, and demonstrate that the

method can be effectively applied to deriving a new term rewriting system from a

given one by using equivalence transformation rules.

Finally, the Church-Rosser property of a new type of conditional term rewriting

systems is investigated.

i



Acknowledgments

I would like to thank Professor Akira Maruoka of Tohoku University for his kindly

guidance and encouragement during the preparation of this thesis. I would also

like to thank Professor Masayuki Kimura, Professor Takayasu Ito, and Professor

Masahiko Sato of Tohoku University for their helpful suggestions and comments.

I wish to express my thanks to NTT (Nippon Telegraph and Telephone Corpo-

ration) Laboratories for giving a rich and stimulating environment for my research.

Especially thanks to Dr. Kazuhiko Kakehi, executive manager of Information Sci-

ence Research Laboratory, and the members of Theory Group - Dr. Kenji Koyama,

Mr. Hirofumi Katsuno, Mr. Yasuyoshi Okada, Mr. Junnosuke Yamada, and Mr. Ken

Mano - for their kindly supports and encouragements.

I also wish to thank Professor Jan Willem Klop, Center for Mathematics and

Computer Science, and Professor Henk Pieter Barendregt, Nijmegen University, for

valuable discussions. The content of Section 2.3, Termination for the Direct Sum

of Left-Linear Complete Term Rewriting Systems, is based on a collaborative work

with them.

ii



Contents

Abstract

Acknowledgments

1 Introduction 1

1.1 Backgrouds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Reduction Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Term Rewriting Systems . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Direct Sum of Term Rewriting Systems 18

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 The Church-Rosser Property for the Direct Sum of

Term Rewriting Systems . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Direct Sum Systems . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2 Preserved Systems . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.3 The Church-Rosser Property for the Direct Sum . . . . . . . . 35

2.3 Termination for the Direct Sum of Left-Linear Complete

Term Rewriting Systems . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.3.2 Essential Subterms . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3.3 Termination for the Direct Sum . . . . . . . . . . . . . . . . . 55

iii



2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3 Commutativity of Term Rewriting Systems 64

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2 Extended Critical Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3 Sufficient Condition for Commutativity . . . . . . . . . . . . . . . . . 67

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4 How to Prove Equivalence of Term Rewriting Systems

without Induction 77

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 Equivalence of Abstract Reduction Systems . . . . . . . . . . . . . . 80

4.3 Examples of Equivalent Systems . . . . . . . . . . . . . . . . . . . . . 84

4.4 Inductionless Induction . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.5 Equivalence Transformation Technique . . . . . . . . . . . . . . . . . 91

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5 Membership Conditional Term Rewriting Systems 100

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.2 Membership-Conditional Rewriting . . . . . . . . . . . . . . . . . . . 103

5.3 Confluence of Restricted Nonlinear Systems . . . . . . . . . . . . . . 106

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6 Conclusion 114

Appendix A 116

Appendix B 123

Appendix C 130

Bibliography 142



Paper List 153



1. Introduction

Our research concerns term rewriting systems having the Church-Rosser property

[22, 27, 39, 58]. We investigate the modular structure of term rewriting systems,

which is clearly important in building a complex system from simple parts. Mod-

ularity for the direct sum and union of term rewriting systems are developed for

systematic analysis of the behavior of combined systems. This research establishes

the modularity of the Church-Rosser property, which is very useful in dealing with

complex term rewriting systems.

The equivalence problem frequently appears in computer science [9]. We develop

a simple method for proving the equivalence of two given term rewriting systems

without the explicit use of induction. The method extends the inductionless induc-

tion methods developed by Musser [69], Goguen [31], Huet and Hullot [38] into a

more general framework. We demonstrate that the method can be effectively ap-

plied to deriving a new term rewriting system from a given one by using equivalence

transformation rules.

Finally, the Church-Rosser property of a new type of conditional term rewriting

systems is investigated.

1.1. Backgrounds

Equational reasoning has been applied to many problems in computer science. A

number of effective methods for handling equations in automated theorem proving

have been proposed [11, 35, 52, 59, 62, 71]. Many formula manipulation systems use

1



equations to simplify a given expression [8]. In the field of algebraic specifications,

data types are axiomatized in equational theories [30, 31, 33, 84]. Several functional

and logic programming languages also base their semantics on equational logics;

thus, equational reasoning plays a central role in computation, program verification,

program transformation, and program synthesis [9, 19, 40, 41, 42, 43, 72, 73].

In reasoning about equations, we need to decide whether an equation is a con-

sequence of a given set of equations (axioms). As well known, this reasoning is

usually done by replacing equals with equals. However, dealing effectively with this

equational reasoning is, in general, difficult. Instead, an asymmetrical reasoning,

reduction, has been proposed, which uses equations in only one direction to rewrite

a term into a simpler form. For instance, an equation 1+2 = 3 can be interpreted as

“3 is the result of of computing 1 + 2”, but not vice versa. This directional replace-

ment is expressed by 1+2 → 3 which reads “1+2 reduces to 3”. This computational

aspect for equations naturally leads us to term rewriting systems [22, 27, 39, 58].

Term rewriting systems are sets of directed equations (rewriting rules) used to

compute by repeatedly replacing equal terms in a given formula until the simplest

form possible (normal form) is obtained. The Church-Rosser property is certainly

one of the most fundamental properties of term rewriting systems (and the reduction

paradigm). In a Church-Rosser term rewriting system, the simplest form of a given

term is unique, that is, the final result does not depend on the order in which the

rewriting rules were applied. This flexibility permits us to compute the result in

an asynchronous parallel or nondeterministic way. Furthermore, if every reduction

always terminates, a Church-Rosser term rewriting system determines a decision

procedure for the word problem for the corresponding equational theory. Thus,

Church-Rosser systems can offer both flexible computing and effective reasoning with

equations, and have been intensively researched and widely applied to automated

theorem proving, functional and logic programming, algebraic specification, program

verification, program transformation, program synthesis, and symbolic computation

[9, 8, 11, 19, 30, 31, 33, 35, 52, 59, 62, 71, 72, 73, 84].

2



Sufficient criteria for proving the Church-Rosser property have been discovered

[59, 81, 72, 37] and many applications have been developed within these criteria.

However, the criteria requires tight limitations on systems, such as termination [59]

or left-linearity [81, 72, 37]. Few criteria have been proposed that do not have these

limitations. Thus, it is worth while to extend criteria for the Church-Rosser property

and exploit new potentials of term rewriting systems having this property.

We will here give a short sketch of the history of term rewriting systems. The

study of term rewriting systems originated in combinatory logic [15, 16] and lambda

calculus [2, 12], which were developed and deeply analyzed half a century ago to in-

vestigate the foundation of functions. Combinatory logic is actually a term rewriting

system.

Combinatory logic was invented independently in the 1920’s by Schöenfinkel

[86] and Curry [15, 16]. The aim was to do logic or computation without using

variables. With a different motivation, lambda calculus was developed in the 1930’s

by Church [12], which is a variant of combinatory logic. Kleene showed that lambda-

definability is equivalent to “effective computability” defined by partial recursive

functions [55]. Rosser demonstrated the close connection between lambda calculus

and combinatory logic [82], and Church and Rosser showed the consistency of both

systems by using the Church-Rosser property [13]. Through these early studies,

most of the basic concepts and important techniques in the field of term rewriting

systems were introduced.

Recursive program schemata, a special case of term rewriting systems, were in-

troduced in the 1960’s by McCarthy to study the computation of recursively defined

functions [63]. In the 1970’s, considering recursive program schemata as rewriting

systems, Vuillemin [106, 107], Downey and Sethi [24], Berry and Lévy [4] developed

a mathematical framework for the operational semantics of LISP-like programming

languages, and they investigated reduction strategy problems as the correct or op-

timal implementation problems of the languages. Rosen [81], O’Donnel [72], and

3



Huet [37] extended this framework into a theory of non-terminating the Church-

Rosser term rewriting systems and proposed a few sufficient criteria for the Church-

Rosser property of left-linear systems. Moreover, O’Donnel[72, 73] suggested an

equational programming paradigm based on term rewriting systems, and in the

1980’s, functional programming languages in which programs can be written as a

set of equations, such as Miranda [105], KRC [104], HOPE [10] and T [40], have been

implemented. Recently, Dershowitz and Plaisted [21] showed that conditional term

rewriting systems [48] provide a paradigm for programming languages combining

functional programming with logic programming, such as EQLOG [32], SLOG [25],

and Qute [85].

An important application of the Church-Rosser term rewriting systems to the

field of automated theorem proving, the completion procedure, was begun in 1970 by

Knuth and Bendix [59]. The completion procedure takes a set of equations as input,

and attempts to produce as output a complete (i.e., Church-Rosser and terminating)

term rewriting system, which determines a decision procedure for the word problem

for the theory. Considering critical pairs between rewriting rules, Knuth and Bendix

demonstrated a necessary and sufficient criterion for the Church-Rosser property of

terminating term rewriting systems. Variants of the basic Knuth-Bendix completion

procedure (REVE [62], RRL [52], Metis [71], HIPER [11], etc.) have been developed

for automated theorem proving.

1.2. Organization

This thesis includes four studies of term rewriting systems having the Church-Rosser

property, arranged into Chapters 2-5. Each chapter has its own introduction and

conclusion. The chapters can thus be read independently after this chapter. We

give a short summary of the thesis.

The Church-Rosser property is one of the most important properties of term

4



rewriting systems, and sufficient criteria for proving this property have been studied

[59, 81, 72, 37]. A necessary and sufficient criterion for the Church-Rosser property

of terminating term rewriting systems, in which every reduction must terminate,

was demonstrated by Knuth and Bendix [59]. For non-terminating term rewrit-

ing systems, Rosen [81] proved that left-linear and non-overlapping term rewriting

systems (i.e., no variable occurs twice or more in the left-hand side of a rewriting

rule and two left-hand sides of rewriting rules must not overlap) are Church-Rosser,

and the non-overlapping limitation was somewhat relaxed by Huet [37]. However,

few criteria have been proposed for the Church-Rosser property of term rewriting

systems not having these limitations. Thus, it is worth while extending the above

criteria. Chapters 2 and 3 demonstrate very useful facts for extending the criteria

for the Church-Rosser property and for the related basic property. The key idea

behind these chapters is modular properties of term rewriting systems which enable

us to build a complex system from its simple parts.

In Chapter 2, we introduce the concept of the direct sum of term rewriting

systems and demonstrate modular properties. The main result, which is proven in

the first half of this chapter, is that the Church-Rosser property is modular: term

rewriting systems R1 and R2 are Church-Rosser iff the direct sum R1 ⊕ R2 is so.

Here, the direct sum means the union of systems having disjoint sets of function

symbols.

The first study on the direct sum system was conducted by Klop in [56] in order

to consider the Church-Rosser property for combinatory reduction systems having

non-linear rewriting rules. He showed that if R1 is a left-linear and non-overlapping

system and R2 consists of the single non-linear rule D(x, x) . x, then the direct sum

R1 ⊕ R2 has the Church-Rosser property. However, the restriction on R1 plays an

essential role in his proof of the Church-Rosser property of R1⊕R2; hence his result

cannot be applied to term rewriting systems without this restriction. Moreover,

Klop’s direct sum, which is different from ours, does not preserve the Church-Rosser

5



property [56].

In contrast with Klop’s, our direct sum of term rewriting systems R1 and R2,

independent of their properties such as linear or non-overlapping, always preserves

their Church-Rosser property. Thus, the modularity presented here offers very useful

method for proving the Church-Rosser property of combined systems without these

limitations.

The second half of this chapter proves that the completeness (i.e., Church-Rosser

and termination) property of term rewriting systems is modular under left-linearity:

term rewriting systems R1 and R2 are left-linear and complete iff the direct sum

R1⊕R2 is so. To appreciate the non-triviality of this modularity, it is contrasted with

the facts that other fundamental properties, termination and completeness, are not

modular [96]. The modularity presented is of value not only because it establishes a

result that in itself is simple enough, but also because of the analysis necessary for

the proof which gives a kind of structure theory for disjoint combinations of term

rewriting systems.

Hindley [34] and Rosen [81] showed that if R1 and R2 commute and have the

Church-Rosser property, then the union R1 ∪ R2 also has the Church-Rosser prop-

erty. Thus, without the requirement of the direct sum, commutativity also offers

modularity for the union R1 ∪ R2 of two systems. Simple sufficient criteria for

commutativity or quasi-commutativity of left-linear term rewriting systems R1 and

R2 have been proposed [1, 44, 46, 79, 88]. However, these works were done on

the restrictions: R1 and R2 are non-overlapping with each other [1, 79, 88], or R1 is

(E−) terminating [44, 46]. In Chapter 3, we study commutativity of left-linear term

rewriting systems R1 and R2 without the above restrictions. That is, two systems

may overlap and be non-terminating. It is shown that our result can be applied to

proving the Church-Rosser property of left-linear term rewriting systems to which

the sufficient criteria proposed by Knuth and Bendix [59], Rosen [81], and Huet [37]

cannot directly apply.

6



Chapters 4 and 5 are not related to modularity of term rewriting systems, but

investigate two topics about term rewriting systems having the Church-Rosser prop-

erty. The concept of equivalence in a restricted domain of term rewriting systems

frequently appears in computer science: automated theorem proving, semantics of

functional programs, program transformation, verification of programs, and specifi-

cation of abstract data types. However, this equivalence cannot generally be proved

by mere equational reasoning; some kind of induction on the domain structure is

necessary. Chapter 4 presents a new simple method for proving the equivalence in

a restricted domain of two term rewriting systems without the explicit use of in-

duction. Our approach to this problem was inspired by the inductionless induction

methods developed by Musser [69], Goguen [31], Huet and Hullot [38], and others

[26, 45, 50, 53, 60, 75, 76, 89]. We generalize the inductionless induction meth-

ods within a general framework. The point of our method is that the equivalence

in a restricted domain can be easily proved by the Church-Rosser property and

reachability. Some limitations of the inductionless induction methods are removed.

Furthermore, we demonstrate that the extended inductionless induction concept is a

useful tool for proving correctness of program transformations proposed by Burstall

and Darlington [9].

In Chapter 5, we propose a new type of conditional term rewriting systems: the

membership-conditional term rewriting system, in which each rewriting rule may

have membership conditions. Our idea of membership-conditional rewriting was

inspired by Church’s non-linear δ-rule in λ-calculus [2, 56]. It is well known that the

membership conditions in Church’s δ-rule play an important role for the Church-

Rosser of λ-calculus with the non-linear δ-rule. We extend the idea of membership-

conditional rewriting offered in Church’s δ-rule to non-linear term rewriting systems.

We discuss the sufficient criteria for the Church-Rosser property of membership-

conditional term rewriting systems that are non-terminating and non-linear.

7



Chapter 6 summarizes our research.

1.3. Reduction Systems

In this and next sections we present elementary notions and facts necessary for un-

derstanding the following chapters. Basic concepts and properties of term rewriting

systems can be stated more generally in an abstract framework. Thus we start

with (abstract) reduction systems, which are no more than sets equipped with some

binary relations. In the next section, the abstract reductions are specialized to

rewritings of terms. The reader who is familiar with term rewriting systems can

skip these chapters. Most of the material in Sections 1.3 and 1.4 is standard and

can be found in the surveys: Dershowitz and Jouannaud [22], Futatsugi and Toyama

[27], Huet and Oppen [39], Klop [58].

We define reduction systems and state some simple facts about them, according

to Huet [37], Klop [56, 58], and Rosen [81]. Since these reduction systems have

only an abstract structure, they are called abstract reduction systems in Klop [58].

(They are also called replacement systems in Staple [87], and general replacement

systems in Rosen [81].)

1.3.1. Definition

(i) A reduction system is a structure R = 〈A,→〉 consisting of some object set A and

some binary relation → on A (i.e., →⊆ A×A), called a reduction relation. A

reduction (starting with x0) in R is a finite sequence x0 → x1 → x2 → · · · → xn

or an infinite sequence x0 → x1 → x2 → · · ·.

(ii) The identity of elements x, y of A (or syntactical equality) is denoted by x ≡ y.

≡→ is the reflexive closure of →,
+→ is the transitive closure of →,

∗→ is the

transitive reflexive closure of →, and = is the equivalence relation generated

by → (i.e., the transitive reflexive symmetric closure of →).
m→ denotes a

8



reduction of m (m ≥ 0) steps.

(iii) If x ∈ A is minimal with respect to →, i.e., ¬∃y ∈ A[x → y], then we say that

x is a normal form, or → normal form; let NF be the set of normal forms. If

x
∗→ y and y ∈ NF then we say x has a normal form y and y is a normal form

of x.

1.3.2. Definition.

(i) R = 〈A,→〉 is strongly normalizing (denoted by SN(R)), or R is terminating,

iff every reduction in R terminates, i.e., there is no infinite sequence x0 →
x1 → x2 → · · ·.

(ii) R is weakly normalizing (denoted by WN(R)) iff any x ∈ A has a normal form.

1.3.3. Definition. R = 〈A,→〉 has the Church-Rosser property (denoted by

CR(R)), or R is confluent, iff ∀x, y, z ∈ A[x
∗→ y∧x

∗→ z ⇒ ∃w ∈ A, y
∗→w∧ z

∗→w].

We express this property with the diagram in Figure 1.1. In this sort of dia-

gram, dashed arrows denote (existential) reductions depending on the (universal)

reductions shown by full arrows.

?

-

-?

x z

y w

∗

∗

∗ ∗

Figure 1.1.

9



The following proposition is well known [2, 37, 58].

1.3.4. Proposition. Let R have the Church-Rosser property, then,

(i) ∀x, y ∈ A[x = y ⇒ ∃w ∈ A, x
∗→w ∧ y

∗→w],

(ii) ∀x, y ∈ NF [x = y ⇒ x ≡ y],

(iii) ∀x ∈ A∀y ∈ NF [x = y ⇒ x
∗→ y].

Let R1 = 〈A,→
1
〉 and R2 = 〈A,→

2
〉 be two reduction systems having the same

object set A.

1.3.5. Definition. R1 = 〈A,→
1
〉 commutes with R2 = 〈A,→

2
〉 (denoted by

COM(R1, R2)) iff R1 and R2 satisfy the diagram in Figure 1.2.

?

-

-?

x z

y w

∗
2

∗
2

∗ 1 ∗1

Figure 1.2

Note that R has the Church-Rosser property iff R is self-commuting, i.e., R

10



commutes with itself. Hindley [34] and Rosen [81] discovered the following useful

propositions.

1.3.6. Proposition (Commutative Union Theorem). Let Ri = 〈A,→
i
〉 (i ∈

I) be reduction systems. Let Ri commute with Rj for all i, j ∈ I. Then ∪
i∈I

Ri has

the Church-Rosser property, where ∪
i∈I

Ri = 〈A, ∪
i∈I
→
i
〉.

1.3.7. Proposition (Commutativity Lemma). Let R1 and R2 satisfy the

diagram in Figure 1.3. Then R1 commutes with R2.

?

-

-?

x z

y w

2

≡
2

1 ∗1

Figure 1.3

1.4. Term Rewriting Systems

A term rewriting system is a reduction system having a term set as an object set

A. This section explains the basic notions and properties of term rewriting systems,

according to Huet and Oppen [39], Klop [58].

11



Let F be an enumerable set of function symbols denoted by f, g, h, · · ·, and let V

be an enumerable set of variable symbols denoted by x, y, z, · · · where F ∩V = φ. By

T (F, V ), we denote the set of terms constructed from F and V . An arity function

ρ is a mapping from F to natural numbers N, and if ρ(f) = n then f is called an

n-ary function symbol. In particular, a 0-ary function symbol is called a constant.

1.4.1. Definition. The set T (F, V ) of terms on a function symbol set F is

inductively defined as follows:

(i) x ∈ T (F, V ) if x ∈ V ,

(ii) f ∈ T (F, V ) if f ∈ F and ρ(f) = 0,

(iii) f(M1, . . . ,Mn) ∈ T (F, V ) if f ∈ F, ρ(f) = n > 0, and M1, . . . , Mn ∈ T (F, V ).

Note. Often we use the infix notation M1fM2 instead of f(M1,M2) when the

arity of f is 2.

Terms containing no variable are called ground terms, and T (F ) is the set of

ground terms. If every variable in a term occurs only once, then the term is called

linear. We use the symbols M, N, P, · · · for terms and the symbols T, T ′, T ′′, · · · for

term sets.

Consider an extra constant called a hole and the set T (F ∪ { }, V ). Then

C ∈ T (F ∪ { }, V ) is called a context on F . We use the notation C[ , . . . , ] for the

context containing n holes (n ≥ 0), and if N1, . . . , Nn ∈ T (F, V ), then C[N1, . . . , Nn]

denotes the result of placing N1, . . . , Nn in the holes of C[ , . . . , ] from left to right.

In particular, C[ ] denotes a context containing precisely one hole.

N is called a subterm of M if M ≡ C[N ]. Let N be a subterm occurrence

of M ; then, we write N ⊆ M , and if N 6≡ M , then we write N ⊂ M . If N1

and N2 are subterm occurrences of M having no common symbol occurrences (i.e.,

M ≡ C[N1, N2]), then N1, N2 are called disjoint (denoted by N1 ⊥ N2).

12



1.4.2. Example. Let F = {f, g, c} where the arities are ρ(f) = 2, ρ(g) = 1,

and ρ(c) = 0. Then f(x, g(x)) is a (non-linear) term, f(x, g(y)) is a linear term,

f(c, g(c)) is a ground term, g(c) and f(x, y) are subterms of f(g(c), f(x, y)) and

g(c) ⊥ f(x, y). 2

1.4.3. Definition. A substitution θ is a mapping from a term set T to T such

that;

(i) θ(f) = f if f is constant,

(ii) θ(f(M1, . . . , Mn)) ≡ f(θ(M1), . . . , θ(Mn)) if f(M1, . . . ,Mn) ∈ T .

Thus, for a term M , θ(M) is determined by its values on the variable symbols

occurring in M . Following common usage, we write this as Mθ instead of θ(M).

A rewriting rule is a pair 〈Ml,Mr〉 of terms in T (F, V ) such that Ml /∈ V and

any variable in Mr also occurs in Ml. The notation . denotes a set of rewriting

rules and we write Ml . Mr for 〈Ml, Mr〉 ∈ .. A →redex, or redex, is a term Mlθ,

where Ml . Mr, and in this case Mrθ is called a →contractum, of Mlθ. The set . of

rewriting rules defines a reduction relation → on T as follows:

M → N iff M ≡ C[Mlθ], N ≡ C[Mrθ], and Ml . Mr

for some Ml,Mr, C[ ], and θ.

When we want to specify the redex occurrence A ≡ Mlθ of M in this reduction,

write M
A→N .

1.4.4. Definition. A term rewriting system R on T is a reduction system

R = 〈T,→〉 such that the reduction relation → is defined by a set . of rewriting

rules on T . If R has Ml . Mr, then we write Ml . Mr ∈ R.

We say that R is left-linear (or linear) iff for any Ml . Mr ∈ R, Ml is linear. R

13



is called non-left-linear (or non-linear) if R is not left-linear.

1.4.5. Example. Consider F = {+, s, 0} where arities are 2, 1, 0 respectively.

Let R be the (left-linear) term rewriting system on T (F, V ) with the following rewrit-

ing rules:

R





x + 0 . x

x + s(y) . s(x + y).

Then R computes the addition of natural numbers. For instance, s(0) + s(s(0))
∗→

s(s(s(0))) since we have the following reduction:

s(0) + s(s(0)) → s(s(0) + s(0)) → s(s(s(0) + 0)) → s(s(s(0))). 2

1.4.6. Example (Combinatory Logic). Consider F = {•, S, K} where ari-

ties are 2, 0, 0 respectively. Then combinatory logic (CL) is the (left-linear) term

rewriting system on T (F, V ) having the following rewriting rules:

CL





((S • x) • y) • z . (x • z) • (y • z)

(K • x) • y . x.

The term rewriting system CL has ‘universal’ computational power, that is, every

(partial) recursive function on the natural numbers can be expressed in CL: See [2].

2

Let M . N and P . Q be two rules in R. We assume that we have renamed

the variables appropriately, so that M and P share no variables. Assume S /∈ V

is a subterm occurrence in M , i.e., M ≡ C[S], such that S and P are unifiable,

i.e., Sθ ≡ Pθ, with a minimal unifier θ [37, 59] . Since Mθ ≡ C[S]θ ≡ Cθ[Pθ],

14



two reductions starting with Mθ, i.e., Mθ → Cθ[Qθ] ≡ C[Q]θ and Mθ → Nθ, can

be obtained by using P . Q and M . N . Then we say that P . Q and M . N are

overlapping, and that the pair 〈C[Q]θ, Nθ〉 of terms is critical in R [37, 39] . We may

choose M . N and P . Q to be the same rule, but in this case we shall not consider

the case S ≡ M , which gives the trivial pair 〈N, N〉. If R has no critical pair, then

we say that R is non-overlapping [37, 39, 59]. Note that the term rewriting systems

in Examples 1.4.5 and 1.4.6 both are non-overlapping.

1.4.7. Example. Consider F = {∗, e} where arities are 2, 0 respectively. Let

R be the (left-linear) term rewriting system on T (F, V ) with the following rewriting

rules:

R





(1) e ∗ x . x

(2) (x ∗ y) ∗ z . x ∗ (y ∗ z).

Then (1) and (2) are overlapping at (e ∗ y) ∗ z, and (2) and (2) itself are overlapping

at ((x ∗ y) ∗ z) ∗ w. Thus we have the critical pairs 〈y ∗ z, e ∗ (y ∗ z)〉 and

〈(x ∗ (y ∗ z)) ∗ w, (x ∗ y) ∗ (z ∗ w)〉 respectively. 2

The following sufficient conditions for the Church-Rosser property are well known

[37, 39, 59, 81].

1.4.8. Proposition (Knuth-Bendix). Let R be strongly normalizing. Then

R has the Church-Rosser property iff P and Q have the same normal form for any

critical pair 〈P, Q〉 in R.

1.4.9. Proposition (Rosen). Let R be left-linear and non-overlapping. Then

R has the Church-Rosser property.

15



Rosen’s proposition for the Church-Rosser property of left-linear term rewriting

systems is a special case of Huet’s condition, stated here. We need a definition first:

1.4.10. Definition. For a term rewriting system R, the parallel reduction −→++
for disjoint redex occurrences is defined as follows. Let M ≡ C[A1, · · · , Am] and

let Ai
Ai→Bi (i = 1, · · · ,m). Let N ≡ C[B1, · · · , Bm]. Then we write M −→++ N or

M
A1,···,Am−→++ N .

1.4.11. Proposition (Huet). Let R be left-linear. If P −→++ Q for every critical

pair 〈P, Q〉 in R, then R has the Church-Rosser property.

By applying Propositions 1.4.8 to Examples 1.4.5 and 1.4.7, and Proposition 1.4.9

(or 1.4.11) to Example 1.4.6, we can easily show the Church-Rosser property of the

term rewriting systems in the above examples.

The following example shows that strongly normalizing (i.e., terminating) in

Proposition 1.4.8 and left-linear in Propositions 1.4.9 and 1.4.11 are necessary.

1.4.12. Example. Consider F = {f, g, a, b} where arities are 2, 1, 0, 0 respec-

tively. Let R be the term rewriting system on T (F, V ) with the following rewriting

rules:

R





f(x, x) . a

g(x) . f(x, g(x))

b . g(b)

Then R is not Church-Rosser, since the term b has two reductions b
∗→ a and b

∗→ g(a)

but g(a) cannot be reduced into the normal form a. Note that R is non-overlapping,

but has the non-left-linear rule f(x, x) . a and an infinite reduction b → g(b) →

16



g(g(b)) → · · ·. 2

Remark. For term rewriting systems, it is undecidable whether the Church-Rosser

property holds, whether the termination property (i.e., strong normalizing) holds

[22, 39, 58]. For particular term rewriting systems, it may be undecidable whether

two terms are convertible (i.e., they can be connected by =), whether a term has

a normal form, whether a term has an infinite reduction; for instance, combinatory

logic (CL) is a term rewriting system where all these properties are undecidable [2].

For the decidability of ground term rewriting systems, see [74, 90].

17



2. Direct Sum of Term Rewriting

Systems

The direct sum of two term rewriting systems is the union of systems having dis-

joint sets of function symbols. In this chapter it is proven that the Church-Rosser

property is modular: if two term rewriting systems both have the Church-Rosser

property respectively then the direct sum of these systems also has this property.

Moreover, it is shown that the left-linear and completeness property is modular, but

the termination property is not.

2.1. Introduction

An important concern in building algebraic specifications is their hierarchical or

modular structure. The same holds for term rewriting systems [22, 39, 58] which can

be viewed as implementations of equational algebraic specifications. Specifically, it

is of obvious interest to determine which properties of term rewriting systems have

a modular character, where we call a property modular if its validity for a term

rewriting system, hierarchically composed of some smaller term rewriting systems,

can be inferred from the validity of that property for the constituent term rewriting

systems. Naturally, the first step in such an investigation considers the most ba-

sic properties of term rewriting systems: Church-Rosser, termination, and similar

fundamental properties as well as combinations thereof.

18



As to the modular structure of term rewriting systems, it is again natural to

consider as a start the most simple way that term rewriting systems can be combined

to form a larger term rewriting system: namely, as a disjoint sum. This means that

the alphabets of the term rewriting systems to be combined are disjoint, and that the

rewriting rules of the sum term rewriting system are the rules of the summand term

rewriting systems together. (Without the disjointness requirement the situation is

even more complicated - see Chapter 3 for some results in this direction.) A disjoint

union of two term rewriting systems R1 and R2 is called a direct sum, notation

R1 ⊕R2.

In this chapter, we consider properties of the direct sum system R1⊕R2 obtained

from two term rewriting systems R1 and R2. The main result of this chapter, which is

proven in Section 2.2, is that the Church-Rosser property is modular: term rewriting

systems R1 and R2 are Church-Rosser iff the direct sum R1 ⊕ R2 is so. Section 2.3

shows that the left-linear and completeness (i.e., Church-Rosser and termination)

property is also modular, but the termination property is not.

2.2. The Church-Rosser Property for the Direct

Sum of Term Rewriting Systems

The first study on the direct sum system was conducted by Klop in [56] in order

to consider the Church-Rosser property for combinatory reduction systems having

nonlinear rewriting rules, which contain term rewriting systems as a special case.

He showed that if R1 is a regular, i.e., linear (i.e., left-linear) and nonoverlapping,

system and R2 consists of the single nonlinear rule D(x, x) . x, then the direct sum

R1 ⊕R2 has the Church-Rosser property. He also showed in the same manner that

if R2 consists of the nonlinear rules

19



R2





if(T, x, y) . x

if(F, x, y) . y

if(z, x, x) . x

then the direct sum R1 ⊕R2 also has the Church-Rosser property. This result gave

a positive answer for an open problem suggested by O’Donnell [72].

Klop’s work was done on combinatory reduction systems having the following

restrictions: R1 is a regular (i.e., linear and nonoverlapping) system, and R2 is

a nonlinear system having specific rules such as D(x, x) . x. In particular, the

restriction on R1 plays an essential role in his proof of the Church-Rosser property

of R1 ⊕ R2; hence his result cannot be applied to combinatory reduction systems

(and term rewriting systems) without this restriction.

From Klop’s work, we consider the conjecture that these restrictions can be

completely removed from R1 and R2 in the framework of term rewriting systems

[37], i.e., the direct sum of term rewriting systems R1 and R2, independent of their

properties such as linear or nonoverlapping, always preserves their Church-Rosser

property. In this section we shall prove this conjecture: For any two term rewriting

systems R1 and R2, R1 and R2 have the Church-Rosser property iff R1⊕R2 has this

property.

Note. In this section there are no limitations on term rewriting systems, thus,

they may have nonlinear or overlapping rewriting rules [37, 56].

2.2.1. Direct Sum Systems

Let F1 and F2 be disjoint sets of function symbols (i.e., F1 ∩ F2 = φ), then term

rewriting systems R1 on T (F1, V ) and R2 on T (F2, V ) are called disjoint. Consider

disjoint systems R1 and R2 having sets .
1

and .
2

of rewriting rules, respectively,

20



then the direct sum system R1 ⊕ R2 is the term rewriting system on T (F1 ∪ F2, V )

having the set .
1
∪ .

2
of rewriting rules. If R1 and R2 are term rewriting systems not

satisfying the disjoint requirement for function symbols, then we take isomorphic

copies R′
1 and R′

2 by replacing each function symbol f of Fi by f i (i = 1, 2), and use

R′
1 ⊕ R′

2 instead of R1 ⊕ R2. For this reason, considering the direct sum R1 ⊕ R2,

we may assume that R1 and R2 are always disjoint, i.e., F1 ∩ F2 = φ.

Note. The above direct sum is different from Klop’s [56]: The direct sum of

combinatory reduction systems (in which terms are written in combinator notation)

is defined as the union of two systems with disjoint constant symbols, but with the

same application function symbol. Klop pointed out that his direct sum does not

preserve the Church-Rosser property.

It is trivial that if CR(R1⊕R2) then CR(R1) and CR(R2). Hence, in the follow-

ing subsections we shall prove CR(R1 ⊕ R2), assuming that CR(R1) and CR(R2)

where R1 = 〈T (F1, V ),→
1
〉, R2 = 〈T (F2, V ),→

2
〉, and R1⊕R2 = 〈T (F1 ∪F2, V ),→〉.

Note that from here on the notation → represents the reduction relation on R1⊕R2.

2.2.1.1. Definition. A root of a term M ∈ T (F1 ∪ F2, V ) is defined by

root(M) =





f if M ≡ f(M1, . . . , Mn),

M if M is a constant or a variable.

2.2.1.2. Definition. Let M ≡ C[B1, . . . , Bn] ∈ T (F1∪F2, V ) and C 6≡ . Then

write M ≡ C[[B1, . . . , Bn]] if C[ , . . . , ] is a context on Fa and ∀i, root(Bi) ∈ Fb (a, b ∈
{1, 2}and a 6= b). Then the set S(M) of the special subterms of M ∈ T (F1 ∪ F2, V )

is inductively defined as follows:

S(M) =




{M} if M ∈ T (Fa, V ) (a = 1 or 2),
⋃

i S(Bi) ∪ {M} if M ≡ C[[B1, . . . , Bn]] (n > 0).

2.2.1.3. Definition. For a term M ∈ T (F1 ∪ F2, V ), the rank of layers of

21



contexts on F1 and F2 in M is inductively defined as follows:

rank(M) =





1 if M ∈ T (Fa, V ) (a = 1 or 2),

maxi{rank(Bi)}+ 1 if M ≡ C[[B1, . . . , Bn]] (n > 0).

2.2.1.4. Example. Let a rewriting rule of R1 be f(x) . f(f(x)), and let a

rewriting rule of R2 be g(x, x) . x, where F1 = {f}, F2 = {g}, ρ(f) = 1, ρ(g) = 2.

Consider a term M0 ≡ g(f(x), g(f(f(g(x, x))), f(x))) ∈ T (F1 ∪ F2, V ). Note that

M0 has a layer structure of contexts on F1 and F2 constructed by g( , g( , )) on

F2, f(x), f(f( )), f(x) on F1, and g(x, x) on F2 from the outside. Then S(M0) =

{M0, f(x), f(f(g(x, x))), g(x, x)}, root(M0) = g. We can write

M0 ≡ C[[f(x), f(f(g(x, x))), f(x)]] where C[ , , ] ≡ g( , g( , )).

R1 ⊕R2 has the following reduction:

M0 ≡ g(f(x), g(f(f(g(x, x))), f(x)))

→ M1 ≡ g(f(x), g(f(f(x)), f(x)))

→ M2 ≡ g(f(x), g(f(f(x)), f(f(x))))

→ M3 ≡ g(f(x), f(f(x)))

→ M4 ≡ g(f(f(x)), f(f(x)))

→ M5 ≡ f(f(x)).

Then rank(M0) = 3, rank(M1) = rank(M2) = rank(M3) = rank(M4) =

2, rank(M5) = 1.

2.2.1.5. Lemma. If M → N then rank(M) ≥ rank(N).

Proof. It is easily obtained from the definitions of the direct sum R1 ⊕R2.

22



2.2.2. Preserved Systems

A term M ∈ T (F1 ∪ F2, V ) has a layer structure of contexts on F1 and F2, and this

structure is modified through a reduction process in a direct sum system R1 ⊕ R2

on T (F1 ∪ F2, V ). If a reduction M → N results in the disappearance of some layer

between two layers in the term M , then, by putting the two layers together, a new

layer structure appears in the term N . If no middle layer in M disappears as a result

of any reduction, then we say that the layer structure in M is preserved in the direct

sum system. In this subsection we will show that if two term rewriting systems have

the Church-Rosser property, then terms with a certain restriction, namely, that their

layer structure is preserved under reductions, also have the Church-Rosser property.

Using this result, we will prove our conjecture in Subsection 2.2.3.

The set of terms reduced from a term M by a reduction relation → is denoted

by G→(M) = {N | M
∗→N}.

2.2.2.1 Definition. A term M is root preserved (denoted by r-Pre(M) ) iff

root(M) ∈ Fa ⇒ ∀N ∈ G→(M), root(N) ∈ Fa, where a ∈ {1, 2}.

Now we formalize the concept of preserved layer structure.

2.2.2.2 Definition. A term M ≡ C[[B1, . . . , Bn]] (n > 0) is preserved iff M

satisfies two conditions;

(1) r-Pre(M),

(2) ∀i, Bi is preserved.

We write Pre(M) when M is preserved. Note that, by the definition, if Pre(M),

then ∀N ∈ G→(M), P re(N).

Let M
A→N and M ≡ C[[B1, . . . , Bn]]. If the redex occurrence A occurs in some

Bj, then we write M →
i

N ; otherwise M →
o

N . →
i

and →
o

are called an inner and

an outer reduction, respectively.

23



2.2.2.3 Lemma. Let Pre(M) and M ≡ C[[B1, . . . , Bn]]. Then,

(1) M →
i

N ⇒ N ≡ C[[C1, . . . , Cn]] where ∀i, Bi
≡→Ci;

(2) M →
o

N ⇒ N ≡ C ′[[Bi1 , . . . , Bip ]] (1 ≤ ij ≤ n), where C[ , . . . , ] and C ′[ , . . . , ]

are contexts on the same set Fa (a = 1 or 2).

Proof. It is immediately proved from Pre(M) and the definition of →
i
, →

o
.

We consider the term sequences; α = 〈A1, . . . , An〉 and β = 〈B1, . . . , Bn〉, where

Ai, Bi ∈ T . Then, we write α ∝ β iff ∀i, j[Ai ≡ Aj ⇒ Bi ≡ Bj]. We define α
∗→ β

by ∀i, Ai
∗→Bi.

We extend the above notations to terms. Let M ≡ C[[A1, . . . , An]], N ≡ C[[B1, . . . , Bn]],

α = 〈A1, . . . , An〉, β = 〈B1, . . . , Bn〉. Then write M ∝ N if α ∝ β .

We use the relation ∝ to deal with nonlinear rewriting rules. For example,

let the reduction f(A1, A2, A3, A4)
∗→ g(A1) be obtained by using the nonlinear rule

f(x, x, y, y) . g(x). Then, we can obtain the reduction f(B1, B2, B3, B4)
∗→ g(B1) by

the same rule if 〈A1, A2, A3, A4〉 ∝ 〈B1, B2, B3, B4〉. This leads us to the following

lemma.

2.2.2.4. Lemma. Let Pre(M), M ∝ N . If M →
o

M ′, then ∃N ′, N →
o

N ′∧M ′ ∝
N ′.

Proof. Let M ≡ C[[A1, . . . , An]], N ≡ C[[B1, . . . , Bn]]. Then the left side of the

rewriting rule used in M →
o

M ′ occurs in context C[ , . . . , ]. Since M ∝ N we can

apply this rule to N in the same way, and obtain N →
o

N ′. By Lemma 2.2.2.3(2), it

is clear that M ′ ∝ N ′.

2.2.2.5. Lemma. Let Pre(M), M →
o

P , M
∗→
i

N , M ∝ N . Then there is a

term Q satisfying the diagram in Figure 2.1, that is,

∀M, N, P ∈ T [M
∗→
i

N ∧M →
o

P ∧M ∝ N ⇒ ∃Q ∈ T, N →
o

Q∧P
∗→
i

Q∧P ∝ Q].

24



Proof. By Lemma 2.2.2.4 we obtain a term Q such that P ∝ Q and N →
o

Q.

Using M →
o

P , M
∗→
i

N and Lemma 2.2.2.3(1), (2), we obtain P
∗→
i

Q.

?

-

-?

M P

N Q

o

o

∗ i ∗i

Figure 2.1

2.2.2.6. Lemma. Let Pre(M), M
∗→
i

N , M
∗→
o

P , M ∝ N . Then we can obtain

a term Q satisfying Figure 2.2.

?

-

-?

M P

N Q

∗
o

∗
o

∗ i ∗i

Figure 2.2

Proof. Using lemma 2.2.2.5, the diagram in Figure 2.3 can be made.

25



?

- - - -

? ? ? ?- - - -

M P

N Q

o o o o

o o o o

∗ ∗ ∗ ∗ ∗i i i i i

Figure 2.3

We define the local Church-Rosser property at a term M .

2.2.2.7. Definition. Let R = 〈T,→〉 be a reduction system and let M ∈ T .

Then M is Church-Rosser for → (denoted by CR→(M) or CR(M) ) iff

∀N, P ∈ T [M
∗→N ∧M

∗→P ⇒ ∃Q ∈ T, N
∗→Q ∧ P

∗→Q].

Note that ∀M ∈ T, CR(M) iff CR(R).

We define M ↓ N by ∃Q ∈ T, M
∗→Q ∧N

∗→Q.

2.2.2.8. Lemma. Let α = 〈A1, . . . , An〉 and ∀i, CR(Ai). Then

∃β = 〈B1, . . . , Bn〉[α ∗→ β ∧ ∀i, j[Ai ↓ Aj ⇒ Bi ≡ Bj]].

Proof. Using CR(Ak), it can be shown that Ai ↓ Ak ∧ Ak ↓ Aj ⇒ Ai ↓ Aj.

Hence ↓ is an equivalence relation and it partitions {A1, . . . , An} in the equivalence

class C1, . . . , Cm. Using the Church-Rosser property for each Ai, we can take a term

Bp for each equivalence class Cp = {Ap1 , . . . , Apq} as the diagram in Figure 2.4.

Take Bp1 ≡ . . . ≡ Bpq ≡ Bp.

26



A
A
A
A
A
A
A
A
A
AU

¢
¢

¢
¢

¢
¢

¢
¢

¢
¢®

A
A
A
A
A
A
A
A
A
AU

¢
¢

¢
¢

¢
¢

¢
¢

¢
¢®

A
A
A
A
A
A
A
A
A
AU

¢
¢

¢
¢

¢
¢

¢
¢

¢
¢®

A
A
A
A
A
A
A
A
A
AU

�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

A
A
A
A
A
A
A
A
A
AU

Ap1 Ap2 · · · · · · Apq

Bp

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗

∗

∗

Figure 2.4

2.2.2.9. Lemma. Let α = 〈A1, . . . , An〉 ∗→ β = 〈B1, . . . , Bn〉 and ∀i, CR(Ai).

Then Ai ↓ Aj iff Bi ↓ Bj.

Proof. By the Church-Rosser property for each Ai, it is obvious.

2.2.2.10. Lemma. Let α = 〈A1, . . . , An〉, ∀i, CR(Ai), and α
∗→ β, α

∗→ γ. Then

we can obtain δ satisfying Figure 2.5, where β ∝ δ and γ ∝ δ.

27



?

-

-?

α β

γ δ

∗ ∗

∗

∗

∗ ∗

Figure 2.5

Proof. Let β = 〈B1, . . . , Bn〉, γ = 〈C1, . . . , Cn〉. By ∀i, CR(Ai), we have a

term δ′ = 〈D′
1, . . . , D

′
n〉 such that β

∗→ δ′ and γ
∗→ δ′. Using Lemma 2.2.2.8 for δ′,

we obtain δ = 〈D1, . . . , Dn〉 such that δ′ ∗→ δ and D′
i ↓ D′

j ⇒ Di ≡ Dj. Then, by

Lemma 2.2.2.9, Ai ↓ Aj ⇐⇒ D′
i ↓ D′

j, hence Ai ↓ Aj ⇒ Di ≡ Dj. Next we show

β ∝ δ. If Bi ≡ Bj, then Ai ↓ Ai, and, thus Di ≡ Dj, hence β ∝ δ. Similarly we can

prove γ ∝ δ.

2.2.2.11. Lemma. Let M ≡ C[[A1, . . . , An]], Pre(M), ∀i, CR(Ai). Then we

have the diagram in Figure 2.6, where N ∝ Q, P ∝ Q.

28



?

-

-?

M P

N Q

∗
i

∗
i

∗ i ∗i

Figure 2.6

Proof. Since Pre(M), we obtain N ≡ C[[B1, . . ., Bn]], P ≡ C[[C1, . . . , Cn]], where

α = 〈A1, . . . , An〉 ∗→ β = 〈B1, . . . , Bn〉, α = 〈A1, . . . , An〉 ∗→ γ = 〈C1, . . . , Cn〉. Using

Lemma 2.2.2.10, we can obtain δ = 〈D1, . . . , Dn〉 such that β
∗→ δ, γ

∗→ δ, β ∝ δ and

γ ∝ δ. Therefore, take Q ≡ C[[D1, . . . , Dn]].

2.2.2.12. Lemma. If Pre(M), then CR→
o

(M), that is, M is Church-Rosser for

→
o

(Figure 2.7).

29



?

-

-?

M P

N Q

∗
o

∗
o

∗ o ∗o

Figure 2.7

Proof. Let root(M) ∈ Fa (a = 1 or 2). Then, since Pre(M), the outermost

part of any term in G→(M) is always a context on Fa. Thus →
o

is determined by

only Ra. Hence Church-Rosser for →
o

is obvious by CR(Ra).

2.2.2.13. Theorem. If Pre(M), then CR(M).

Proof. By induction on the rank rank(M) of layers in M . The case rank(M) =

1 is trivial since M ∈ T (Fa, V ) and CR(Ra) (a = 1 or 2); therefore, suppose

rank(M) = n > 1, M ≡ C[[A1, . . . , Am]].

Claim: We obtain the diagram in Figure 2.8.

30



?

?

?

?

- -

- -

M P

N Q

∗
i

∗
o

∗
i

∗
o

∗ i

∗ o

∗ i

∗ o

Figure 2.8

Proof of the claim. By the induction hypothesis, we obtain ∀i, CR(Ai). Using

Lemmas 2.2.2.11, 2.2.2.6 and 2.2.2.12 for (1), (2) and (3), respectively, we can obtain

the diagram in Figure 2.9, where M ′ ∝ Q′ and M ′′ ∝ Q′.

31



?

?

?

?

?

?

-

-

-

-

- -

M

M ′

M ′′ P

P ′

N N ′ Q

Q′

(1) (2)

(2) (3)

∗
i

∗
o

∗
i

∗
o

∗
i

∗
o

∗ i

∗ o

∗ i

∗ o

∗ i

∗ o

Figure 2.9

Now we will show CR(M). Note that any reduction M
∗→M ′ takes the form of

M
∗→
i

∗→
o

M1
∗→
i

∗→
o

M2
∗→
i

∗→
o
· · · ∗→

i

∗→
o

M ′.

Let M
∗→N , M

∗→P . By splitting
∗→ into

∗→
i

∗→
o

and using the claim, one can

draw the diagram in Figure 2.10. Hence CR(M).

32



?

?- -∗
i

∗
o

∗ i

∗ o

?

?- -∗
i

∗
o

∗ i

∗ o

?

?- -∗
i

∗
o

∗ i

∗ o

?

?- -∗
i

∗
o

∗ i

∗ o

?

?- -∗
i

∗
o

∗ i

∗ o

?

?- -∗
i

∗
o

∗ i

∗ o

?

?

∗ i

∗ o

?

?

∗ i

∗ o

- -∗
i

∗
o

- -∗
i

∗
o

- -∗
i

∗
o

M P

N Q

Figure 2.10

Let M
A→N where A is a redex occurrence. Then write M →

p
N if A occurs in a

preserved subterm of M , otherwise write M →
np

N .

2.2.2.14. Theorem. Let M ≡ C[[A1, . . . , An]], ∀i, Pre(Ai). Then CR(M).

Proof. If Pre(M), immediate by Theorem 2.2.2.13. Hence, suppose ¬Pre(M).

Then one can prove the diagrams (1), (2) and (3) in Figure 2.11, where M ∝ N

in (1) and N ∝ Q, P ∝ Q in (2), in the same way as for Lemmas 2.2.2.6, 2.2.2.11

and 2.2.2.12, respectively, by replacing →
i
, →

o
with →

p
, →

np
. Using an analogy to the

proof in Theorem 2.2.2.13, first, one can obtain the diagram in Figure 2.12 from the

diagrams (1), (2), (3) in Figure 2.11, and secondly, splitting
∗→ into

∗→
p

∗→
np

, one can

show CR(M).

33



?

-

-?

M P

N Q

∗
np

∗
np

∗ p ∗p(1)

?

-

-?

M P

N Q

∗
p

∗
p

∗ p ∗p(2)

?

-

-?

M P

N Q

∗
np

∗
np

∗ np ∗np(3)

Figure 2.11

34



?

?

?

?

- -

- -

M P

N Q

∗
p

∗
np

∗
p

∗
np

∗ p

∗ np

∗ p

∗ np

Figure 2.12

Note. Though ¬Pre(M), the above proof is similar to the proof of Theo-

rem 2.2.2.13 in which we assumed Pre(M). This analogy comes from the fact

that in Theorem 2.2.2.14 a non-preserved context in a term M only occurs at the

outermost part of layer structure. However, if some non-preserved context occurs

in the middle part, then one cannot prove CR(M) by the analogous method to

Theorem 2.2.2.13. In the next subsection we shall consider this case.

2.2.3. The Church-Rosser Property for the Direct

Sum

In this subsection we will show that if CR(R1) and CR(R2), then CR(R1 ⊕ R2).

This is done by proving CR(M) for any term M by using parallel deletion reduction

which deletes the layers of the non-preserve contexts occurring in M . First we shall

introduce the following deletion reduction.

35



Let a term M ∈ T (F1∪F2, V ) be not preserved. Then there is a term N ∈ S(M):

N ≡ C̃[[B1, . . . , Bn]], ¬Pre(N), ∀i, Pre(Bi). Since N is not preserved, one has N ′:

N
∗→N ′, root(N) ∈ Fa, root(N ′) /∈ Fa (a = 1 or 2). Then the deletion reduction

→
d

is defined by replacing N occurring in M by N ′ as follows:

M →
d

M ′ ⇐⇒ M ≡ C[N ], M ′ ≡ C[N ′],

where N and N ′ are the above terms.

Then we say N is →
d

redex. From this definition, →
d
⊆ ∗→. Let N1, N2 be two

different →
d

redex occurrences in M , then it is trivial from the definition that N1, N2

are disjoint, that is, N1 ⊥ N2. Note that M ∈ NF→
d

iff Pre(M).

2.2.3.1. Definition. The maximum depth d(M) of →
d

redex occurrences in M

is defined by the following:

d(M) =





0 if Pre(M),

1 if ¬Pre(M) and M is →
d

redex,

maxi{d(Bi)}+ 1 if ¬Pre(M), M is not →
d

redex,

and M ≡ C[[B1, . . . , Bn]] (n > 0).

2.2.3.2. Lemma. Let M ≡ C[B1, . . . , Bn] and C ∈ T (Fa ∪ { }, V ) (a = 1 or

2), then d(M) ≤ maxi{d(Bi)}+ 1.

Proof. It is immediately proved from the definition of d(M).

2.2.3.3. Lemma. If M → N then d(M) ≥ d(N).

Proof. We will prove the lemma by induction on d(M). The case d(M) ≤ 1 is

trivial from the definition. Assume the lemma for d(M) < k (k > 1); then we show

the case d(M) = k. Let M ≡ C[[B1, . . . , Bn]] (n > 0) and M
A→N .

Case 1. ∃k, A ⊆ Bk.

Then N ≡ C[B1, . . . , Bk−1, B
′
k, Bk+1, . . . , Bn] where Bk

A→B′
k. We can obtain

d(Bk) ≥ d(B′
k) by using the induction hypothesis. Hence by Lemma 2.2.3.2,

36



d(M) = maxi{d(Bi)}+ 1

≥ max{d(B1), . . . , d(Bk−1), d(B′
k), d(Bk+1), . . . , d(Bn)}+ 1

≥ d(N).

Case 2. Not Case 1.

Then N ≡ C ′[Bi1 , . . . , Bis ] where 1 ≤ ij ≤ n and C ′ ∈ T (Fa ∪ { }, V ) (a = 1 or

2). If s = 0 then it is clear from d(N) = 1 or 0 that d(M) ≥ d(N). If s > 0 then

d(M) = maxi{d(Bi)}+ 1

≥ maxj{d(Bij)}+ 1

≥ d(N)

for both C ′ ≡ and C ′ 6≡ .

Let N1, . . . , Nn be all the →
d

redex occurrences in M having depth d(M). Note

that Ni ⊥ Nj (i 6= j). Then the parallel deletion reduction →
pd

is defined by replacing

each →
d

redex occurrence Ni by N ′
i such that Ni→

d
N ′

i at one step, or,

M →
pd

N ⇐⇒ M ≡ C[N1, . . . , Nn], N ≡ C[N ′
1, . . . , N

′
n].

We say that the above N1, . . . , Nn are →
pd

redex occurrences. It is clear that

NF→
pd

= NF→
d

. By the definition of parallel deletion reduction, one can easily

prove that if M →
pd

M ′ then d(M) > d(M ′). Hence, every parallel deletion reduction

terminates, that is, SN(→
pd

).

2.2.3.4. Lemma. Let M ≡ C[[A1, . . . , An]]
M→C ′[Ai1 , . . . , Aip ] where 1 ≤ ij ≤ n,

and let 〈A1, . . . , An〉 ∝ 〈B1, . . . , Bn〉. Then one has a reduction N ≡ C[B1, . . . , Bn]
N→

C ′[Bi1 , . . . , Bip ].

Proof. The left side of the rewriting rule used in the reduction
M→ occurs in

37



context C[ , . . . , ]. Hence, one can apply this rewriting rule to N in the same way

as for Lemma 2.2.2.4. 2

2.2.3.5. Lemma. Let d(M) > 1, M ≡ C[M1, . . . , Mm]
M→C ′[Mi1 , . . . , Mip ]

(1 ≤ ij ≤ m ), where M1, . . . , Mm are all the →
pd

redex occurrences in M . Let

〈M1, . . . , Mm〉 ∝ 〈M ′
1, . . . , M

′
m〉. Then one has a reduction M ′ ≡ C[M ′

1, . . . , M
′
m]

M ′→
C ′[M ′

i1
, . . . , M ′

ip ].

Proof. Let M ≡ C̃[[A1, . . . , An]], then ∀i,∃j,Mi ⊆ Aj, and, thus, by replacing

each Mi in Aj with M ′
i , to make A′

j, one can obtain M ′ ≡ C̃[A′
1, . . . , A

′
n]. Now it

is evident from 〈M1, . . . , Mm〉 ∝ 〈M ′
1, . . . , M

′
m〉, that 〈A1, . . . , An〉 ∝ 〈A′

1, . . . , A
′
n〉.

Hence Lemma 2.2.3.4 applies.

2.2.3.6. Lemma. Let d(M) > 1, M ≡ C[M1, . . . , Mm]
M→C ′[Mi1 , . . . ,Mip ] (1 ≤

ij ≤ m), where M1, . . . , Mm are all the→
pd

redex occurrences in M . Let 〈M1, . . . , Mm〉
∗→〈M ′

1, . . . ,M
′
m〉. Then one can obtain a term sequence 〈M ′′

1 , . . . , M ′′
m〉 such that

〈M ′
1, . . . , M

′
m〉 ∗→ 〈M ′′

1 , . . . ,M ′′
m〉 and M ′ ≡ C[M ′′

1 , . . . ,M ′′
m]

M ′→C ′[M ′′
i1
, . . . , M ′′

ip ].

Proof. In order to prove the lemma by using Lemma 2.2.3.5, we only need to

find a 〈M ′′
1 , . . . , M ′′

m〉 such that 〈M1, . . . , Mm〉 ∝ 〈M ′′
1 , . . . , M ′′

m〉. Since M1, . . . , Mm

are →
pd

redex occurrences, we obtain ∀i, CR(Mi) by Theorem 2.2.2.14. Therefore, we

obtain this 〈M ′′
1 , . . . , M ′′

m〉 by Lemma 2.2.2.10, taking α = 〈M1, . . . , Mm〉, β = γ =

〈M ′
1, . . . , M

′
m〉 and δ = 〈M ′′

1 , . . . , M ′′
m〉.

2.2.3.7. Lemma. Let M → N , M →
pd

P , d(M) = d(N). Then one has the

diagram in Figure 2.13. Note that d(M) > d(S).

38



?

-

-

?

?

M N

P S

Q

∗

pd

pd

∗

Figure 2.13

Proof. Let M
A→N . The possible relative positions of the redex occurrence A

and all of the →
pd

redex occurrences in M , say M1, . . . , Mm, are given in the following

cases.

Case 1. ∀i, A ⊥ Mi.

Then

M ≡ C[M1, . . . , Mr, A, Mr+1, . . . , Mm],

N ≡ C[M1, . . . , Mr, B, Mr+1, . . . ,Mm],

P ≡ C[P1, . . . , Pr, A, Pr+1, . . . , Pm],

where A
A→B and ∀i,Mi→

d
Pi. Since all of the →

pd
redex occurrences in N are also

M1, . . . ,Mm (this follows by d(A) ≥ d(B); A-contraction cannot create deeper →
d

redex occurrences, in particular no →
pd

redex occurrences), we can take

Q ≡ C[P1, . . . , Pr, B, Pr+1, . . . , Pm]. Let S ≡ Q, then P
∗→S and Q

∗→S.

Case 2. ∃r, A ⊆ Mr.

Then

39



M ≡ C[M1, . . . ,Mr−1,Mr,Mr+1, . . . ,Mm],

N ≡ C[M1, . . . ,Mr−1, Nr,Mr+1, . . . , Mm],

P ≡ C[P1, . . . , Pr−1, Pr, Pr+1, . . . , Pm],

where Mr
A→Nr, and ∀i,Mi→

d
Pi. Since each Mi (i 6= r) is also a →

pd
redex

occurrence in N , by using →
pd

for N , one obtains

Q ≡ C[P1, . . . , Pr−1, Qr, Pr+1, . . . , Pm],

where Nr
≡→
d

Qr, whether Nr is a →
pd

redex occurrence or not (in N ). By Theo-

rem 2.2.2.14, CR(Mr); therefore, there is a term Sr such that Pr
∗→Sr, Qr

∗→Sr.

Therefore, take

S ≡ C[P1, . . . , Pr−1, Sr, Pr+1, . . . , Pm].

Case 3. ∃j, Mj ⊂ A.

Let Mr, . . . ,Mk (r ≤ k ) be all the →
pd

redex occurrences in M occurring in A.

Then they are also→
pd

redex occurrences in A. Let A ≡ D[Mr, . . . , Mk]
A→D′[Mi1 , . . . , Mip ]

(r ≤ ij ≤ k).

Then

M ≡ C[M1, . . . , Mr−1, D[Mr, . . . ,Mk],Mk+1, . . . , Mm],

N ≡ C[M1, . . . , Mr−1, D
′[Mi1 , . . . ,Mip ],Mk+1, . . . , Mm],

P ≡ C[P1, . . . , Pr−1, D[Pr, . . . , Pk], Pk+1, . . . , Pm],

where ∀i, Mi→
d

Pi. Since M1, . . . ,Mr−1,Mk+1, . . . , Mm are also →
pd

redex occurrences

in N , whether Mi1 , . . . , Mip are →
pd

redex occurrences or not (in N ), one can obtain

Q ≡ C[P1, . . . , Pr−1, D
′[Qi1 , . . . , Qip ], Pk+1, . . . , Pm],

where ∀j, Mij
≡→
d

Qij . Now, by using Lemma 2.2.3.6, one can show for the subterm

D[Pr, . . . , Pk] in P that there is a sequence 〈P ′
r, . . . , P

′
k〉 such that 〈Pr, . . . , Pk〉 ∗→

〈P ′
r, . . . , P

′
k〉 and D[P ′

r, . . . , P
′
k] → D′[P ′

i1
, . . . , P ′

ip ]. Take

40



P ′ ≡ C[P1, . . . , Pr−1, D
′[P ′

i1
, . . . , P ′

ip ], Pk+1, . . . , Pm];

then one can have P
∗→P ′. Since ∀j, CR(Mij), for each j there is Sij such that

P ′
ij

∗→Sij , Qij
∗→Sij . Therefore, take

S ≡ C[P1, . . . , Pr−1, D
′[Si1 , . . . , Sip ], Pk+1, . . . , Pm].

2.2.3.8. Lemma. Let M → N , M →
pd

P , d(M) > d(N), then one has the

diagram in Figure 2.14. Note that d(M) > d(S).

?

-

-?

M N

P S

∗

pd ∗

Figure 2.14

Proof. One can obtain a term S in the same way as for Case 2 and Case 3 in

the proof of Lemma 2.2.3.7.

2.2.3.9. Theorem. R1 ⊕ R2 has the Church-Rosser property, that is, we have

the diagram in Figure 2.15.

41



?

-

-?

M N

P Q

∗

∗

∗ ∗

Figure 2.15

Proof. We will prove CR(M) by induction on d(M). The case d(M) = 0 is

trivial from Theorem 2.2.2.13. Assume CR(M) for d(M) < n (n > 0). Then we

will show the following claim.

Claim. One has the diagram in Figure 2.16 for the case d(M) ≤ n.

?

-

-?

M N

P Q

∗

∗

pd ∗

Figure 2.16

Proof of the Claim. Let M
m→N , where

m→ denotes a reduction of m (m ≥ 0)

42



steps. Then we prove the claim by induction on m. The case m = 0 is trivial.

Assume the claim for m − 1 (m > 0). We will show the diagram for m. Let

M → A
m−1→ N .

Case 1. d(M) = d(A). We can obtain the diagram in Figure 2.17, proving

diagram(1) by using Lemma 2.2.3.7, diagram(2) by using the induction hypothesis

for the claim, and diagram(3) by using the induction hypothesis for the theorem,

that is, CR(B), since d(M) > d(B).

?

?

?

?

?

- -

-

- -

M A N

P Q

B(1)

(2)

(3)

m− 1

∗

∗ ∗

pd

pd

∗

∗

∗

Figure 2.17

Case 2. d(M) > d(A). We can obtain the diagram in Figure 2.18, proving dia-

gram(1) by using Lemma 2.2.3.8, and diagram(2) by using the induction hypothesis

for the theorem, that is, CR(A).

43



? ? ?

- -

- -

M A N

P Q

∗(1) (2)

m− 1

∗ ∗

pd ∗

Figure 2.18

Now we will prove CR(M) for d(M) = n. The diagram in Figure 2.19 can

be obtained, where diagram(1) and diagram(2) are shown by the claim and the

induction hypothesis, that is, CR(A), respectively.

44



?

@
@
@
@
@
@
@
@
@
@R

?

?

?

--

-

- -

M

A

N

P Q

(1)

(1)

(2)

∗

∗ ∗

pd

∗

∗

∗

∗

∗

Figure 2.19

2.2.3.10. Corollary. CR(R1) ∧ CR(R2) ⇐⇒ CR(R1 ⊕R2).

Proof. ⇐ is trivial, and ⇒ is proved by Theorem 2.2.3.9.

2.3. Termination for the Direct Sum of Left-Linear

Complete Term Rewriting Systems

In this section we consider the modular structure for the direct sum of left-linear

term rewriting systems. The first result in this setting is due to Toyama [95] (see

Section 2.2), where it is proven that confluence (i.e. the Church-Rosser property) is a

modular property. To appreciate the non-triviality of this fact, it may be contrasted

with the fact that another fundamental property, termination, is not modular, as

the following simple counterexample in [96] shows:

45



R0

{
F (0, 1, x) . F (x, x, x)

R1





g(x, y) . x

g(x, y) . y

It is trivial that R0 and R1 are terminating. However, R0 ⊕ R1 is not terminating,

because R0 ⊕R1 has the infinite reduction sequence:

F (g(0, 1), g(0, 1), g(0, 1)) → F (0, g(0, 1), g(0, 1)) → f(0, 1, g(0, 1))

→ F (g(0, 1), g(0, 1), g(0, 1)) → · · ·.

The above counterexample uses a non-confluent term rewriting system R1. A

more complicated counterexample to the modularity of termination, involving only

confluent term rewriting systems, was given by Klop and Barendregt [57, 96]. Con-

sider R0 and R1 having the following rewriting rules:

R0





F (4, 5, 6, x) . F (x, x, x, x)

F (x, y, z, w) . 7

1 . 4

1 . 5

2 . 4

2 . 6

3 . 5

3 . 6

4 . 7

5 . 7

6 . 7

46



R1





g(x, x, y) . x

g(x, y, x) . x

g(y, x, x) . x

Note. R0 has the following reductions:

?

@
@

@
@

@R

¡
¡

¡
¡

¡ª

@
@

@
@

@R ?

¡
¡

¡
¡

¡ª

@
@

@
@

@R ?

¡
¡

¡
¡

¡ª

1 2 3

4 5 6

7

Then, R0 is confluent, because any term can be reduced into 7. R0 is also

terminating; no term can be reduced into 4, 5, and 6, hence, the first rule cannot

be applied infinitely. Thus, R0 is complete (a term rewriting system is complete iff

it is both confluent and terminating). Clearly, R1 is complete.

However, R0 ⊕ R1 is not complete, since F (M,M, M, M) with M ≡ g(1, 2, 3)

reduces to itself:

F (M, M, M, M) → · · · → F (g(4, 4, 3), g(5, 2, 5), g(1, 6, 6),M) → · · ·

→ F (4, 5, 6,M) → F (M, M, M,M) → · · ·.

This means that the important property of completeness of term rewriting systems

is not modular. The counterexample, however, uses non-left-linear term rewriting

systems.

47



The point of this section is that left-linearity is essential; if we restrict ourselves

to left-linear term rewriting systems, then completeness is modular. Thus we prove:

If R0 and R1 are left-linear (meaning that the rewriting rules have no repeated

variables in their left-hand-sides), then R0 and R1 are complete iff R0⊕R1 is so. As

left-linearity is a property which is so easily checked, and many equational algebraic

specifications can be given by term rewriting systems which are left-linear, we feel

that this result is worth while.

The proof, however, is rather intricate and not easily digested. A crucial element

in the proof, and in general in the way that the summand term rewriting systems

interact, is how terms may collapse to a subterm. The problem is that this collapsing

behavior may exhibit a nondeterministic feature, which is caused by ambiguities

among the rewriting rules. We propose the concept of the essential subterms for

analyzing this nondeterministic collapsing behavior.

Regarding the question of modular properties in the present simple set-up, we

mention the recent results by Rusinowitch [83] and Middeldorp [64]; these papers,

together, contain a complete analysis of the cases in which termination for R0 ⊕R1

may be concluded from termination of R0, R1, depending on the distribution among

R0, R1 of so-called collapsing and duplicating rules.

Another useful fact is established in Middeldorp [65], where it is proven that the

unique normal form property is a modular property.

2.3.1. Preliminaries

The direct sum system R0⊕R1 is defined as the union of two term rewriting systems

with disjoint function symbols (see Section 2.2). In this section, we assume that two

disjoint systems R0 on T (F0, V ) and R1 on T (F1, V ) both are left-linear and complete

(i.e., confluent and terminating). Then we shall prove that the direct sum system

R0 ⊕ R1 on T (F0 ∪ F1, V ) is terminating. From here on the notation → represents

48



the reduction relation on R0 ⊕R1.

2.3.1.1. Lemma. R0 ⊕ R1 is weakly normalizing, i.e., every term M has a

normal form (denoted by M ↓).

Proof. Since R0 and R1 are terminating, M can be reduced into M ↓ through

innermost reduction. 2

We use again the following notations in Section 2.2 for this section.

Definition 2.2.1.1. A root of a term M ∈ T (F0 ∪ F1, V ) is defined by

root(M) =





f if M ≡ f(M1, . . . , Mn),

M if M is a constant or a variable.

Definition 2.2.1.2. Let M ≡ C[B1, . . . , Bn] ∈ T (F0 ∪ F1, V ) and C 6≡ 2. Then

write M ≡ C[[B1, . . . , Bn]] if C[ , . . . , ] is a context on Fd and ∀i, root(Bi) ∈ Fd̄ (d ∈
{0, 1} and d̄ = 1− d). Then the set S(M) of the special subterms of M is induc-

tively defined as follows:

S(M) =




{M} if M ∈ T (Fd, V ) (d = 0 or 1),
⋃

i S(Bi) ∪ {M} if M ≡ C[[B1, . . . , Bn]] (n > 0).

The set of the special subterms having the root symbol in Fd is denoted by

Sd(M) = {N | N ∈ S(M) and root(N) ∈ Fd}.

Let M ≡ C[[B1, . . . , Bn]] and M
A→N (i.e., N results from M by contracting

the redex occurrence A). If the redex occurrence A occurs in some Bj, then we

write M →
i

N ; otherwise M →
o

N . Here, →
i

and →
o

are called an inner and an outer

reduction, respectively.

Definition 2.2.1.3. For a term M ∈ T (F0 ∪F1, V ), the rank of layers of contexts

on F0 and F1 in M is inductively defined as follows:

49



rank(M) =





1 if M ∈ T (Fd, V ) (d = 0 or 1),

maxi{rank(Bi)}+ 1 if M ≡ C[[B1, . . . , Bn]] (n > 0).

We often use Lemma 2.2.1.5 for the following discussions.

Lemma 2.2.1.5. If M → N then rank(M) ≥ rank(N).

2.3.1.2. Lemma. Let M
∗→N and root(M), root(N) ∈ Fd. Then there exists

a reduction M ≡ M0 → M1 → M2 → · · · → Mn ≡ N (n ≥ 0) such that

root(Mi) ∈ Fd for any i.

Proof. Let M
k→N (k ≥ 0). We will prove the lemma by induction on k. The

case k = 0 is trivial. Let M → M ′ k−1→ N (k > 0). If root(M ′) ∈ Fd then the lemma

holds by the induction hypothesis. If root(M ′) ∈ Fd̄ then there exists a context

C[ ] with root ∈ Fd such that M ≡ C[M ′] and C[ ] → 2. Thus, we can obtain a

reduction M ≡ C[M ′] ∗→C[N ] → N in which all terms have root symbols in Fd. 2

The set of terms in the reduction graph of M is denoted by G(M) = {N |M ∗→N}.
The set of terms having the root symbol in Fd is denoted by Gd(M) = {N | N ∈
G(M) and root(N) ∈ Fd}.

2.3.1.3. Definition. A term M is erasable iff M
∗→ x for some x ∈ V .

From now on we assume that every term M ∈ T (F0∪F1, V ) has only x as variable

occurrences, unless it is stated otherwise. Since R0 ⊕ R1 is left-linear, this variable

convention may be assumed in the following discussions without loss of generality.

If we need fresh variable symbols not in terms, we use z, z1, z2, · · ·.

50



2.3.2. Essential Subterms

In this subsection we introduce the concept of the essential subterms. We first prove

the following property:

∀N ∈ Gd(M) ∃P ∈ Sd(M), M
∗→P

∗→N.

2.3.2.1. Lemma. Let M → N and Q ∈ Sd(N). Then, there exists some

P ∈ Sd(M) such that P
≡→Q.

Proof. We will prove the lemma by induction on rank(M). The case rank(M) =

1 is trivial. Assume the lemma for rank(M) < k (k > 1), then we will show the

case rank(M) = k. Let M ≡ C[[M1, . . . , Mn]] (n > 0) and M
A→N .

Case 1. M ≡ C[[M1, . . . , Mr, . . . , Mn]]
A→
o

N ≡ Mr.

Then Sd(N) ⊆ Sd(M).

Case 2. M ≡ C[[M1, . . . , Mn]]
A→
o

N ≡ C ′[[Mi1 , . . . ,Mip ]] (1 ≤ ij ≤ n).

If root(M) ∈ Fd then

Sd(M) = {M} ∪ ⋃
i Sd(Mi),

Sd(N) = {N} ∪ ⋃
j Sd(Mij).

Thus the lemma holds since
⋃

j Sd(Mij) ⊆
⋃

i Sd(Mi), and M → N .

If root(M) ∈ Fd̄ then Sd(N) =
⋃

j Sd(Mij) ⊆
⋃

i Sd(Mi) = Sd(M).

Case 3. M ≡ C[[M1, . . . , Mr, . . . , Mn]]
A→
i

N ≡ C[M1, . . . , M
′
r, . . . , Mn] where

Mr
A→M ′

r.

If root(M) ∈ Fd then

Sd(M) = {M} ∪ Sd(Mr) ∪ ⋃
i6=r Sd(Mi),

Sd(N) ⊆ {N} ∪ Sd(M
′
r) ∪

⋃
i6=r Sd(Mi).

If root(M) ∈ Fd̄ then

Sd(M) = Sd(Mr) ∪ ⋃
i6=r Sd(Mi),

51



Sd(N) = Sd(M
′
r) ∪

⋃
i6=r Sd(Mi).

By the induction hypothesis, ∀Q ∈ Sd(M
′
r)∃P ∈ Sd(Mr), P

≡→Q for the both

root(M) ∈ Fd and root(M) ∈ Fd̄. Thus the lemma holds. 2

Re consists of the single rule e(x) . x. →
e

denotes the reduction relation of Re,

and →
e′

denotes the reduction relation of Re ⊕ (R0 ⊕ R1) such that if C[e(P )]
∆→
e′

N

then the redex occurrence ∆ does not occur in P . It is easy to show the confluence

property of →
e′

.

From here on, C[e(P1), · · · , e(Pp)] denotes a term such that C[P1, · · · , Pp] ∈
T (F0 ∪ F1, V ), i.e., C and Pi contain no e.

2.3.2.2. Lemma. Let C[e(P1), · · · , e(Pi−1), e(Pi), e(Pi+1), · · · , e(Pp)]
k−→
e′

e(Pi).

Then C[P1, · · · , Pi−1, e(Pi), Pi+1, · · · , Pp]
k′−→
e′

e(Pi) (k′ ≤ k).

Proof. It is easily obtained from the definition and the left-linearity of the

reduction →
e′

. 2

Let M ≡ C[P ] ∈ T (F0 ∪ F1, V ) be a term containing no function symbol e.

Now, consider C[e(P )] by replacing the occurrence P in M with e(P ). Assume

C[e(P )]
∗→
e′

e(P ). Then, by tracing the reduction path, we can also obtain the re-

duction M ≡ C[P ]
∗→P (denoted by M

∗−→
pull

P ) under R0 ⊕ R1. We say that the

reduction M
∗−→

pull
P pulls up the occurrence P from M .

2.3.2.3. Example. Consider the two systems R0 and R1:

52



R0





F (x) . G(x, x)

G(C, x) . x

R1

{
h(x) . x

Then we have the reduction:

F (e(h(C)))→
e′

G(e(h(C)), e(h(C)))→
e′

G(h(C), e(h(C)))→
e′

G(C, e(h(C)))→
e′

e(h(C)).

Hence F (h(C))
∗−→

pull
h(C). However, we cannot obtain F (z)

∗−→
pull

z. Thus, in gen-

eral, we cannot obtain C[z]
∗−→

pull
z from C[P ]

∗−→
pull

P . 2

2.3.2.4. Lemma. Let P
∗→Q and let C[Q]

∗−→
pull

Q. Then C[P ]
∗−→

pull
P .

Proof. Let M ≡ C[e(Q)]
k−→
e′

e(Q). We will prove the lemma by induction on k.

The case k = 0 is trivial. Let M ≡ C[e(Q)]−→
e′

C ′[e(Q), · · · , e(Q), · · · , e(Q)]
k−1−→
e′

e(Q).

Then, from Lemma 2.3.2.2 we can obtain the following reduction:

C ′[Q, · · · , e(Q), · · · , Q]
k′−→
e′

e(Q) (k′ ≤ k − 1).

By using the induction hypothesis, C ′[Q, · · · , e(P ), · · · , Q]
∗−→
e′

e(P ). Therefore,

we can obtain

C[e(P )]−→
e′

C ′[e(P ), · · · , e(P ), · · · , e(P )]
∗−→
e′

C ′[Q, · · · , e(P ), · · · , Q]
∗−→
e′

e(P )

from P
∗→Q. 2

2.3.2.5. Lemma. ∀N ∈ Gd(M) ∃P ∈ Sd(M), M
∗−→

pull
P

∗→N.

Proof. If root(M) ∈ Fd then the above property is trivial by taking M as P .

Thus we consider only the non trivial case of root(M) ∈ Fd̄. Let M
k−→N . We

will prove the lemma by induction on k. The case k = 1 is trivial since M ≡
C[[M1, . . . ,Mr, . . . ,Mn]]→N ≡ Mr for some r (i.e., take P ≡ Mr). Assume the

lemma for k − 1. We will prove the case k. Let M → M ′ k−1−→N .

53



Case 1. root(M ′) ∈ Fd.

Then M ≡ C[[M1, . . . , Mr, . . . , Mn]]→M ′ ≡ Mr for some r. Take P ≡ Mr.

Case 2. root(M ′) ∈ Fd̄.

By using the induction hypothesis, ∃P ′ ∈ Sd(M
′), M ′ ∗−→

pull
P ′ ∗→N . Here, from

Lemma 2.3.2.1, there exists some P ∈ Sd(M) such that P
≡→P ′. We will consider

the following two subcases:

Case 2.1. P → P ′. Then M ≡ C[P ] → M ′ ≡ C[P ′]. Thus, by using Lemma

2.3.2.4, M ≡ C[P ]
∗−→

pull
P → P ′ ∗→N .

Case 2.2. P ≡ P ′. Then, for some context C ′[ , · · · , ], M ≡ C[P ] → M ′ ≡
C ′[P, · · · , P, · · · , P ] and C ′[P, · · · , e(P ), · · · , P ]

∗−→
e′

e(P ). Therefore

C[e(P )] → C ′[e(P ), · · · , e(P ), · · · , e(P )]
∗−→
e

C ′[P, · · · , e(P ), · · · , P ]
∗−→
e′

e(P ). Thus

M ≡ C[P ]
∗−→

pull
P

∗→N . 2

Now, we introduce the concept of the essential subterms. The set Ed(M) of the

essential subterms of the term M ∈ T (F0 ∪ F1, V ) is defined as follows:

Ed(M) = {P | M
∗−→

pull
P ∈ Sd(M) and ¬∃Q ∈ Sd(M) [M

∗−→
pull

Q
+→P ]}.

The following lemmas are easily obtained from the definition of the essential

subterms and Lemma 2.3.2.5.

2.3.2.6. Lemma. ∀N ∈ Gd(M) ∃P ∈ Ed(M), P
∗→N.

2.3.2.7. Lemma. Ed(M) = φ iff Gd(M) = φ.

We say M is deterministic for d if |Ed(M)| = 1; M is nondeterministic for d if

|Ed(M)| ≥ 2. The following lemma plays an important role in the next subsection.

54



2.3.2.8. Lemma. If root(M ↓) ∈ Fd then |Ed(M)| = 1, i.e., M is deterministic

for d.

Proof. See Appendix A. 2

2.3.3. Termination for the Direct Sum

In this subsection we will show that R0 ⊕ R1 is terminating. Roughly speaking,

termination is proved by showing that any infinite reduction M0 → M1 → M2 → · · ·
of R0 ⊕ R1 can be translated into an infinite reduction M ′

0 → M ′
1 → M ′

2 → · · · of

Rd.

We first define the term Md ∈ T (Fd, V ) for any term M and any d.

2.3.3.1. Definition. For any M and any d, Md ∈ T (Fd, V ) is defined by

induction on rank(M):

(1) Md ≡ M if M ∈ T (Fd, V ).

(2) Md ≡ x if Ed(M) = φ.

(3) Md ≡ C[Md
1 , · · · ,Md

m] if root(M) ∈ Fd and M ≡ C[[M1, · · · ,Mm]] (m > 0).

(4) Md ≡ P d if root(M) ∈ Fd̄ and Ed(M) = {P}. Note that rank(P ) < rank(M).

(5) Md ≡ C1[C2[· · ·Cp−1[Cp[x]] · · ·]] if root(M) ∈ Fd̄, Ed(M) = {P1, · · · , Pp} (p >

1), and every P d
i is erasable. Here P d

i ≡ Ci[x]
∗−→

pull
x (i = 1, · · · , p). Note that,

for any i, rank(Pi) < rank(M) and Md ∗→P d
i .

(6) Md ≡ x if root(M) ∈ Fd̄, |Ed(M)| ≥ 2, and not (5).

55



Note that Md is not unique if a subterm of Md is constructed with (5) in the

above definition.

2.3.3.2. Lemma. root(M ↓) /∈ Fd iff Md ↓≡ x.

Proof. Instead of the lemma, we will prove the following claim:

Claim. If root(M ↓) /∈ Fd then Md ↓≡ x. If root(M ↓) ∈ Fd and M ↓≡
Ĉ[[M1, · · · ,Mm]] then Md ↓≡ Ĉ[x, · · · , x].

Proof of the Claim. We will prove the lemma by induction on rank(M). The case

rank(M) = 1 is trivial by the definition of Md. Assume the lemma for rank(M) <

k (k ≥ 2). Then we will prove the case rank(M) = k.

Case 1. root(M) ∈ Fd.

Let M ≡ C[[M1, · · · ,Mm]]. Then Md ≡ C[Md
1 , · · · ,Md

m]. We may assume that

root(Mi ↓) /∈ Fd (1 ≤ i < p) and root(Mj ↓) ∈ Fd (p ≤ j ≤ m) without loss

of generality. Let Mj ↓≡ Ĉj[[Nj,1, · · · , Nj,nj
]] (p ≤ j ≤ m). Then, by using the

induction hypothesis, Md
i ↓≡ x (1 ≤ i < p) and Md

j ↓≡ Ĉj[x, · · · , x] (p ≤ j ≤ m).

Thus M ↓≡C[M1 ↓, · · · ,Mm ↓] ↓
≡ C[M1 ↓, · · · ,Mp−1 ↓, Ĉp[[Np,1, · · · , Np,np ]], · · · , Ĉm[[Nm,1, · · · , Nm,nm ]]] ↓
and Md ↓≡C[Md

1 ↓, · · · ,Md
m ↓] ↓ ≡ C[x, · · · , x, Ĉp[x, · · · , x], · · · , Ĉm[x, · · · , x]] ↓.

Note that Mi ↓ (1 ≤ i < p), Np,1, · · · , Nm,nm are normal forms having root symbols

not in Fd. Therefore, if root(M ↓) /∈ Fd then C[x, · · · , x, Ĉp[x, · · · , x], · · · , Ĉm[x, · · · , x]] ↓
≡ x; if root(M ↓) ∈ Fd then we have a context

Ĉ[ , · · · , ] ≡ C[ , · · · , , Ĉp[ , · · · , ], · · · , Ĉm[ , · · · , ]] ↓ such that M ↓ ≡ Ĉ[[N1, · · · , Nn]]

where Ni ∈ {M1 ↓ , · · ·, Mp−1 ↓, Np,1, · · · , Nm,nm} and Md ↓≡ Ĉ[x, · · · , x] 6≡ x.

Case 2. root(M) /∈ Fd.

Consider three subcases:

56



Case 2.1. Ed(M) = φ.

From Lemma 2.3.2.7, root(M ↓) /∈ Fd. Since Md ≡ x, Md ↓≡ x.

Case 2.2. Ed(M) = {P}.
Then Md ≡ P d. Note that rank(P ) < k. Since M ↓≡ P ↓ and Md ↓≡ P d ↓, the

claim follows by using the induction hypothesis.

Case 2.3. Ed(M) = {P1, · · · , Pp} (p > 1).

Note that rank(Pi) < k for any i. From Lemma 2.3.2.8, root(M ↓) /∈ Fd. Since

M ↓≡ Pi ↓, it is clear that root(Pi ↓) /∈ Fd for all i. Thus, we have P d
i ↓≡ x

by the induction hypothesis. From case (5) in the definition of Md, it follows that

Md ↓≡ x. 2

Note. Let Ed(M) = {P1, · · · , Pp} (p > 1). Then, from Lemma 2.3.2.8 and

Lemma 2.3.3.2, it follows that every P d
i is erasable. Hence case (6) in the definition

of Md can be removed.

2.3.3.3. Lemma. If P ∈ Ed(M) then Md ∗→P d.

Proof. Obvious from the definition of Md and the above note. 2

We wish to translate directly an infinite reduction M0 → M1 → M2 → · · · into

an infinite reduction Md
0

∗→Md
1

∗→Md
2

∗→· · ·. However, the following example shows

that Mi → Mi+1 cannot be translated into Md
i

∗→Md
i+1 in general.

2.3.3.4. Example. Consider the two systems R0 and R1:

R0





F (C, x) . x

F (x, C) . x

57



R1





f(x) . g(x)

f(x) . h(x)

g(x) . x

h(x) . x

Let M ≡ F (f(C), h(C)) → N ≡ F (g(C), h(C)). Then E1(M) = {f(C)} and

E1(N) = {g(C), h(C)}. Thus M1 ≡ f(x), N1 ≡ g(h(x)). It is obvious that

M1 ∗→N1 does not hold. 2

Now we will consider to translate indirectly an infinite reduction of R0⊕R1 into

an infinite reduction of Rd.

We write M ≡
o

N when M and N have the same outermost-layer context, i.e.,

M ≡ C[[M1, · · · , Mm]] and N ≡ C[[N1, · · · , Nm]] for some Mi, Ni.

2.3.3.5. Lemma. Let A
∗→
i

M , M →
o

N , A≡
o

M , and root(M), root(N) ∈ Fd.

Then, for any Ad there exist B and Bd such that

6
-

-

-

6

M N

A

Ad

∃B

∃Bd

o

o

∗ i ∗i

Figure 2.20

58



Proof. Let A ≡ C[[A1, · · · , Am]], M ≡ C[[M1, · · · ,Mm]], N ≡ C ′[[Mi1 , · · · ,Min ]]

(ij ∈ {1, · · · ,m}). Take B ≡ C ′[[Ai1 , · · · , Ain ]]. Then, we can obtain A→
o

B and

B
∗→
i

N . From Ad ≡ C[Ad
1, · · · , Ad

m] and Bd ≡ C ′[Ad
i1
, · · · , Ad

in ], it follows that Ad →
Bd. 2

2.3.3.6. Lemma. Let M
∗→N , root(N) ∈ Fd. Then, for any Md there exist

A (A≡
o

N) and Ad such that

-
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Qs

-

6

M N

Md

∃A
(A≡

o
N)

∃Ad

∗

∗

∗ ∗i

Figure 2.21

Proof. We will prove the lemma by induction on rank(M). The case rank(M) =

1 is trivial by taking A ≡ N . Assume the lemma for rank(M) < k. Then we will

prove the case rank(M) = k. We start from the following claim.

Claim. The lemma holds if M
∗→
i

N .

Proof of the Claim. Let M ≡ C[[M1, · · · ,Mm]]
∗→
i

N ≡ C[N1, · · · , Nm] where

Mi
∗→Ni for every i. We may assume that N1 ≡ x, · · · , Np−1 ≡ x, root(Ni) ∈

Fd (p ≤ i ≤ q − 1), and root(Nj) ∈ Fd̄ (q ≤ j ≤ m) without loss of generality.

59



Thus N ≡ C[x, · · · , x,Np, · · · , Nq−1, Nq, · · · , Nm]. Then, by using the induction

hypothesis, every Mi (p ≤ i ≤ q − 1) has Ai (Ai≡
o

Ni) and Ad
i such that

-
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Qs

-

6

Mi Ni

Md
i

∃Ai

∃Ad
i

(Ai≡
o

Ni)

∗

∗

∗ ∗i

Figure 2.22

Now, take A ≡ C[x, · · · , x, Ap, · · · , Aq−1,Mq, · · · ,Mm]. It is obvious that M
∗→A.

From Lemma 2.3.1.2, we can have the reductions Mj
∗→Nj (q ≤ j ≤ m) in which

every term has a root symbol in Fd̄. Thus it follows that A
∗→
i

N and A≡
o

N . From

Lemma 2.3.3.2 and Mi ↓≡ x (1 ≤ i < p), Md
i ↓≡ x. Therefore, since

Md ≡ C[Md
1 , · · · ,Md

p−1,M
d
p , · · · ,Md

q−1,M
d
q , · · · ,Md

m]

and Ad ≡ C[x, · · · , x, Ad
p, · · · , Ad

q−1,M
d
q , · · · ,Md

m], it follows that Md ∗→Ad. (end

of the claim)

Now we will prove the lemma for rank(M) = k. Consider two cases.

Case 1. root(M) ∈ Fd.

From Lemma 2.3.1.2, we may assume that every term in the reduction M
∗→N

has a root symbol in Fd. By splitting M
∗→N into M

∗→
i
→
o

∗→
i
→
o
· · · ∗→

i
N and using

the claim for diagram (1) and Lemma 2.3.3.5 for diagram (2), we can draw the

60



following diagram:

-
S
S
S
S
S
S
S
S
SSw

M

Md
∗

∗
i

(1)
∗

-

- - - -
6 6 6 6 6

- - - -

- - - -

N

∃A
(A≡

o
N)

∃Ad

o

(2)

i

(1)

∗
o

(2)

i

(1)

∗

∗ ∗

∗ ∗

∗ ∗ ∗ ∗ ∗i i i i i

Figure 2.23

Note that if M ′ ∗→
i

M ′′ ∗→
i

M ′′′ then M ′ ∗→
i

M ′′′; thus, the claim can be applied to

diagram (1) in the above diagram.

Case 2. root(M) ∈ Fd̄.

Then we have some essential subterm Q ∈ Ed(M) such that M
∗→Q

∗→N . From

Lemma 2.3.3.3, it follows that Md ∗→Qd. It is obvious that rank(Q) < k. Hence,

we have the following diagram, where diagram (1) is obtained by the induction

hypothesis:

61



-
S
S
S
S
S
S
S
S
SSw

M

Md
∗

∗

(1)
∗

-
Q

Qd

6

- -

N

∃A
(A≡

o
N)

∃Ad

∗

∗

∗

∗

∗ i

Figure 2.24

2

Now we can prove the following theorem:

2.3.3.7. Theorem. No term M has an infinite reduction.

Proof. We will prove the theorem by induction on rank(M). The case rank(M) =

1 is trivial. Assume the theorem for rank(M) < k. Then, we will show the case

rank(M) = k. Suppose M has an infinite reduction M →→→ · · ·. From the induc-

tion hypothesis, we can have no infinite inner reduction→
i
→
i
→
i
· · · in this reduction.

Thus, →
o

must infinitely appear in the infinite reduction. From the induction hy-

pothesis, all of the terms appearing in this reduction have the same rank; hence,

their root symbols are in Fd if root(M) ∈ Fd. Hence, by a similar construction of

diagrams as for Case 1 in the proof of Lemma 2.3.3.6, it follows that Md has an

infinite reduction. This contradicts that Rd is terminating. 2

2.3.3.8. Corollary Two term rewriting systems R0 and R1 are left-linear and

62



complete iff the direct sum R0 ⊕R1 is so.

Proof. ⇐ is trivial. ⇒ follows from Theorem 2.3.3.7 and Corollary 2.2.3.10 in

Section 2.2 stating that two term rewriting systems R0 and R1 are confluent iff the

direct sum R0 ⊕R1 is so. 2

2.4. Conclusion

In this chapter, we have proven that the Church-Rosser property is modular [95]:

term rewriting systems R1 and R2 are Church-Rosser iff the direct sum R1 ⊕ R2 is

so. The strength of the property lies in the absence of assumptions about R1 and

R2. To appreciate the non-triviality of this fact, it has been contrasted with the fact

that the termination property is not modular [96]. Finally, we have shown that the

completeness (i.e., Church-Rosser and termination) property is also modular under

left-linearity: two term rewriting systems R1 and R2 are left-linear and complete

iff R1 ⊕ R2 is so [100, 99]. We think that the modularities presented here will be

essential building blocks of the theory of term rewriting systems.

To conclude this chapter, we mention the recent works. Starting with our re-

search [95] (Section 2.2), various modularities have been studied by several au-

thors. Sufficient conditions for the modular property of termination were studied by

Rushinowitch [83], Middeldorp [64], Toyama, Klop and Barendregt [100, 99] (Sec-

tion 2.3). Middeldorp showed that the unique normal form property is modular,

but the normal form property is not [65]. Furthermore, these modularities were ex-

tended to conditional term rewriting systems by Middeldorp [66, 67, 68]. Kurihara

and Kaiji proposed an alternative approach to modularity [61]. The modularities for

the combinations of the lambda calculus and term rewriting systems were studied

by Breazu-Tannen [6], Breazu-Tannen and Gallier [7], and Dougherty [23].

63



3. Commutativity of Term

Rewriting Systems

Commutativity is very useful in showing the Church-Rosser property for the union

of term rewriting systems. In this chapter we study the critical pair technique for

proving commutativity of term rewriting systems. Extending the concept of critical

pairs between two term rewriting systems, a sufficient condition for commutativity

is proposed. Using the proposed result, a new sufficient condition is offered for the

Church-Rosser property of left-linear term rewriting systems.

3.1. Introduction

We consider the commutative property of two term rewriting systems R1 and R2

[81]. Hindley [34] and Rosen [81] first studied commutative reduction systems by

considering how to infer the Church-Rosser property for a complex system from

various properties of its parts. They showed that if R1 and R2 commute and have

the Church-Rosser property, then the union R1 ∪ R2 also has the Church-Rosser

property.

Simple sufficient conditions for commutativity or quasi-commutativity of linear

term rewriting systems R1 and R2 have been proposed [1, 44, 46, 79, 88]: For

example, if two left-linear term rewriting systems R1 and R2 do not overlap, then

they commute [79, 88]. However, these works were done on the following restrictions:

R1 and R2 are nonoverlapping with each other [1, 79, 88], or R1 is (E−) terminating

64



[44, 46]. Hence new conditions are needed to prove commutativity if the systems do

not satisfy these restrictions.

In this chapter we study commutativity of left-linear term rewriting systems R1

and R2 without the above restrictions. That is, two systems may overlap and be

nonterminating. To treat the overlapping and terminating case, the critical pair

concept used to infer the Church-Rosser property [37, 59, 81] is extended. This

extension is done by introducing the critical pairs between R1 and R2 and classifying

them into two kinds of pairs; outside pairs and inside pairs. These extended critical

pairs are used to propose a sufficient condition for commutativity of term rewriting

systems. The proposed result can also be applied to inferring the Church-Rosser

property. A new sufficient condition is offered for the Church-Rosser property of

left-linear term rewriting systems with overlapping rules.

3.2. Extended Critical Pairs

The critical pair concept (see Section 1.4) for a term rewriting system will be ex-

tended into a concept for two systems. Let R1 and R2 be two term rewriting systems

and let P . Q ∈ R1 and M . N ∈ R2. It may be assumed that the variables have

been renamed appropriately, so that P and M share no variables. Assume S /∈ V

is a subterm occurrence in M , i.e. M ≡ C[S], such that S and P are unifiable,

i.e. Sθ ≡ Pθ, with a minimal unifier θ [37, 59]. Since Mθ ≡ C[S]θ ≡ Cθ[Pθ], two

reductions starting with Mθ, i.e. Mθ→
1

Cθ[Qθ] ≡ C[Q]θ and Mθ→
2

Nθ, can be

obtained using P . Q ∈ R1 and M . N ∈ R2 respectively. Then P . Q is said to

overlap M .N , and the pair of terms 〈C[Q]θ, Nθ〉 is a critical pair of P .Q on M .N .

The pair is inside (resp. outside) critical if S ⊂ M (resp. S ≡ M). P . Q ∈ R1

and M . N ∈ R2 may be chosen to be the same rule, but in this case we shall not

consider the case S ≡ M , which gives the trivial pair 〈N, N〉. Note that two rules

play asymmetrical role in this definition.

65



crit(R1, R2) denotes the set of the critical pairs for all P . Q ∈ R1 and M . N ∈
R2 such that P . Q overlaps M . N . critin(R1, R2) and critout(R1, R2) denote the

set of inside critical pairs and the set of outside critical pairs respectively. Thus

crit(R1, R2) = critin(R1, R2) ∪ critout(R1, R2). Note that generally crit(R1, R2) 6=
crit(R2, R1) since the definition of overlapping is asymmetrical.

crit(R), critin(R) and critout(R) indicate crit(R, R), critin(R, R) and critout(R, R)

respectively. Thus crit(R) coincides with the set of critical pairs of R defined in

[37, 59].

We say that R1 and R2 are overlapping with each other if crit(R1, R2)∪crit(R2, R1) 6=
φ; R1 and R2 are nonoverlapping with each other if they are not overlapping with

each other. R is overlapping if crit(R) 6= φ; R is nonoverlapping if it is not overlap-

ping. [37, 59].

Remark. Jouannaud and Kirchner [44] and Jouannaud and Munoz [46] also

proposed the idea of critical pairs between two systems R1 and R2 independently

of the author. However, they applied it in a different situation, to discuss the

sufficient conditions for the Church-Rosser property and for the termination property

of R1 ∪ R2 under the stronger assumptions that R1 is E-terminating and R2 is an

equational system E. This paper does not assume the termination property of term

rewriting systems.

The following sufficient conditions for the Church-Rosser property are stated in

Chapter 1.4.

Proposition 1.4.8. (Knuth-Bendix). Let R be strongly normalizing. Then R has

the Church-Rosser property iff P and Q have the same normal form for any critical

pair 〈P, Q〉 in R.

66



Proposition 1.4.9. (Rosen). Let R be left-linear and non-overlapping. Then R

has the Church-Rosser property.

Proposition 1.4.11 (Huet). Let R be left-linear. If P −→++ Q for every critical pair

〈P,Q〉 in R, then R has the Church-Rosser property.

For more discussion concerning the Church-Rosser property of term rewriting

systems, see [37, 44, 72, 95].

3.3. Sufficient Condition for Commutativity

This section shows a sufficient condition for commutativity of two left-linear term

rewriting systems R1 and R2 on T (F, V ). From here on, →
i

and −→++
i

denote the

reduction relation and the parallel reduction relation of Ri (i = 1, 2) respectively.

3.3.1. Lemma. If we have the diagram in Figure 3.1 then R1 commutes with

R2.

67



?

-

-?

M P

N Q

2

‖

2

‖

1= 1 ∗

Figure 3.1

Proof. From
∗−→++
1

=
∗→
1

, we obtain

∀M, N, P [M −→++
1

N ∧M −→++
2

P ⇒ ∃Q,N −→++
2

Q ∧ P
∗−→++
1

Q].

By applying Proposition 1.3.7 (Commutativity Lemma), we can prove commu-

tativity of
∗−→++
1

and
∗−→++
2

. Since
∗−→++
i

=
∗→
i

(i = 1, 2), it follows that R1 commutes

with R2.

Let A ≡ C[x1, · · · , xn] where no variable occurs in C. Then we say the subterm

occurrence P of Aθ ≡ C[x1θ, · · · , xnθ] occurs in the substitution θ if P occurs in

some xiθ.

3.3.2. Lemma. Let M ≡ Aθ
M−→
1

N ≡ Bθ, A . B ∈ R1, and M ≡ Aθ
P1,···,Pp−→++

2
P

where Pi (i = 1, · · · , p) occurs in θ. Then a term Q can be obtained such that

N −→++
2

Q and P −→
1

Q (Figure 3.2).

68



?

-

-?

M P

N Q

P1, · · · , Pp

2

‖

2

‖

M 1 1

Figure 3.2

Proof. Since Pi (i = 1, · · · , p) occurs in θ, P ≡ Aθ′ can be denoted for some

θ′ such that xθ−→++
2

xθ′ for any x in A. Take Q ≡ Bθ′. Then it follows that

N ≡ Bθ−→++
2

Q ≡ Bθ′ and P ≡ Aθ′−→
1

Q ≡ Bθ′.

3.3.3. Theorem. Let R1 and R2 be left-linear term rewriting systems. Then

R1 commutes with R2 if R1 and R2 satisfy the following conditions:

(1) ∀〈P, Q〉 ∈ crit(R1, R2) ∃S [P −→++
2

S ∧Q
∗→
1

S],

(2) ∀〈Q,P 〉 ∈ critin(R2, R1) [Q−→++
1

P ].

Proof. Let M
A1,···,Am−→++

1
N and M

B1,···,Bn−→++
2

P . If we have the diagram in Figure 3.3,

then the theorem follows from Lemma 3.3.1. Hence we will show the existence of

the term Q in Figure 3.3 under the above conditions.

69



?

-

-?

M P

N Q

2

‖

2

‖

1= 1 ∗

B1, · · · , Bn

A1, · · · , Am

Figure 3.3

Let Γ = {Ai|∃Bj, Ai ⊆ Bj} ∪ {Bi|∃Aj, Bi ⊆ Aj} and ∆ = {Ai|∀Bj, Ai 6⊆ Bj} ∪
{Bi|∀Aj, Bi 6⊆ Aj}. Then the redex occurrences A1, · · · , Am and B1, · · · , Bn of M

are classified into two sets Γ and ∆. The length |M | of a term M is defined by the

number of symbols in M . |Γ| denotes
∑

M∈Γ |M |. By using induction on |Γ|, we will

prove the existence of Q in Figure 3.3.

The case |Γ| = 0 is trivial since A1, · · · , Am and B1, · · · , Bn are disjoint. As-

sume the theorem for |Γ| < k (k > 0). We consider the case |Γ| = k. Let

∆ = {M1, · · · , Mp}. Then we can write M ≡ C[M1, · · · ,Mp], N ≡ C[N1, · · · , Np],

P ≡ C[P1, · · · , Pp] where Mi−→++
1

Ni and Mi−→++
2

Pi (i = 1, · · · , p). We will now show

that for every Mi, we can obtain Qi satisfying the diagram in Figure 3.4.

70



?

-

-?

Mi Pi

Ni Qi

2

‖

2

‖

1= 1 ∗

Figure 3.4

There are two cases.

Case 1. Mi 6∈ {B1, · · · , Bn}.
Then Mi

Mi→
1

Ni and Mi

B′1,···,B′q−→++
2

Pi, where B′
j ∈ {B1, · · · , Bn} and B′

j ⊂ Mi for all

B′
j. Let A . B ∈ R1, Mi ≡ Aθ, and Ni ≡ Bθ. If every redex occurrence B′

j of Mi

occurs in θ then we can obtain Qi by Lemma 3.3.2.

Now assume that some B′
j exists which does not occur in θ. Without loss of

generality, it may be assumed that B′
1 does not occur in θ. Then there exists

A′ .B′ ∈ R2 such that B′
1 ≡ A′θ′. Since A′ .B′ overlaps A.B and B′

1 ⊂ Mi, there is

an inside critical pair, say 〈D, E〉, in critin(R2, R1). Let Mi
B′1→
2

M̃i. Then M̃i ≡ Dθ′′

and Ni ≡ Eθ′′ for some θ′′. From condition (2) of the theorem, D−→++
1

E. Hence

we have M̃i

C1,···,Cr−→++
1

Ni. Also, M̃i

B′2,···,B′q−→++
1

Pi. For the redex occurrences C1, · · · , Cr and

B′
2, · · · , B′

q of M̃i, we take Γ′ = {Ci|∃B′
j, Ci ⊆ B′

j} ∪ {B′
i|∃Cj, B

′
i ⊆ Cj}. Since

∀B̃ ∈ Γ′ ∃B′
j(2 ≤ j ≤ q), B̃ ⊆ B′

j, we can easily show that |Γ′| ≤ ∑q
j=2 |B′

j|. Thus

|Γ′| ≤ ∑q
j=2 |B′

j| <
∑q

j=1 |B′
j| ≤ |Γ|. Using the induction hypothesis, we obtain the

diagram in Figure 3.5.

71



?

- -

-?

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�


Mi Pi

Ni Qi

M̃i
B′

1

2

B′
2, · · · , B′

q

2

‖

2

‖

Mi 1 = 1
C1, · · · , Cr

1 ∗

Figure 3.5

Case 2. Mi ∈ {B1, · · · , Bn}.
Then Mi

A′1,···,A′q−→++
1

Ni and Mi
Mi→
2

Pi, where A′
j ∈ {A1, · · · , Am} and A′

j ⊆ Mi for all

A′
j. Let A . B ∈ R2, Mi ≡ Aθ, and Pi ≡ Bθ. If every redex occurrence A′

j of Mi

occurs in θ then we can obtain Qi by Lemma 3.3.2.

Now assume that some A′
j exists which does not occur in θ. It may be assumed

that A′
1 does not occur in θ for the same reason as in case (1). Then there exists

A′ . B′ ∈ R1 such that A′
1 ≡ A′θ′. Since A′ . B′ overlaps A . B and A′

1 ⊆ Mi,

we can obtain a critical pair, say 〈D, E〉, in crit(R1, R2) from this overlapping. Let

Mi
A′1→
1

M̃i. Then Pi ≡ Eθ′′ and M̃i ≡ Dθ′′ for some θ′′. From condition (1) of the

theorem, there is some S such that D−→++
2

S and D
∗→
1

S. Take P̃i ≡ Sθ′′. Then

we have M̃i

C1,···,Cr−→++
2

P̃i and Pi
∗→
1

P̃i. Also, M̃i

A′2,···,A′q−→++
1

Ni. For the redex occurrences

A′
2, · · · , A′

q and C1, · · · , Cr of M̃i, we take Γ′ in the same way as in case (1); it can

be proven that |Γ′| < |Γ|. Using the induction hypothesis, we obtain the diagram in

Figure 3.6.

72



?

?

-

-

-

?

?

Mi

M̃i

Pi

P̃i

Ni Qi

C1, · · · , Cr

2

Mi

2

‖

2

‖

1A′
1

1=

A′
2, · · · , A′

q

1 ∗

1 ∗

Figure 3.6

Take Q ≡ C[Q1, · · · , Qp]. Then it follows that N −→++
2

Q and P
∗→
1

Q.

The following corollary is given in [79, 88].

3.3.4. Corollary. Let left-linear term rewriting systems R1 and R2 be nonover-

lapping with each other. Then R1 commutes with R2.

Proof. It is obvious from Theorem 3.3.3.

3.3.5. Example. Consider the left-linear term rewriting systems R1 and R2:

R1





f(x) . h(f(x))

g(x) . h(g(x))

73



R2





f(x) . g(x)

h(f(x)) . h(g(x))

Then crit(R1, R2) = {〈h(f(x)), g(x)〉, 〈h(h(f(x))), h(g(x))〉} and critin(R2, R1) =

φ. It can be shown that h(f(x))→
2

h(g(x)) and g(x)→
1

h(g(x)) for the critical

pair 〈h(f(x)), g(x)〉, and that h(h(f(x)))→
2

h(h(g(x))) and h(g(x))→
1

h(h(g(x))) for

the critical pair 〈h(h(f(x))), h(g(x))〉. By applying Theorem 3.3.3, it follows that

COM(R1, R2), i.e., R1 commutes with R2.

Let R = R1 ∪ R2. It can easily be shown that CR(R1) by Proposition 1.4.9

(Rosen) and CR(R2) by Proposition 1.4.8 (Knuth-Bendix). Thus CR(R) can be

obtained from Proposition 1.3.6 (Commutative Union Theorem). Note that non of

Propositions 1.4.8, 1.4.9, or 1.4.11 (Huet) can be directly applied to R.

3.3.6. Example. Consider the left-linear term rewriting systems R1 and R2:

R1





f(x) . g(f(x))

h(x) . p(h(x))

R2





f(x) . h(f(x))

g(x) . p(p(h(x)))

Then crit(R1, R2) = {〈g(f(x)), h(f(x))〉} and critin(R2, R1) = φ. It can be

shown that g(f(x))→
2

p(p(h(f(x)))) and h(f(x))→
1

p(h(f(x)))→
1

p(p(h(f(x)))) for

the critical pair 〈g(f(x)), h(f(x))〉; by applying Theorem 3.3.3, it follows that R1

commutes with R2.

Let R = R1∪R2. We can easily show CR(R1) and CR(R2) by Proposition 1.4.9

(Rosen). Thus CR(R) can be obtained from Proposition 1.3.6 (Commutative Union

Theorem). It is obvious that non of Propositions 1.4.8, 1.4.9, or 1.4.11 can be

74



directly applied to R.

Since self-commuting COM(R, R) and the Church-Rosser property CR(R) are

equivalent, we can obtain the following sufficient condition for the Church-Rosser

property from Theorem 3.3.3.

3.3.7. Corollary. Let R be a left-linear term rewriting system. Then R has

the Church-Rosser property if:

(1) ∀〈P, Q〉 ∈ critout(R) ∃S [P −→++ S ∧Q
∗→S],

(2) ∀〈Q,P 〉 ∈ critin(R) [Q−→++ P ].

Proof. Take R = R1 = R2. Since crit(R) = critout(R) ∪ critin(R), we can

replace condition (1) of Theorem 3.3.3 with condition (1) of the corollary. Hence

the corollary holds.

Note that Proposition 1.4.11 (Huet) gives a particular case of Corollary 3.3.7.

3.3.8. Example. Consider the left-linear term rewriting system R:

R





p(x) . q(x)

p(x) . r(x)

q(x) . s(p(x))

r(x) . s(p(x))

s(x) . f(p(x))

Then critout(R) = {〈q(x), r(x)〉, 〈r(x), q(x)〉} and critin(R) = φ. Since q(x)→ s(p(x))

and r(x) → s(p(x)), we can apply Corollary 3.3.7. Thus it is obtained that R has

75



the Church-Rosser property. Note that the Church-Rosser property of R cannot be

proven by applying Proposition 1.4.8, 1.4.9, or 1.4.11.

3.4. Conclusion

In this chapter we have proposed a new sufficient condition to prove commutativity

of left-linear term rewriting systems [98, 92], by extending the critical pair concept

to overlapping rewriting rules. The result has extended the sufficent condition for

commutativity presented in Raoult and Vuillemin [79] and Sugiyama, Taniguchi and

Kasami [88], which does not allow overlapping between two systems. Jouannaud

and Kirchner [44] and Jouannaud and Munoz [46] gave the sufficent condition for

commutativity of overlapping systems, but they discussed it under the stronger

assumption that one of the systems is E-termination. On the other hand, we do not

assume termination of systems. We have shown that our result can be applied to

proving the Church-Rosser property of left-linear term rewriting systems to which

the sufficient conditions proposed by Knuth and Bendix [59], Rosen [81], and Huet

[37] cannot directly apply. The proposed result offers a useful means to analyze a

complex term rewriting system as the union of its simpler parts.

76



4. How to Prove Equivalence of

Term Rewriting Systems without

Induction

In this chapter a simple method, based on the Church-Rosser property and reach-

ability, is proposed for proving the equivalence in a restricted domain of two given

term rewriting systems without the explicit use of induction; this proof usually re-

quires some kind of induction. The method is applied to proving the inductive

theorems and to deriving a new term rewriting system from a given system by us-

ing the equivalence transformation rules. The result is a general extension of the

inductionless induction methods developed by Musser, Goguen, Huet and Hullot.

4.1. Introduction

We consider how to prove the equivalence in a restricted domain of two term rewrit-

ing systems [22, 39, 58, 27] without induction. The equivalence in a restricted domain

means that the equational relation (or the transitive reflexive closure) generated by

the reduction relation of one system is equal in the restricted domain to that of the

other system.

We first explain the concept of the equivalence in a restricted domain through

simple examples.

77



N is the set of natural numbers represented by 0, s(0), s(s(0)), . . .. Consider the

term rewriting system R1 computing the addition on the set N:

R1





x + 0 . x

x + s(y) . s(x + y).

By adding the associative law to R1, we can obtain another system R2 computing

the same function:

R2





x + 0 . x

x + s(y) . s(x + y)

x + (y + z) . (x + y) + z.

Then, R2 can reduce (M +N)+P and M +(N +P ) to the same normal form for

any terms M,N, P , while R1 cannot generally do so unless M, N and P are ground

terms. The equivalence of R1 and R2 must be regarded as the equivalence in the set

of ground terms (i.e., in the initial model) of two systems. Thus we can observe the

equivalence in a restricted domain of two term rewriting systems R1 and R2.

We show another example. Consider the following term rewriting systems R̃1

and R̃2 computing the double function d(n) = 2 ∗ n:

R̃1





d(0) . 0

d(s(x)) . s(s(d(x)))

78



R̃2





d(x) . if(x, 0, s(s(d(x− s(0)))))

if(0, y, z) . y

if(s(x), y, z) . z

x− 0 . x

s(x)− s(y) . x− y.

The term rewriting system R̃1 has no infinite reduction sequence. On the other

hand, R̃2 has an infinite reduction sequence starting with the term d(M) for any

term M , since the first rewriting rule in R̃2 can be infinitely applied to the function

symbol d. Moreover, R̃1 has no rewriting rules for the functions if and −. Thus, R̃1

and R̃2 generally produce different reduction sequences, although they can reduce

the term d(M) to the same result if M can be reduced to a natural number in N.

Therefore, the equivalence of R̃1 and R̃2 must be regarded as that in the set of

ground terms represented by only the function symbols d, s and 0. Thus, we can

say that R̃1 and R̃2 are equivalent in the restricted domain.

The concept of equivalence in a restricted domain of term rewriting systems

frequently appears in computer science: automated theorem proving, semantics of

functional programs, program transformation, verification of programs, and specifi-

cation of abstract data types. However, this equivalence cannot generally be proved

by mere equational reasoning; some kind of induction on the domain structure is

necessary.

This chapter presents a new simple method for proving the equivalence in a

restricted domain of two term rewriting systems without the explicit use of induc-

tion. Our approach to this problem was inspired by the inductionless induction

methods developed by Musser [69], Goguen [31], Huet and Hullot [38], and others

[26, 45, 50, 53, 60, 75, 76, 89]. We generalize the inductionless induction meth-

ods within a general framework of abstract reduction systems. Some limitations of

the inductionless induction methods are removed: in particular, the strongly nor-

79



malizing restriction. The sufficient completeness limitation is replaced with a more

general concept of reachability.

The key idea behind our method is that the equivalence in a restricted domain can

be easily proved by the Church-Rosser property and reachability. We first explain

this idea in an abstract framework. In Section 4.2, we propose simple sufficient

conditions for the equivalence in a restricted domain of two given abstract reduction

systems. Our results are carefully partitioned between abstract properties depending

solely on the reduction relation and properties depending on the term structure.

In Section 4.3, we offer some examples of how to prove the equivalence for term

rewriting systems by using the abstract results. In Section 4.4, we explain how

our method relates to the inductionless induction methods developed by Musser

[69], Goguen [31], Huet and Hullot [38]. Based on our framework, we demonstrate

that the inductionless induction methods can work under a very weak assumption.

Finally, in Section 4.5, we propose an equivalence transformation technique for term

rewriting systems. Furthermore, we discuss some examples confirming that the

extended inductionless induction concept is a useful tool for proving correctness of

program transformations proposed by Burstall and Darlington [9].

4.2. Equivalence of Abstract Reduction Systems

Let R1 = 〈A,→
1
〉 and R2 = 〈A,→

2
〉 be two abstract reduction systems having the

same object set A, and let
∗→
i
, =

i
and NFi (i=1,2) be the transitive reflexive closure,

the equivalence relation and the set of normal forms in Ri respectively. Note that
∗→

and = are subsets of A×A; for example, =
1
⊆ =

2
means that ∀x, y ∈ A[x =

1
y ⇒ x =

2
y].

4.2.1. Definition. Let A′ and A′′ be any nonempty subsets of the object set

A. Let ∼
i

(i = 1, 2) be any two binary relations on A. Then we give the following

definitions:

80



(1) ∼
1

= ∼
2

in A′×A′′ iff ∀x ∈ A′∀y ∈ A′′[x∼
1

y ⇐⇒ x∼
2

y], and ∼
1
⊆ ∼

2
in A′×A′′

iff ∀x ∈ A′∀y ∈ A′′[x∼
1

y ⇒ x∼
2

y]. We write these relations as ∼
1

= ∼
2

in A′

and ∼
1
⊆ ∼

2
in A′ respectively if A′ = A′′.

(2) A′′ is reachable from A′ under ∼
1

iff ∀x ∈ A′∃y ∈ A′′[x∼
1

y].

(3) A′ is closed under ∼
1

iff ∀x ∈ A′∀y ∈ A[x∼
1

y ⇒ y ∈ A′].

We first show sufficient conditions for =
1

= =
2

in A′.

4.2.2. Lemma. Let R1 and R2 satisfy the following conditions:

(1) =
1
⊆ =

2
,

(2) =
1

= =
2

in A′′,

(3) A′′ is reachable from A′ under =
1
.

Then =
1

= =
2

in A′.

Proof. Prove ∀x, y ∈ A′[x =
1

y ⇐⇒ x =
2

y]. ⇒ is trivial from condition (1),

hence, we will show ⇐. Assume x =
2

y, where x, y ∈ A′. By using condition (3),

there are some elements z, w ∈ A′′ such that x =
1

z and y =
1

w. Since x =
2

z and y =
2

w

are obtained from condition (1) , z =
2

w can be derived from z =
2

x =
2

y =
2

w. From

condition (2), z =
1

w holds. Therefore x =
1

y from x =
1

z =
1

w =
1

y.

If R2 has the Church-Rosser property, we can modify condition (2) of Lemma

4.2.2 as follows.

4.2.3. Theorem. Assume the following conditions:

(1) =
1
⊆ =

2
,

81



(2) CR(R2),
∗→
2
⊆ ∗→

1
in A′′, and A′′ is closed under

∗→
2

,

(3) A′′ is reachable from A′ under =
1
.

Then =
1

= =
2

in A′.

Proof. Prove condition (2) of Lemma 4.2.2, i.e., ∀x, y ∈ A′′[x =
1

y ⇐⇒ x =
2

y].

⇒ is trivial from condition (1), hence we will prove ⇐. Assume x =
2

y, where x, y ∈
A′′. From CR(R2), the closed property of A′′ under

∗→
2

, and Proposition 1.3.4(i);

there exists some z ∈ A′′ such that x
∗→
2

z and y
∗→
2

z. By using
∗→
2
⊆ ∗→

1
in A′′, x

∗→
1

z

and y
∗→
1

z can be derived. Therefore x =
1

y.

4.2.4. Theorem. Assume the following conditions:

(1) =
1
⊆ =

2
,

(2) CR(R2) and A′′ ⊆ NF2,

(3) A′′ is reachable from A′ under =
1
.

Then =
1

= =
2

in A′.

Proof. Prove condition (2) of Lemma 4.2.2, i.e., ∀x, y ∈ A′′[x =
1

y ⇐⇒ x =
2

y].

⇒ is trivial. ⇐: By using condition (2) of this theorem and Proposition 1.3.4(ii),

x =
2

y ⇒ x ≡ y for any x, y ∈ A′′. Therefore x =
1

y.

4.2.5. Corollary. Assume the conditions:

(1) =
1
⊆ =

2
,

(2) CR(R2) and NF1 = NF2,

(3) WN(R1).

82



Then =
1

= =
2

is obtained.

Proof. Set A′ = A and A′′ = NF1 = NF2 in Theorem 4.2.4.

Next, we consider sufficient conditions for
∗→
1

=
∗→
2

in A′ × A′′.

4.2.6. Theorem. Assume the following conditions:

(1) =
1
⊆ =

2
,

(2) CR(R2) and A′′ ⊆ NF2,

(3) A′′ is reachable from A′ under
∗→
1

.

Then
∗→
1

=
∗→
2

in A′ × A′′.

Proof. Prove ∀x ∈ A′∀y ∈ A′′[x ∗→
1

y ⇐⇒ x
∗→
2

y]. ⇒: Let x
∗→
1

y. Then x =
2

y

from condition (1). Thus x
∗→
2

y is obtained from condition (2) and Proposition

1.3.4(iii). ⇐: Let x
∗→
2

y. Then, from condition (3), there exists some z ∈ A′′ such

that x
∗→
1

z. By condition (1), x =
2

z; hence, y =
2

z can be derived from y =
2

x =
2

z.

Thus, y ≡ z is obtained from condition (2) and Proposition 1.3.4(ii). Therefore

x
∗→
1

y.

4.2.7. Corollary. Assume the conditions:

(1) =
1
⊆ =

2
,

(2) CR(R2) and NF1 = NF2,

(3) WN(R1).

Then
∗→
1

=
∗→
2

in A×NF1.

Proof. Set A′ = A and A′′ = NF1 = NF2 in Theorem 4.2.6.

83



In the following sections, we will explain how to apply the above abstract results

to term rewriting systems that are reduction systems having a term set as the object

set. However, note that the above abstract results can be applied not only to term

rewriting systems, but also to various reduction systems.

4.3. Examples of Equivalent Systems

We now illustrate how to prove the equivalence in a restricted domain of two term

rewriting systems R1 and R2 by using Theorems 4.2.3, 4.2.4, and 4.2.6. We will

omit here all proofs of reachability in the following examples. For the proofs of

reachability for the examples in this and the following sections, see Appendix B.

4.3.1. Example. Let F ′ = {+, s, 0} and F ′′ = {s, 0}. Consider the term

rewriting systems R1 and R2 computing the addition on the set N:

R1





x + 0 . x

x + s(y) . s(x + y)

R2





x + 0 . x

x + s(y) . s(x + y)

x + (y + z) . (x + y) + z

We will prove that =
1

= =
2

in T (F ′) by using Theorem 4.2.4. Let A′ = T (F ′), A′′ =

T (F ′′) in Theorem 4.2.4. We need to verify conditions (1), (2), (3) of Theorem 4.2.4

for R1 and R2. Since .
1
⊆ .

2
, condition (1), i.e., =

1
⊆ =

2
, is obvious. By using SN(R2)

and Proposition 1.4.8, CR(R2) is obtained. Condition (2) holds, since T (F ′′) ⊆ NF2.

T (F ′′) is reachable from T (F ′) under =
1
. Therefore, =

1
= =

2
in T (F ′).

It is also possible to prove
∗→
1

=
∗→
2

in T (F ′)× T (F ′′) by using Theorem 4.2.6.

84



The next example shows that our result can be easily applied to the reduction

systems having the relation between constructors such as s3(x) = x.

4.3.2. Example. Let F ′ = {+, s, 0} and F ′′ = {s, 0}. Consider the term

rewriting systems R1 and R2 computing the addition on Z3:

R1





s(s(s(x))) . x

x + 0 . x

x + s(y) . s(x + y)

R2





s(s(s(x))) . x

x + 0 . x

x + s(y) . s(x + y)

x + (y + z) . (x + y) + z

We will prove that =
1

= =
2

in T (F ′) by using Theorem 4.2.3. Let A′ = T (F ′),

A′′ = T (F ′′). We need to verify conditions (1), (2), (3) of Theorem 4.2.3 for R1 and

R2. Condition (1), i.e., =
1
⊆ =

2
, is obvious. By using SN(R2) and Proposition 1.4.8,

CR(R2) is obtained. Condition (2) holds since →
1

= →
2

in T (F ′′), and since T (F ′′)

is closed under →
2

. T (F ′′) is reachable from T (F ′) under =
1
. Therefore, =

1
= =

2
in

T (F ′).

Note that it is also possible to prove =
1

= =
2

in T (F ′) by letting A′′ = {0, s(0), s(s(0))}
and by using Theorem 4.2.4.

We next show an example in which R2 does not have the strongly normalizing

property.

85



4.3.3. Example. Consider the following term rewriting systems R1 and R2

computing the double function d(n) = 2 ∗ n:

R1





d(0) . 0

d(s(x)) . s(s(d(x)))

R2





d(x) . if(x, 0, s(s(d(x− s(0)))))

if(0, y, z) . y

if(s(x), y, z) . z

x− 0 . x

s(x)− s(y) . x− y

The term rewriting system R2 does not have the strongly normalizing property,

since the first rewriting rule in R2 can be applied infinitely to the function symbol

d.

Let F ′ = {d, s, 0} and F ′′ = {s, 0}. We will show that the function d of R1 equals

that of R2 in the restricted domain T (F ′), that is, =
1

= =
2

in T (F ′). For this purpose,

Theorem 4.2.4 is used. Let A′ = T (F ′) and A′′ = T (F ′′). We must verify conditions

(1), (2), (3) of Theorem 4.2.4. Since d(0) =
2

0 and d(s(x)) =
2

s(s(d(x))), condition

(1), i.e., =
1
⊆ =

2
, is obtained. It is obvious that R2 is left-linear and nonoverlapping.

Hence, by using Proposition 1.4.9, R2 has the Church-Rosser property. Since some

function symbol not in F ′′ appears in the left-hand side of any rewriting rule in R2,

we can obtain T (F ′′) ⊆ NF2. Thus, condition (2) holds. T (F ′′) is reachable from

T (F ′) under =
1
. Therefore, =

1
= =

2
in T (F ′) holds.

Note that T (F ′′) is also reachable from T (F ′) under
∗→
1

. Hence, by Theorem

4.2.6, we can prove
∗→
1

=
∗→
2

in T (F ′)× T (F ′′) in the same way as the above proof.

86



Remark. Reachability from T (F ) to T (C) under = has been called sufficient

completeness [14, 33, 45, 50, 51, 53, 60, 70, 75] where C is the set of constructors.

Clearly, sufficient completeness is a very particular case of reachability.

It is known that sufficient completeness is undecidable in general [33]. The

decidability of sufficient completeness under certain conditions is discussed in [14,

45, 50, 51, 53, 60, 70, 75]. Hence, reachability is also undecidable in general, and

the test of reachability under certain conditions has the same difficulty as that of

sufficient completeness.

Remark. In the above examples, it is sufficient to consider the term rewriting

systems on the set T (F ) of ground terms. Hence, it is not necessary to verify

the Church-Rosser property on T (F, V ) but only on T (F ) (i.e., ground confluence

[26, 77]).

4.4. Inductionless Induction

By using Theorem 4.2.4, an equation whose proof usually requires induction on some

data structure can be proved without the explicit use of induction. In this section,

we will explain how to prove an equation with the inductionless induction method

[26, 31, 38, 45, 50, 53, 60, 69, 75] based on a very general framework. The framework

makes it clear that the inductionless induction methods can work under a very weak

assumption: the Church-Rosser property and reachability.

Let R1 be a term rewriting system on T (F, V ) (or on T (F )). For a term set

T , let M =
1

N in T denote ∀θ[Mθ, Nθ ∈ T ⇒ Mθ =
1

Nθ]. Now, for given terms

M,N ∈ T (F ′, V ) such that any variable in N also occurs in M , consider the validity

of M =
1

N in T (F ′). Note that this validity cannot, in general, be proved by merely

equational reasoning, that is, some kind of induction on T (F ′) usually becomes

necessary [31, 38, 69] . However, we can prove that M =
1

N in T (F ′) by using the

following theorem without induction.

87



4.4.1. Theorem. Let R1 be a term rewriting system on T (F, V ) (or on T (F ))

with reachability from T (F ′) to T (F ′′) under =
1
. Let R2 = R1 ∪{M . N}. If R2 has

the Church-Rosser property and T (F ′′) ⊆ NF2, then M =
1

N in T (F ′).

Proof. It is obvious that R1 and R2 satisfy conditions (1), (2) and (3) of Theorem

4.2.4 by letting A′ = T (F ′) and A′′ = T (F ′′). Thus, =
1

= =
2

in T (F ′). Since

M . N ∈ R2, we can show that M =
2

N in T (F ′). Therefore, M =
1

N in T (F ′).

4.4.2. Example. Consider R1 defining the half function h(n) = n/2 and the

double function d(n) = 2 ∗ n:

R1





h(0) . 0

h(s(0)) . 0

h(s(s(x))) . s(h(x))

d(0) . 0

d(s(x)) . s(s(d(x)))

Let F ′ = {h, d, s, 0} and F ′′ = {s, 0}. Now, let us prove h(d(x)) =
1

x in T (F ′)

by using Theorem 4.4.1. T (F ′′) is reachable from T (F ′) under =
1
. Take R2 =

R1 ∪ {h(d(x)) . x}. Then, CR(R2) by Proposition 1.4.8. Clearly, T (F ′′) ⊆ NF2.

Therefore, h(d(x)) =
1

x in T (F ′).

When R2 = R1 ∪ {M . N} does not satisfy the conditions in Theorem 4.4.1, we

may find R3 instead of R2 such that CR(R3), T (F ′′) ⊆ NF3, and =
2

= =
3

in T (F ′).

4.4.3. Corollary. Let R1 be a term rewriting system on T (F, V ) (or on T (F ))

with reachability from T (F ′) to T (F ′′) under =
1
. Let R2 = R1 ∪ {M . N}. If there

exists a term rewriting system R3 satisfying the Church-Rosser property, T (F ′′) ⊆

88



NF3, and =
2

= =
3

in T (F ′); then M =
1

N in T (F ′).

In Corollary 4.4.3 if the term rewriting system R2 is strongly normalizing, then

an effective search for R3 can be executed by applying the Knuth-Bendix completion

algorithm [59] to R2. Thus, by using a modified Knuth-Bendix completion algorithm,

we can prove automatically inductive theorems without the explicit use of induction.

Hence, it has been called inductionless induction.

The original idea of the inductionless induction method was proposed by Musser

[69] , and has been extended by Goguen [31] , Huet and Hullot [38] , and others [26,

45, 50, 53, 60, 75, 76, 89]. However, their inductionless induction methods have many

limitations. In particular, the requirement for the strongly normalizing property of

R2 [26, 31, 38, 69, 89] (or the strongly normalizing property on equivalence classes

of terms if there are non-oriented equations such as associative/commutative laws

[45, 50, 53, 60, 75]) restricts its application, since most term rewriting systems in

which functions are denoted by recursive definitions, such as recursive programs, do

not satisfy this property.

On the other hand, Corollary 4.4.3 have clarified that we can treat the induc-

tionless induction concept itself apart from the Knuth-Bendix completion algorithm.

Thus, in the inductionless induction proof technique if we do not use the Knuth-

Bendix completion algorithm to find R3, the strong normalizing limitation can be

removed from R2. We next show an example in which R2 is not strongly normalizing.

89



4.4.4. Example.

R1





d(x) . if(x, 0, s(s(d(x− s(0)))))

h(x) . if(x, 0, if(x− s(0), 0, s(h(x− s(s(0))))))

if(0, y, z) . y

if(s(x), y, z) . z

x− 0 . x

s(x)− s(y) . x− y

Note that the term rewriting system R1 does not have the strongly normalizing

property, since the first and second rules in R1 can be infinitely applied to the

function symbols d and h respectively.

Let F ′ = {d, h, s, 0} and F ′′ = {s, 0}. Now, we show that h(d(x)) =
1

x in T (F ′).

T (F ′′) is reachable from T (F ′) under =
1
. Take R2 = R1 ∪ {h(d(x)) . x}. R2 is not

strongly normalizing since R1 is so. To easily show the Church-Rosser property of

the term rewriting system obtained by adding the rule h(d(x)) . x, we consider R3

instead of R2:

R3





d(0) . 0

d(s(x)) . s(s(d(x)))

h(0) . 0

h(s(0)) . 0

h(s(s(x))) . s(h(x))

if(0, y, z) . y

if(s(x), y, z) . z

x− 0 . x

s(x)− s(y) . x− y

h(d(x)) . x

90



Then, =
2

= =
3

in T (F ′) can be proved in the same way as for Example 4.3.3. It

is shown from Proposition 1.4.8 that R3 has the Church-Rosser property. Clearly,

T (F ′′) ⊆ NF3. Hence, R3 satisfies the conditions in Corollary 4.4.3. Therefore,

h(d(x)) =
1

x in T (F ′).

Note. There is a practical difficulty in directly applying the above method to

automated deduction. The basis of the method is an equivalence transformation

from R2 to R3. However, at this stage we know no automatic transformation method

in which the strong normalizing limitation on R2 is unnecessary. Thus, an automatic

transformation method must still be found.

4.5. Equivalence Transformation Technique

In this section, we propose the equivalence transformation rules for term rewriting

systems. We show that the equivalence of term rewriting systems, to which it is

difficult to apply Theorems 4.2.4 and 4.2.6 directly, can be easily proved by an

equivalence transformation technique. The results are effectively applied to proving

the correctness of program transformations proposed by Burstall and Darlington [9].

Let R0 = 〈T,→
0
〉 with . be a left-linear term rewriting system having the Church-

Rosser property. Here, T is T (F, V ) or T (F ). Let F ′ and F ′′ be the subsets of F

and let T (F ′′) ⊆ NF0. Let S0 = .. Now, we give the equivalence transformation

rules from Rn = 〈T,→
n
〉 (n ≥ 0) to Rn+1 = 〈T, →

n+1
〉:

I. Introduction: Introduce a new relation by adding a new rewriting rule P . Q

to Rn; where P .Q is not overlapping with any rule in Sn, and P is linear and

has at least one function symbol not in F ′′. Thus, Rn+1 = Rn ∪ {P . Q}. Set

Sn+1 = Sn ∪ {P . Q}.

A. Addition: Add an extra rule P . Q to Rn, where P =
n

Q. Thus, Rn+1 =

91



Rn ∪ {P . Q}. Set Sn+1 = Sn.

E. Elimination: Remove a rule P . Q from Rn. Thus, Rn+1 = Rn−{P . Q}. Set

Sn+1 = Sn.

Remark. The above three rules are a natural extension of the program transfor-

mation rules suggested by Burstall and Darlington [9] : Definition, Instantiation,

Unfolding, Folding, Abstraction, and Laws. We can easily show that Instantiation,

Unfolding, Folding, and Laws can be obtained directly from rule A; and Definition

from rule I. Abstraction can be also obtained by combining the above three rules.

Hence, their program transformations can be seen as a particular case of our equiv-

alence transformations for term rewriting systems in restricted domains. Indeed, we

can give a formal proof to the correctness of the program transformations by the

technique developed in this section: see Examples 4.5.4 and 4.5.5.

Rn⇒
i

Rn+1 shows that Rn is transformed to Rn+1 by rule i (i = I, A, or E).

Rn ⇒ Rn+1 shows that Rn is transformed to Rn+1 by rule I, A, or E.
∗⇒
i

and
∗⇒

denote the transitive reflexive closure of ⇒
i

and ⇒, respectively.

4.5.1. Lemma. If R⇒
i

R′⇒
j

R̃ (i = E and j = I, i = E and j = A, or i = A

and j = I ), then there is some R′′ such that R⇒
j

R′′⇒
i

R̃.

Proof. From the definitions of the rules, it is obvious.

4.5.2. Lemma. Let R
∗⇒ R̃. Then, there exists a transformation sequence from

R to R̃ such that R
∗⇒
I

R′ ∗⇒
A

R′′ ∗⇒
E

R̃.

Proof. By using Lemma 4.5.1 repeatedly, we can construct a sequence R
∗⇒
I

R′ ∗⇒
A

92



R′′ ∗⇒
E

R̃ from R
∗⇒ R̃.

The following corollary described in Chapter 3 plays an essential role in the proof

of Theorem 4.5.3.

Corollary 3.3.4. Let left-linear term rewriting systems R1 and R2 be nonover-

lapping with each other. Then R1 commutes with R2.

4.5.3. Theorem. Let R0 be a left-linear term rewriting system on T (F, V ) (or

on T (F )) having the Church-Rosser property. Let F ′ and F ′′ be the subsets of F

and let T (F ′′) ⊆ NF0. Let R0
∗⇒Rm, and let T (F ′′) be reachable from T (F ′) under

=
0

and under =
m

(resp. under
∗→
0

and under
∗→
m

). Then, =
0

= =
m

in T (F ′) (resp.

∗→
0

=
∗→
m

in T (F ′)× T (F ′′)).

Proof. We prove here only =
0

= =
m

in T (F ′), since the proof of
∗→
0

=
∗→
m

in

T (F ′) × T (F ′′) can be obtained in an analogous way. From Lemma 4.5.2, we may

assume that R0
∗⇒
I

Rp
∗⇒
A

Rq
∗⇒
E

Rm. To prove the theorem we will show that =
0

= =
p

in T (F ′) and =
p

= =
m

in T (F ′).

Consider R0
∗⇒
I

Rp. It is clear that =
0
⊆ =

p
. Let R′ be the term rewriting system

defined by Sp − S0, i.e., the set of new rules introduced through R0
∗⇒
I

Rp. Then Rp

is the union of R0 and R′. Since R′ is left-linear and nonoverlapping, CR(R′) can be

proved by using Proposition 1.4.9. It is obvious that R0 and R′ are nonoverlapping

with each other. Hence, by Corollary 3.3.4 and Proposition 1.3.6 (Commutative

Union Theorem), CR(Rp) is obtained. Since the left-hand side of each introduced

rule has at least one function symbol not in F ′′ and since T (F ′′) ⊆ NF0, we can

obtain T (F ′′) ⊆ NFp. It has been assumed that T (F ′′) is reachable from T (F ′)

under =
0
. Hence, by using Theorem 4.2.4, we can obtain =

0
= =

p
in T (F ′).

From Rp
∗⇒
A

Rq, =
p

= =
q

is trivial.

93



Now consider Rq
∗⇒
E

Rm. Since =
m
⊆ =

q
and =

q
= =

p
, it is obvious that =

m
⊆ =

p
. It

has been shown that CR(Rp) and T (F ′′) ⊆ NFp. It has been assumed that T (F ′′)

is reachable from T (F ′) under =
m

. Hence, by Theorem 4.2.4 for Rm and Rp, it can

be proved that =
p

= =
m

in T (F ′).

Therefore, it follows that =
0

= =
m

in T (F ′).

We now explain how to show the equivalence of two term rewriting systems by

using the equivalence transformation technique. We take the examples discussed in

[9] as examples of program transformations. Thus, the following examples make it

clear that the extended inductionless induction concept is a useful tool for proving

the correctness of the program transformations.

4.5.4. Example (Summation). Consider the following term rewriting systems

R1 and R2 computing the summation function f(n) = n + · · ·+ 1 + 0:

R1





f(0) . 0

f(s(x)) . s(x) + f(x)

x + 0 . x

x + s(y) . s(x + y)

R2





f(0) . 0

f(s(x)) . g(x, s(x))

g(0, y) . y

g(s(x), y) . g(x, y + s(x))

x + 0 . x

x + s(y) . s(x + y)

94



Let F ′ = {f, +, s, 0} and F ′′ = {s, 0}. By using the equivalence transformation

rules, we will show that =
1

= =
2

in T (F ′). Note that R2 is in iterative form [9].

Hence, this transformation technique can be used to convert recursive form into

iterative form for functional programs.

To transform R1 to R2, we first add the associative law for + to R1: take

R3 = R1 ∪ {x + (y + z) . (x + y) + z}. Here, R3 ⇒ R1 by rule E. From Proposition

1.4.8, CR(R3) is proved. Clearly, T (F ′′) ⊆ NF3. T (F ′′) is reachable from T (F ′)

under =
1

(and also under =
3
). By Theorem 4.5.3, =

1
= =

3
in T (F ′) is obtained.

Now let us transform R3 to R2 by using the transformation rules. Through rule

I, we introduce a new function g:

(1) g(x, y) . y + f(x).

Let R4 = R3 ∪ {(1)}, then we can prove

f(s(x)) =
4

g(x, s(x)),

g(0, y) =
4

y,

g(s(x), y) =
4

y+f(s(x)) =
4

y+(s(x)+f(x)) =
4

(y+s(x))+f(x) =
4

g(x, y+s(x)).

Utilizing rule A, we can obtain R5 = R4 ∪ {(2), (3), (4)}:

(2) f(s(x)) . g(x, s(x)),

(3) g(0, y) . y,

(4) g(s(x), y) . g(x, y + s(x)).

Finally, by employing rule E, remove unnecessary rules x + (y + z) . (x + y) + z,

f(s(x)).s(x)+f(x), and g(x, y).y+f(x) from R5. Thus, we can obtain R2. T (F ′′)

is reachable from T (F ′) under =
2
. Hence, =

3
= =

2
in T (F ′) is obtained by Theorem

4.5.3.

95



Now, we obtain an equivalence transformation sequence from R1 to R2: R1 ⇐
R3 ⇒ R4

∗⇒R5
∗⇒R2. Therefore, =

1
= =

2
in T (F ′). It is also possible to prove

∗→
1

=
∗→
2

in T (F ′)× T (F ′′) by analogous transformation.

4.5.5. Example (Fibonacci). Consider the following term rewriting systems

R1 and R2 computing the Fibonacci function f(n + 2) = f(n + 1) + f(n) where

f(0) = 1, f(1) = 1 :

R1





f(0) . s(0)

f(s(0)) . s(0)

f(s(s(x))) . f(s(x)) + f(x)

x + 0 . x

x + s(y) . s(x + y)

R2





f(0) . s(0)

f(s(0)) . s(0)

f(s(s(x))) . p(h(g(x)))

g(0) . 〈s(0), s(0)〉
g(s(x)) . h(g(x))

h(x) . 〈p(x) + q(x), p(x)〉
p(〈x, y〉) . x

q(〈x, y〉) . y

x + 0 . x

x + s(y) . s(x + y)

Let F ′ = {f, +, s, 0} and F ′′ = {s, 0}. By using the equivalence transformation

rules, we will show that =
1

= =
2

in T (F ′). Note that if we ignore the computation

time for the function + as a primitive function, R2 computes the Fibonacci function

96



in linear time instead of exponential time [9].

From Proposition 1.4.8, CR(R1) is proved. Clearly, T (F ′′) ⊆ NF1. T (F ′′)

is reachable from T (F ′) under =
1
. To transform R1 to R2, we first introduce the

pairing 〈 , 〉 and the projection functions p, q by rule I:

(1) p(〈x, y〉) . x,

(2) q(〈x, y〉) . y.

Through rule I, we introduce a new function g:

(3) g(x) . 〈f(s(x)), f(x)〉.

Let R3 = R1 ∪ {(1), (2), (3)}. Then we can prove

g(0) =
3
〈s(0), s(0)〉,

g(s(x)) =
3
〈f(s(x)) + f(x), f(s(x))〉=

3
〈p(g(x)) + q(g(x)), p(g(x))〉.

Hence, we can add the following rules by using rule A:

(4) g(0) . 〈s(0), s(0)〉,

(5) g(s(x)) . 〈p(g(x)) + q(g(x)), p(g(x))〉.

Here, we introduce a new function h through rule I to avoid computing g(x)

three times in the right-hand side of (5),

(6) h(x) . 〈p(x) + q(x), p(x)〉.

Let R4 = R3 ∪ {(4), (5), (6)}. Then we can prove

g(s(x)) =
4

h(g(x)),

f(s(s(x))) =
4

p(g(s(x))) =
4

p(h(g(x))).

By employing rule A, we can obtain R5 = R4 ∪ {(7), (8)}:

97



(7) g(s(x))) . h(g(x)),

(8) f(s(s(x))) . p(h(g(x))).

Finally, by using rule E, remove unnecessary rules f(s(s(x))) . f(s(x)) + f(x),

g(x) . 〈f(s(x)), f(x)〉 and g(s(x)) . 〈p(g(x)) + q(g(x)), p(g(x))〉 form R5. Thus, we

can obtain R2. T (F ′′) is reachable from T (F ′) under =
2
. Hence, =

1
= =

2
in T (F ′)

is obtained by Theorem 4.5.3. We can also prove
∗→
1

=
∗→
2

in T (F ′) × T (F ′′) by

analogous method.

4.6. Conclusion

In this chapter, we have proposed a new simple method to prove the equivalence in

a restricted domain for reduction systems without the explicit use of induction. The

key idea is that the equivalence in the restricted domain can be easily tested by using

the Church-Rosser property and reachability of reduction systems. Our method has

extended the inductionless induction methods developed by Musser [69], Goguen

[31], Huet and Hullot [38], and others [26, 45, 50, 53, 60, 75, 76, 89] as follows:

(1) The inductionless induction methods are based on the framework of term rewrit-

ing systems. Our method is essentially based on a more general framework

of abstract reduction systems in which we assume only abstract structures.

Hence, our method can be applied directly not only to term rewriting systems,

but also to various reduction systems: Thue systems [5], graph rewriting sys-

tems [80], lambda calculus [2], combinatory reduction systems [56], resolution

systems [35, 49, 76], and so on.

(2) The inductionless induction methods deal with only the inductive equality of

two equational theories. On the other hand, our method extends the induc-

tionless induction concept to a computational aspect, i.e., reduction. The

method can deal with the inductive equality of two reduction systems, i.e., the

98



inductive equality of two reductions, in the same way as that of two equational

theories. This extension is very important in practice; for instance, we have

shown that our results can be effectively applied to proving the correctness of

program transformations proposed by Burstall and Darlington [9].

(3) The inductionless induction methods have many limitations [38] for term rewrit-

ing systems: the Church-Rosser property, the strongly normalizing property,

the partition of the function symbols into constructors and non-constructors,

and sufficient completeness. These limitations were partially relaxed by several

authors [26, 45, 50, 53, 60, 75, 76, 89]; for example, the second restriction can

be replaced with the strongly normalizing property on equivalence classes of

terms if there are non-oriented equations such as associative/commutative laws

[45, 53, 60, 75], and the third restriction can be completely removed [45, 50].

However, our method has made it clear that the inductionless induction con-

cept essentially requires only two limitations: the Church-Rosser property and

reachability which is an abstract extension of sufficient completeness.

We believe that our method provides a very useful means of proving the equiva-

lence which arises in various formal systems: automated theorem proving, semantics

of functional programs, program transformation, program verification, and specifi-

cation of abstract data types.

99



5. Membership Conditional

Term Rewriting Systems

In this chapter we propose a new type of conditional term rewriting systems: the

membership-conditional term rewriting system, in which, each rewriting rule can

have membership conditions which restrict the substitution values for the variables

occurring in the rule. We study the confluence of membership-conditional term

rewriting systems that are nonterminating and nonlinear. It is shown that a re-

stricted nonlinear term rewriting system in which membership conditions satisfy

the closure and termination properties is confluent if the system is nonoverlapping.

5.1. Introduction

Many term rewriting systems and their modifications are considered in logic, auto-

mated theorem proving, and programming language [3, 39, 48, 54, 58]. A fundamen-

tal property of term rewriting systems is the confluence property. A few sufficient

criteria for the confluence are well known. However, if a term rewriting system is

nonterminating and nonlinear, we know few criteria for the confluence of the system

[56, 95].

In this chapter, we study the confluence of membership-conditional term rewrit-

ing systems that are nonterminating and nonlinear. In a membership-conditional

term rewriting system, the rewriting rule can have membership conditions.

100



We explain this concept with an example. We first consider a classical term

rewriting system R that is nonterminating and nonlinear:

R





f(x, x) . 0

f(g(x), x) . 1

2 . g(2)

The diagram in Figure 5.1 illustrates that R is not confluent:

f(2, 2)

f(g(2), 2)

f(g(2), g(2))

f(g(g(2)), g(2))

···

0 1

?

?

?

?

¡
¡

¡
¡

¡
¡

¡ª

XXXXXXXy

J
J

J
J

J
J

J
J

J
J]

XXXXXXXz

¡
¡

¡
¡

¡
¡¡µ

¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢̧

Figure 5.1

Now, let T ′ be the set of terms containing no constant symbol 2. By adding

the membership condition x ∈ T ′ to the first and second rules in R, we obtain the

membership-conditional term rewriting system R′:

R′





f(x, x) . 0 if x ∈ T ′

f(g(x), x) . 1 if x ∈ T ′

2 . g(2)

101



The membership condition x ∈ T ′ restricts the substitution values for variable x; for

example, the first rule f(x, x) . 0 if x ∈ T ′ defines the reduction f(M, M) → 0 only

when M ∈ T ′. Then, we can prove that R′ is confluent (see Example 5.3.9 in Sec-

tion 5.3), though it is nonterminating and nonlinear. Thus, by adding appropriate

membership conditions, nonlinear systems can easily have the confluence property.

Our idea of membership-conditional rewriting was inspired by Church’s δ-rule in

λ-calculus [2, 56]:

δC





δMM . T if M is a closed normal form

δMN . F if M, N are closed normal forms and M 6≡ N .

It is well known that λ-calculus with δC is confluent [2, 56]. However, if λ-calculus

has Hindley’s δ-rule

δH

{
δMM . M

or Staples’s δ-rule

δS

{
δMM . ε

instead of δC , then it is not confluent [2, 56]. Thus, the membership conditions in

δC (i.e., M, N must be in the set of closed normal forms) play an important role for

the confluence of λ-calculus with nonlinear rules.

We will extend the idea of membership-conditional rewriting offered in Church’s

δ-rule to nonlinear term rewriting systems. Section 5.2 introduces the concept of

membership-conditional term rewriting systems. In Sections 5.3, we discuss the suf-

ficient criteria for the confluence of membership-conditional term rewriting systems

that are nonterminating and nonlinear. We show that a restricted nonlinear system

in which the membership conditions satisfy the closure and termination properties

is confluent if the system is nonoverlapping.

102



5.2. Membership-Conditional Rewriting

In this section, we propose membership-conditional term rewriting systems. A

membership-conditional term rewriting system R on T is a term rewriting system

on T in which the rewriting rule Ml . Mr can have the membership conditions

x ∈ T ′, y ∈ T ′′, · · · , z ∈ T ′′′. Here, T ′, T ′′, · · · , T ′′′ are any subsets of T .

The membership-conditional rewriting rule is denoted by

Ml . Mr if x ∈ T ′, y ∈ T ′′ · · · , z ∈ T ′′′.

The conditions x ∈ T ′, y ∈ T ′′ · · · , z ∈ T ′′′ restrict the substitution’s values on the

variables x, y, · · · , z occurring in the rule Ml . Mr. Thus, the rule Ml . Mr if x ∈
T ′, y ∈ T ′′ · · · , z ∈ T ′′′ defines the reduction M → N only when M ≡ C[Mlθ],

N ≡ C[Mrθ] for some C[ ] and some θ such that xθ ∈ T ′, yθ ∈ T ′′, · · · , zθ ∈ T ′′′.

5.2.1. Example. Let F = {+, d, s, 0} and F ′ = {+, s, 0}. Consider the

membership-conditional term rewriting system R on T (F, V ) which computes the

addition and the double function d(n) = n + n on the set N of natural numbers

represented by 0, s(0), s(s(0)), . . .:

R





x + 0 . x

x + s(y) . s(x + y)

d(x) . x + x if x ∈ T (F ′)

Then we have the following reduction:

d(d(0)) → d(0 + 0) → (0 + 0) + (0 + 0)
∗→ 0.

Note that d(d(0)) cannot directly contract into d(0)+ d(0) with the third rule in

R since d(0) /∈ T (F ′).

5.2.2. Example. Let F = {−, s, 0}. Consider the membership-conditional

103



term rewriting system R on T (F, V ) computing the subtraction on the set N:

R





x− 0 . x if x ∈ NF

s(x)− s(y) . x− y if x, y ∈ NF

x− x . 0 if x ∈ NF

Then, R contracts only the innermost redex occurrences in a term since the

membership conditions prohibit to contract the other redex occurrences. Thus, by

using the membership conditions we can explicitly provide the innermost reduction

strategy for term rewriting systems.

Note that we allow any (not necessarily decidable) membership condition x ∈ T ′.

However, if a membership condition is undecidable, the membership-conditional

system R might not be well-defined (i.e., the reduction relation → of R cannot be

defined). For example, a rewriting rule in which a membership condition restricts

the application of itself leads us to the following paradoxical system R:

R
{

f(x) . 0 if x ∈ {M |f(M) ∈ NF}

Then, we can show that f(0) is a normal form iff f(0) is not a normal form: a

contradiction. Hence R is not well-defined.

As regarding Examples 5.2.1, the membership-conditional system is well-defined

since the condition x ∈ T (F ′) in the third rule is obviously decidable. From the

following lemma, we can show that the systems in Examples 5.2.2 and 5.3.7 (in

Section 5.3) are also well-defined.

Lemma 5.2.3. Let R be a membership-conditional system in which each condi-

104



tion has the form x ∈ NF (where x may be any variable). Then, R is well-defined.

Proof. Consider the claim: M ∈ NF (i.e., the irreducibility for M) is decidable

for any term M . It is clear that the lemma follows from this claim. We will prove

the claim by induction on the size |M | of the term M (i.e., the number of the

symbols occurring in M). The case |M | = 1 is trivial since M is a variable or a

constant. Assume the lemma for |M | < k. Then, we must show the lemma for the

case |M | = k. It is decidable whether M has a redex as a proper subterm, say P ,

by |P | < |M | and the induction hypothesis. We will show that it is also decidable

whether M is a redex. Consider a rule Ml .Mr if x, · · · , z ∈ NF . Then, M is a redex

for this rule iff M ≡ Mlθ and xθ, · · · , zθ ∈ NF for some θ. By |xθ|, · · · , |zθ| < |M |
and the induction hypothesis, we can decide whether M is a redex for the rule.

Thus, testing every rule in R, we can decide whether M is a redex. Therefore, the

decidability of M ∈ NF follows. 2

In this chapter, we are interested in only well-defined membership-conditional

systems. Thus, from here on “a membership-conditional system R” means implicitly

that R is well-defined.

Remark. In the membership-conditional system R with undecidable conditions,

the rewriting of any term is in general an undecidable problem. Nevertheless, this

does not necessarily mean that R is not well-defined; for example, we might indirectly

compute the normal forms by using other ways than rewriting.

Remark. A conditional rule Ml .Mr if P (x) [3], where P (x) is some predicate of

the variable x, can be translated into a membership-conditional rule Ml.Mr if x ∈ T

where T = {N | P (N)}. Conversely, taking P (x) ≡ x ∈ T , we can also translate a

membership-conditional rule Ml.Mr if x ∈ T into a conditional rule Ml.Mr if P (x).

Thus conditional rules of the form

105



Ml . Mr if P ′(x) ∧ P ′′(y) ∧ · · · ∧ P ′′′(z)

are essentially equal to membership-conditional rules of the form

Ml . Mr if x ∈ T ′, y ∈ T ′′ · · · , z ∈ T ′′′.

Hence a membership-conditional term rewriting system can be regarded as a condi-

tional term rewriting system in which every condition P (x, y, · · · , z) can be trans-

lated into a condition P ′(x) ∧ P ′′(y) ∧ · · · ∧ P ′′′(z) with separated variables.

5.3. Confluence of Restricted Nonlinear Systems

It is well known that if a term rewriting system is terminating, the confluence can

be easily proved by Proposition 1.4.8 (Knuth-Bendix). However, if a term rewriting

system is nonterminating, it is difficult to prove the confluence of the system. In

particular, a system that is nonterminating and nonlinear gives few results to prove

the confluence [56, 95].

In this section, we study the confluence of membership-conditional term rewriting

systems without assuming the terminating property or the linearity. First we shall

consider a membership-conditional system with normalized conditions (i.e. each set

appearing in conditions must be a set of normal forms).

Let R = 〈T,→〉 be a membership-conditional term rewriting systems and let T ′

be a subset of the term set T . We say that T ′ is closed iff

∀M ∈ T ′ ∀N ∈ T [M → N ⇒ N ∈ T ′]. We say that T ′ is terminating iff every

M ∈ T ′ has no infinite reduction M →→→ · · ·.
For a term set T ′ closed and terminating, we can define the normalized term set

T ′
nf = {M ↓ | M ∈ T ′} where M ↓ denotes any normal form obtained from M .

Note that from the closure and termination properties of T ′, T ′
nf is definable and

T ′
nf ⊆ T ′. Then, the normalized membership-conditional system Rnf is defined by

replacing each rewriting rule

106



Ml . Mr if x ∈ T ′, · · · , z ∈ T ′′ in R with

Ml . Mr if x ∈ ψ(T ′), · · · , z ∈ ψ(T ′′). Here, ψ(T ′) = T ′
nf if T ′ is closed and termi-

nating; otherwise ψ(T ′) = T ′. −→
nf

denotes the reduction relation of Rnf . From the

closed property, it is trivial that −→
nf

⊆→. We will show that if Rnf is confluent

then R is so.

5.3.1. Lemma. Let T ′ be closed and terminating in R and let M ∈ T ′. Then,

M
∗→

nf
M ↓ for some M ↓∈ T ′

nf .

Proof. Since T ′ is terminating, R can reduce M into some M ↓ by rewriting

only innermost → redex occurrences (i.e., innermost reduction strategy). From the

definition of Rnf , every innermost → redex occurrence is an innermost →
nf

redex

occurrence. Thus, by tracing the innermost reduction M
∗→M ↓ by Rnf , M

∗→
nf

M ↓
follows.

5.3.2. Lemma. We have the diagram in Figure 5.2.

-
A
A
A
A
A
A
A
A
A
A
A
A
A
A
AU

�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

M N

P

∗nf ∗ nf

Figure 5.2

Proof. For example, let R have a reduction M ≡ C[f(A,A, B)] → N ≡
C[g(A,B, B)] by a rule f(x, x, y) . g(x, y, y) if x ∈ T ′, y ∈ T ′′, and let T ′ be closed

and terminating and T ′′ be not (i.e. ψ(T ′) = T ′
nf and ψ(T ′′) = T ′′). Then, the nor-

107



malized rule is f(x, x, y) . g(x, y, y) if x ∈ T ′
nf , y ∈ T ′′. From Lemma 5.3.1, A

∗→
nf

A ↓
for some A ↓∈ T ′

nf . Hence, Rnf have the reductions

C[f(A,A, B)]
∗→

nf
C[f(A ↓, A ↓, B)] and C[g(A,B,B)]

∗→
nf

C[g(A ↓, B, B)].

By using the normalized rule, C[f(A ↓, A ↓, B)]→
nf

C[g(A ↓, B, B)]. Thus, take

P ≡ C[g(A ↓, B,B)]. It is clear that for any M , N , we can always take some P in

the same way as for the above example. 2

5.3.3. Lemma. If Rnf is confluent then we have the diagram in Figure 5.3.

-
A
A
A
A
A
A
A
A
A
A
A
A
A
A
AU

�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

M N

P

∗

∗nf ∗ nf

Figure 5.3

Proof. Let M
n→N , where

n→ denotes a reduction of n (n ≥ 0) steps. Then we

prove the lemma by induction on n. The case n = 0 is trivial. Assume the claim

for n − 1 (n > 0). Let M → M ′ n−1→ N . Then, the diagram in Figure 5.4 can be

obtained, where diagram (1) is shown by Lemma 5.3.2, diagram (2) by the induction

hypothesis, and diagram (3) by the confluence of Rnf . 2

108



- -
A
A
A
A
A
A
A
A
A
AU

�
�
�
�
�
�
�
�
�
��

A
A
A
A
A
A
A
A
A
AU

�
�
�
�
�
�
�
�
�
��

A
A
A
A
A
A
A
A
A
AU

�
�
�
�
�
�
�
�
�
��

M M ′ Nn− 1

P

∗nf

(1)

∗ nf

(2)

nf ∗nf ∗ nf

∗nf ∗ nf

(3)

Figure 5.4

5.3.4. Theorem. If Rnf is confluent then R is so.

Proof. The diagram in Figure 5.5 can be obtained, proving diagram(1) by

Lemma 5.3.3, diagram(2) by the confluence of Rnf . From →
nf
⊆→, the confluence of

R follows.

109



?

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
AU

HHHHHHHHHHHHHHHHHHHHj?

?

-

- -

M P

N Q

(1)

(1)

(2)

∗
nf

∗
nf

∗
nf

∗
nf

∗

∗

∗ nf

∗ nf

Figure 5.5

Now, we study the confluence of a membership-conditional term rewriting system

in which each nonlinear variable in the left-hand side of the rules is restricted with

a membership condition. Our key idea to prove the confluence comes from the

observation that with appropriate membership conditions, nonlinear systems behave

like left-linear systems.

5.3.5. Definition. A restricted nonlinear rule is a membership-conditional

rewriting rule in which the nonlinear variables on the left side of the rule must

have membership conditions. For the other variables, membership conditions are

optional. We say that R is restricted nonlinear iff every rule in R is restricted

nonlinear.

For example, the restricted nonlinear rule f(x, x, y) . g(x, y, y) if x ∈ T ′ has

nonlinear variable x on the left side f(x, x, y). Hence, variable x must have the

110



membership condition x ∈ T ′. However, variable y on the left side is linear, thus,

membership condition for y is not necessary.

A classical left-linear term-rewriting system is obviously a restricted nonlinear

system, because the left-linear system has only linear variables on the left side of

the rewriting rules. Thus, the restricted nonlinear system is a natural extension

of the classical left-linear system. Indeed, the sufficient criteria for the confluence

of restricted nonlinear systems are very similar to that of the classical left-linear

systems.

Overlapping between two conditional rewriting rules can be defined in the same

way as for two classical rewriting rules except that the substitution must satisfy the

membership conditions in the rules. Then, Proposition 1.4.9 (Rosen) for the conflu-

ence of the classical left-linear systems can be extended to the following theorem.

5.3.6. Theorem. Let a membership-conditional term rewriting system R be

nonoverlapping and restricted nonlinear. If every term set T ′ in the membership

conditions is a set of normal forms, i.e., T ′ ⊆ NF , then R is confluent.

Proof. Since nonlinear variables on the left side of the rewriting rules must

have normal forms as the substitution’s values, the nonlinear variables can be ignored

when we treat a sufficient criterion for the confluence. Thus, the confluence of R can

be easily proved in the same way as for the classical left-linear and nonoverlapping

systems, by tracing the proof in [37, 81] of Proposition 1.4.9.

5.3.7. Example. Consider the membership-conditional term rewriting system

R:

111



R





f(x, x) . 0 if x ∈ NF

f(g(x), x) . 1 if x ∈ NF

2 . g(2)

Note that R is nonterminating and nonlinear. Clearly, R satisfies the conditions

in Theorem 5.3.6. Thus, R is confluent.

In Theorem 5.3.6, every set T ′ in the membership conditions must be a set

of normal forms. We are now going to relax this restriction on the membership

conditions by Theorem 5.3.4.

5.3.8. Theorem. Let a membership-conditional term rewriting system R be

nonoverlapping and restricted nonlinear. If every term set T ′ in the membership

conditions is closed and terminating, then R is confluent.

Proof. From Theorems 5.3.4 and 5.3.6, the theorem follows. 2

5.3.9. Example. Let F ′ = {f, g, 0, 1}. Consider the membership conditional

term rewriting system R:

R





f(x, x) . 0 if x ∈ T (F ′, V )

f(g(x), x) . 1 if x ∈ T (F ′, V )

2 . g(2)

It is clear that R is nonoverlapping and restricted nonlinear. Since T (F ′, V ) is closed

and terminating, from Theorem 5.3.8 it follows that R is confluent.

112



5.4. Conclusion

In this chapter, we have proposed a new conditional term rewriting system: the

membership-conditional term rewriting system. We have shown the sufficient crite-

ria for the confluence of the system under the restricted nonlinear condition [101, 97].

The work of Kirchner [54] about meta-rules has a closed connection to our work,

since a set of meta-rules can be considered as a membership-conditional term rewrit-

ing system. It is mentioned in [54] that our result gives a sufficent criterion for the

confluence of the non-overlapping meta-rewriting systems.

Many directions for further research come easily to mind. One direction is ap-

plication to many-sorted systems. Membership-conditional systems can provide a

very useful means of constructing hierarchical many-sorted systems [33, 54]. Ap-

plication to functional programs [104, 105, 40] is another very interesting direction.

Membership-conditional systems can explicitly provide reduction strategy, such as

innermost reduction. Hence, using this property, we can offer effective computation

for functional programs. We believe that further research in these directions will

exploit the potential of membership-conditional rewriting techniques.

113



6. Conclusion

We have investigated several topics for term rewriting systems having the Church-

Rosser property. The results in this thesis are summarized as follows:

(1) Modularity has been developed for the direct sum of term rewriting systems.

It has been demonstrated that the Church-Rosser property and the left-linear com-

plete property both are modular, but the termination property is not. Moreover, a

criterion has been proposed for commutativity of term rewriting systems, which also

offers modularity for the union of Church-Rosser systems without the requirement

of the direct sum. The modularity presented is of value not only because it enables

us to build a complex term rewriting system from its simple parts in automated

theorem provers, functional programs, and algebraic specifications, but also because

of the analysis of various modular structures appearing in similar systems.

(2) A simple method has been proposed for proving the equivalence of two given term

rewriting systems without the explicit use of induction, extending the inductionless

induction methods developed by Musser, Gougen, Huet and Hullot into a more

general framework. Our results have made it clear that the inductionless induction

concept essentially requires only two limitations: the Church-Rosser property and

reachability. It has been demonstrated that the method can be effectively applied

to deriving a new term rewriting system from a given one by using equivalence

transformation rules. We believe that our method provides a very useful means of

proving the equivalence which arises in various formal systems.

114



(3) To study the Church-Rosser property of non-linear systems, a new type of term

rewriting system, i.e., a membership-conditional system, has been introduced. It

has been demonstrated that with appropriate membership conditions, non-linear

systems behave like left-linear systems. Based on this observation, a criterion for

the Church-Rosser property has been indicated for restricted non-linear systems.

The result shows that the membership-conditional rewriting technique is useful in

constructing Church-Rosser term rewriting systems having non-linear rules.

115



Appendix A

Proof of Lemma 2.3.2.8

In this appendix, we prove Lemma 2.3.2.8 in Chapter 2: If root(M ↓) ∈ Fd then

|Ed(M)| = 1. We need to prove many lemmas before achieving our goal.

We write z ∈ M if the variable occurrence z is in the term M ; otherwise z /∈ M .

A.1 Lemma. Let z /∈ C[P ] and let C[P ]
∗−→

pull
P . Then z ∈ C[z] ↓.

Proof. Let C[e(P )]
k−→
e′

e(P ). Then we prove the lemma by induction on k. The

case k = 0 is trivial. Assume the lemma for k− 1 (k > 0). We will show the lemma

for k.

Let C[e(P )]−→
e′

C ′[e(P ), · · · , e(P ), · · · , e(P )]
k−1−→
e′

e(P ). From Lemma 2.3.2.2, we

can have a reduction C ′[P, · · · , e(P ), · · · , P ]
k′−→
e′

e(P ) (k′ ≤ k−1). By induction hy-

pothesis, z ∈ C ′[P, · · · , z, · · · , P ] ↓. Since→ is confluent, C[z] ↓≡ C ′[z, · · · , z, · · · , z] ↓.
If z /∈ C ′[z, · · · , z, · · · , z] ↓, then z /∈ C ′[P, · · · , z, · · · , P ] ↓; this provides a contradic-

tion to z ∈ C ′[P, · · · , z, · · · , P ] ↓. Therefore z ∈ C[z] ↓.

If C[P ]
∗→C ′[P ] is a reduction such that C[e(P )]

∗→
e′

C ′[e(P )], then the occurrence

P in C[P ] is called an ancestor of the occurrence P in C ′[P ].

116



A.2. Lemma. Let C[P ]
∗→Q where P contains an ancestor of Q as a subterm

occurrence and let z /∈ C[P ]. Then z ∈ C[z] ↓.

Proof. Since P contains an ancestor of Q, P ≡ C ′[Q] and C[P ] ≡ C[C ′[Q]]
∗−→

pull
Q

for some context C ′[ ]. If z /∈ C[z] ↓ then z /∈ C[C ′[z]] ↓; it is contradictory to

Lemma A.1. Thus z ∈ C[z] ↓.

We write C[P, · · · , P ]
∗−→

pull
P when some P can be pulled up, that is,

C[P, · · · , P, e(P ), P, · · · , P ]
∗−→
e′

e(P ) is obtained by replacing some occurrence P in

C[P, · · · , P ] with e(P ).

A.3. Lemma. Let C[P ]
∗−→

pull
P and let C[z] ↓≡ C̃[z, · · · , z] where z /∈ C[P ] and

z /∈ C̃[ , · · · , ]. Then C̃[P, · · · , P ]
∗−→

pull
P . Note that z ∈ C̃[z, · · · , z] from Lemma A.1.

Proof. Let C[e(P )]
k−→
e′

e(P ). Then we prove the lemma by induction on k. The

case k = 0 is trivial. Assume the lemma for k− 1 (k > 0). We will show the lemma

for k.

Let C[e(P )]−→
e′

C ′[e(P ), · · · , e(P ), · · · , e(P )]
k−1−→
e′

e(P ). From Lemma 2.3.2.2, we

can have a reduction C ′[P, · · · , e(P ), · · · , P ]
k′−→
e′

e(P ) (k′ ≤ k − 1).

Take C ′[P, · · · , z, · · · , P ] ↓ ≡ C ′′[z, · · · , z] where z /∈ C ′′[ , · · · , ]. Note that z ∈
C ′′[z, · · · , z] from Lemma A.1. By induction hypothesis,

C ′′[P, · · · , P, e(P ), P, · · · , P ]
∗−→
e′

e(P ).

From C ′[z, · · · , z, · · · , z] ↓≡ C̃[z, · · · , z], C ′[P, · · · , z, · · · , P ] ↓≡ C ′′[z, · · · , z], and

the confluence property of →, we can easily show that C̃[P, · · · , P ]
∗→C ′′[P, · · · , P ].

By tracing this reduction, we can also obtain the reduction C̃[e(P ), · · · , e(P )]
∗−→
e′

C ′′[e(P ), · · · , e(P )].

Thus C̃[e(P ), · · · , e(P ), · · · , e(P )]
∗−→
e′

e(P ). From Lemma 2.3.2.2, it follows that

C̃[P, · · · , e(P ), · · · , P ]
∗−→
e′

e(P ).

117



A.4. Lemma. Let C[P ]
∗−→

pull
P and let C[z]

∗→C ′[z, · · · , z] where z /∈ C[P ]

and z /∈ C ′[ , · · · , ]. Then C ′[P, · · · , P ]
∗−→

pull
P . Note that z ∈ C ′[z, · · · , z] from

Lemma A.1.

Proof. Let C[z] ↓≡ C ′[z, · · · , z] ↓≡ C̃[z, · · · , z] where z /∈ C̃[ , · · · , ]. Then

C ′[e(P ), · · · , e(P )]
∗→ C̃[e(P ), · · · , e(P )]. From Lemma A.3, C̃[P, · · · , e(P ), · · · , P ]

∗−→
e′

e(P ). Thus we can obtain C ′[e(P ), · · · , e(P ), · · · , e(P )]
∗−→
e′

e(P ). From Lemma

2.3.2.2, it follows that C ′[P, · · · , e(P ), · · · , P ]
∗−→
e′

e(P ).

A.5. Lemma. Let C[P ]
∗−→

pull
P and let P

∗→Q. Then C[Q]
∗−→

pull
Q.

Proof. Let C[e(P )]
k−→
e′

e(P ). Then we prove the lemma by induction on k. The

case k = 0 is trivial. Assume the lemma for k− 1 (k > 0). We will show the lemma

for k.

Let C[e(P )]−→
e′

C ′[e(P ), · · · , e(P ), · · · , e(P )]
k−1−→
e′

e(P ). From Lemma 2.3.2.2, we

can have a reduction C ′[P, · · · , e(P ), · · · , P ]
k′−→
e′

e(P ) (k′ ≤ k−1). By induction hy-

pothesis, C ′[P, · · · , e(Q), · · · , P ]
∗−→
e′

e(Q). From Lemma A.4, we have C ′[Q, · · · , e(Q), · · · , Q]

∗−→
e′

e(Q). Since C[e(Q)]−→
e′

C ′[e(Q), · · · , e(Q), · · · , e(Q)]
∗−→
e′

C ′[Q, · · · , e(Q), · · · , Q],

the lemma holds.

A.6. Lemma. Let C[P ]
∗→Q where P contains an ancestor of Q and let

C[z]
∗→C ′[z, · · · , z] where z /∈ C[P ] and z /∈ C ′[ , · · · , ]. Then C ′[P, · · · , P ]

∗→Q

where some occurrence P contains an ancestor of Q. Note that z ∈ C ′[z, · · · , z]

from Lemma A.2.

Proof. Let P ≡ C ′′[Q]. Then C[C ′′[z]]
∗→C ′[C ′′[z], · · · , C ′′[z]]. From Lemma A.4,

we can show that C ′[C ′′[Q], · · · , C ′′[Q], · · · , C ′′[Q]]
∗−→

pull
Q.

A.7. Lemma. Let M ≡ C[[M1, · · · , Mm]] where Mi ∈ NF for all i and let

118



M ′ ≡ C[z1, · · · , zm] where z1, · · · , zm are fresh variables not in M . If M has an

infinite reduction M →→→ · · ·, then M ′ has an infinite reduction M ′ →→→ · · ·.

Proof. It is trivial from the definition of the direct sum.

A.8. Lemma. Let M ≡ C[[M1, · · · ,Mp, · · · ,Mm]]
∗→Q where root(M) ∈ Fd̄,

root(M ↓), root(Q) ∈ Fd. Let Mp /∈ Ed(M) and Mp contains an ancestor of

Q. Then root(Mp ↓) ∈ Fd̄ and there exists some P ∈ Ed̄(Mp) such that M ′ ≡
C[M1, · · · , P, · · · , Mm]

∗→Q where P contains an ancestor of Q.

Proof. Let A0 ≡ C[M1, · · · ,Mp−1, z,Mp+1, · · · ,Mm] ↓ (z /∈ M). Set i := 0 and

consider the following algorithm:

(1) If Ai contains precisely one occurrence z then the algorithm terminates with

output Ai.

(2) Let Ai ≡ Ci[z, · · · , z, · · · , z] (z /∈ Ci). From Lemma A.6, Ci[Mp, · · · ,Mp, · · · ,Mp]

∗→ Q where some occurrence Mp contains an ancestor of Q. By replacing the

occurrence Mp containing an ancestor of Q with z, we obtain Ci[Mp, · · · , z, · · · ,Mp].

Let Ai+1 ≡ Ci[Mp, · · · , z, · · · , Mp] ↓. Note that z ∈ Ai+1 from Lemma A.2.

(3) Set i := i + 1. Go to (1).

We will show that the algorithm terminates for any A0. Let the substitution

θ = [z := Mp ↓]. From the confluence property of→, Ai+1 ≡ Ci[Mp, · · · , z, · · · ,Mp] ↓
≡ Ci[Mp ↓, · · · , z, · · · ,Mp ↓] ↓. If the algorithm produces an infinite sequence

A0, A1, A2, · · ·, then we can obtain an infinite reduction A0θ
+→A1θ

+→A2θ
+→· · ·.

Note that we can write A0θ ≡ C̃[[N1, · · · , Nn]] where Ni ∈ NF for all i. Thus, from

Lemma A.7, we have an infinite reduction C̃[z1, · · · , zn] →→→ · · ·: a contradiction

to termination of Rd̄. Therefore the algorithm must terminate eventually.

119



Now let AN ≡ CN [z] be an output of the algorithm. Since Mp /∈ Ed(M), AN 6≡
z. Note that CN [z] ∈ NF and CN [Mp]

∗→Q where the occurrence Mp contains

an ancestor of Q. We can write CN [Mp] ≡ C ′[[P1, · · · , Pk,Mp, Pk+1, · · · , Pr]] where

CN [z] ≡ C ′[P1, · · · , Pk, z, Pk+1, · · · , Pr].

Suppose root(Mp ↓) /∈ Fd̄. Then M ↓≡ CN [Mp ↓]; it follows that root(M ↓) ∈ Fd̄.

It is contradictory to root(M ↓) ∈ Fd. Hence root(Mp ↓) ∈ Fd̄.

Since CN [z] ∈ NF , root(CN [Mp]) ∈ Fd̄, root(Q) ∈ Fd, and CN [Mp] ≡
C ′[[P1, · · · , Pk,Mp, Pk+1, · · · , Pr]]

∗→ Q; there exists some P ′ such that Mp
∗→P ′,

root(P ′) ∈ Fd̄, and

C ′[[P1, · · · , Pk,Mp, Pk+1, · · · , Pr]]
∗→C ′[P1, · · · , Pk, P

′, Pk+1, · · · , Pr]
∗→Q

where P ′ contains an ancestor of Q. From Lemma 2.3.2.6, we have P ∈ Ed̄(Mp) such

that P
∗→P ′. Thus it follows that CN [P ]

∗→Q where P also contains an ancestor of

Q.

Since → is confluent, P ↓≡ Mp ↓; hence, it can be obtained that M ′ ≡
C[M1, · · · , P, · · · , Mm]

∗→CN [P ] where the occurrence P in M ′ is an ancestor of the

occurrence P in CN [P ]. Therefore the lemma holds.

A.9. Lemma. Let C[[M1, · · · ,Mp, · · · , Mm]]
∗−→

pull
Mp where Mi ∈ NF for all i.

Then C[z1, · · · , zp, · · · , zm] ↓≡ zp.

Proof. Obvious from the definition of the direct sum.

N ⊂ M stands for N is a subterm of M and N 6≡ M .

A.10. Lemma. Let root(M) ∈ Fd̄, root(M ↓) ∈ Fd, M ≡ C[[M1, · · · ,Mp, · · · ,Mm]].

Let Mp ∈ Ed(M). Then ∀Q ⊂ Mp, Q /∈ Ed(M).

Proof. Since Mp ↓≡ M ↓, root(Mp ↓) ∈ Fd. Thus we can write

120



C[M1 ↓, · · · ,Mp ↓, · · · ,Mm ↓] ≡ C ′[[N1, · · · , Nk−1,Mp ↓, Nk+1, · · · , Nn]]

where Ni ∈ NF for any i. From Lemmas A.4 and A.5,

C ′[[N1, · · · , Nk−1,Mp ↓, Nk+1, · · · , Nn]]
∗−→

pull
Mp ↓.

Applying Lemma A.9, C ′[z1, · · · , zk−1, zk, zk+1, · · · , zn] ↓≡ zk. Thus

C[M1, · · · ,Mp−1, zk,Mp+1, · · · ,Mm]
∗→C ′[N1, · · · , Nk−1, zk, Nk+1, · · · , Nn] ↓≡ zk.

Suppose an occurrence Q (Q ⊂ Mp) is in Ed(M). Then, from Lemma A.6, Mp
+→Q.

This is contradictory to Q ∈ Ed(M). Hence the lemma holds.

A.11. Lemma. Let root(M) ∈ Fd̄, root(M ↓) ∈ Fd, M ≡ C[[M1, · · · ,Mp, · · · ,Mm]].

Let Mp ∈ Ed(M). Then Mi /∈ Ed(M) (i 6= p).

Proof. Assume Mq ∈ Ed(M) for some q (q 6= p). Since Mp ↓≡ Mq ↓≡ M ↓, it

follows that root(Mp ↓), root(Mq ↓) ∈ Fd. Thus we can write

C[M1 ↓, · · · ,Mp ↓, · · · ,Mq ↓, · · · ,Mm ↓] ≡
C ′[[N1, · · · , Nk−1,Mp ↓, Nk+1, · · · , Ns−1, Mq ↓, Ns+1, · · · , Nn]]

where Ni ∈ NF for any i. Using the same discussion as in Lemma A.10, it can

be shown that C ′[z1, · · · , zk−1, zk, zk+1, · · · , zs−1, zs, zs+1, · · · , zn] ↓ ≡ zk ≡ zs where

zk 6≡ zs: a contradiction to the confluence property of →. Thus it follows that

Mi /∈ Ed(M) (i 6= p).

A.12. Theorem (Lemma 2.3.2.8). If root(M ↓) ∈ Fd then |Ed(M)| = 1.

Proof. The number of the special subterm occurrences in M is inductively

defined as follows:

‖M‖ =





1 if M ∈ T (Fd, V ) for some d,

1 + Σi‖Mi‖ if M ≡ C[[M1, · · · ,Mm]] (m > 0).

We will prove the theorem by induction on ‖M‖. The case ‖M‖ = 1 is trivial.

Assume the theorem for ‖M‖ < k (k > 1), then we will show the case ‖M‖ = k.

If root(M) ∈ Fd then the above property is trivial since Ed(M) = {M}. Thus we

121



consider only the non trivial case of root(M) ∈ Fd̄. Let M ≡ C[[M1, · · ·Mp, · · · ,Mm]]

(m > 0).

Case 1. ∀Q ∈ Ed(M), ∃Mi, an ancestor of Q is Mi.

The theorem holds from Lemma A.11.

Case 2. ∃Q ∈ Ed(M), ∀Mi, no ancestor of Q is Mi.

Then there exists some Mp such that Mp contains an ancestor of Q and Mp 6≡
Q. Note that Mp /∈ Ed(M) from Lemma A.10. From Lemma A.8, root(Mp ↓
) ∈ Fd̄; by induction hypothesis, |Ed̄(Mp)| = 1. Say Ed̄(Mp) = {P}. Let M ′ ≡
C[M1, · · · , P, · · · , Mm]. Then, from Lemma A.8 and the uniqueness of P , we can

show that Q ∈ Ed(M
′) and P must contain an ancestor of Q. Furthermore, from

the uniqueness of P , it follows that for any Q′ ∈ Ed(M) if Mp contains an ancestor

of Q′ then Q′ ∈ Ed(M
′) and P contains an ancestor of Q′.

Any element in Ed(M) such that Mp does not contain an ancestor of the element

is in Ed(M
′) from Lemma A.4. Thus Ed(M) = Ed(M

′).

From ‖M ′‖ < ‖M‖ and induction hypothesis, it follows that |Ed(M)| = |Ed(M
′)| =

1. 2

122



Appendix B

Proof of Reachability

In this appendix, we present a simple method for verifying reachability in Chapter 4

by using the idea of the test set [14, 38, 45, 50, 51, 77, 89]. From here on we assume

that term rewriting system R is left-linear.

We first explain the notations. Let C[ , . . . , ] be a context and let T1, · · · , Tn

(n ≥ 0) be the non-empty sets of terms. Then the set of terms C[T1, . . . , Tn] =

{C[M1, . . .Mn] | Mi ∈ Ti}. A substitution ϕ is a mapping from a term set T to a

power set 2T such that for a term M ∈ T , ϕ(M) ⊆ T is completely determined by

its values ϕ(x), . . . , ϕ(z) ⊆ T on the variable symbols x, . . . , z occurring in M . We

define ϕ(M) = {M} if no variable symbol occurs in M . ϕ(C)[T1, . . . , Tn] denotes

the term set obtained by replacing the variable symbols x, . . . , z and the holes

occurring in C[ , . . . , ] with ϕ(x), . . . , ϕ(z) and T1, . . . , Tn, respectively. A finite

set of linear terms S = {M1, . . . ,Ms} is a test set for a term set T with ϕ if

T = ∪
i
ϕ(Mi). For example, S = {x+0, x+s(y)} is a test set for the term set N+N

with ϕ(x) = ϕ(y) = N. Here, N = T ({0, s}). For more discussions concerning the

test set, see [14, 38, 45, 50, 51, 77, 89].

We say a well-founded partial ordering > on a term set T is stable under substi-

tution if Mθ > Nθ for any θ and each M > N . Here, θ is a substitution from T to

T , and M,N ∈ T . For example, let l be a fixed positive number and let >
l

be the

123



well-founded ordering on a term set T defined by f(M1, . . . , Mn) >
l
f(N1, . . . , Nn) iff

Nl ⊆ Ml and Nl 6≡ Ml (i.e., Nl is a proper subterm of Ml). Then, it is obvious that

>
l

is stable under substitution.

We often write
→
T for a direct product of sets T × · · · × T and

→
M for an ordered

n-tuples 〈M1, . . . , Mn〉 ∈ T1×· · ·×Tn. We write f(
→
M) for f(M1, . . . , Mn) and f(

→
T )

for f(T, . . . , T ).

T ⇒ T ′ denotes that T ′ is reachable from T under
∗→ (and also =).

The following properties can be easily demonstrated from the above definitions.

B.1. Properties.

(1) If T ⊆ T ′ then T ⇒ T ′.

(2) If T ⇒ T ′ and T ′ ⇒ T ′′ then T ⇒ T ′′.

(3) If Ti ⇒ T ′
i (i = 1, . . . , n) then C[T1, . . . , Tn] ⇒ C[T ′

1, . . . , T
′
n].

(4) If f(
−→

T (F )) ⇒ T (F ) then T (F ∪ {f}) ⇒ T (F ).

(5) If T (F ∪ {f}) ⇒ T and T (F ∪ {f ′}) ⇒ T then T (F ∪ {f, f ′}) ⇒ T .

(6) If M
∗→N then ϕ(M) ⇒ ϕ(N).

We can prove reachability for the examples in Chapter 4 by using the properties

and the following theorem. Note that our method does not assume the strongly

normalizing property for term rewriting systems.

B.2. Theorem. Let R be a left-linear term rewriting system and let > be a

well-founded partial ordering on a term set that is stable under substitution. Let

S = {f(
→
P1), . . . , f(

→
Pp)} be a test set for f(

−→
T (F )) with ϕ(x) = T (F ) for all x ∈ V .

124



Then f(
−→

T (F )) ⇒ T if R satisfies the following conditions: For any f(
→
Pi) ∈ S there

exists a term Qi such that

f(
→
Pi)

∗→Qi ≡ C[f(
→
A1), . . . , f(

→
Aq)] (q ≥ 0)

where C contains no function symbol f and

(1) f(
→
Pi) > f(

→
Aj) for all j,

(2) f(
→
Aj) ∈ f(

−→
T (F, V )) for all j,

(3) ϕ(C)[T, . . . , T ] ⇒ T .

Proof. Make the rewriting rules f(
→
Pi) . Qi from each pair of f(

→
Pi) and Qi (i =

1, . . . , p). Let RS be the term rewriting system defined by these rules. Then,→
S
⊆ ∗→.

Note that any f(
→
M) ∈ f(

−→
T (F )) is a →

S
redex since S is a test set for f(

−→
T (F )).

Let M0 ∈ f(
−→

T (F )). First, we show that there is no infinite reduction sequence

M0→
S

M1→
S

M2→
S
· · ·. Let OC(Mi) denote the multiset of the →

S
redex occurrences

in Mi. From the stability under substitution of > and condition (1) in the theorem,

OC(Mi) À OC(Mi+1) is obtained. Here, À is the multiset ordering extended from

>. À is well-founded since > is so [17]. Thus, the above reduction sequence must

terminate eventually into a →
S

normal form. Note that the →
S

normal form contains

no term in f(
−→

T (F )) as a subterm occurrence. We write d(M0) for the maximal

length of the →
S

reduction sequences starting with M0 into a →
S

normal form of M0.

Now, we show ∀f(
→
M) ∈ f(

−→
T (F )),∃N ∈ T, f(

→
M)

∗→N by induction on d(f(
→
M)).

Basis ( d(f(
→
M)) = 1). There exist some f(

→
Pi) . Qi ∈ RS and some θ such

that f(
→
M) ≡ f(

→
Pi)θ→

S
Qiθ, where Qiθ is a →

S
normal form. Since Qiθ contains

no term in f(
−→

T (F )), ϕ(Qi) ⇒ T follows from condition (3) in the theorem. From

f(
→
Pi)θ ∈ f(

−→
T (F )) and f(

→
Pi)

∗→Qi, we can show Qiθ ∈ ϕ(Qi). Therefore, there

exists N ∈ T such that f(
→
M)

∗→Qiθ
∗→N .

125



Induction. Assume that the theorem is true for d(f(
→
M)) ≤ k (k ≥ 1). Now, we

will show the case for d(f(
→
M)) = k+1. There exist some f(

→
Pi).Qi ∈ RS and some θ

such that f(
→
M) ≡ f(

→
Pi)θ→

S
Qiθ ≡ C[f(

→
A1), . . . , f(

→
Aq)]θ ≡ Cθ[f(

→
A1)θ, . . . , f(

→
Aq)θ] (q ≥

1). From condition (2) in the theorem, f(
→
Aj)θ ∈ f(

−→
T (F )) for all j. From the induc-

tive hypothesis, we can obtain Nj ∈ T (j = 1, . . . , q) such that f(
→
Aj)θ

∗→Nj since

d(f(
→
M)) > d(f(

→
Aj)θ).

Thus, it follows that f(
→
M)

∗→ Cθ[f(
→
A1)θ, . . . , f(

→
Aq)θ]

∗→ Cθ[N1, . . . , Nq] ∈
ϕ(C)[T, . . . , T ]. Therefore, by condition (3) in the theorem, there exists N ∈ T such

that

Cθ[N1, . . . , Nq]
∗→ N .

We now illustrate how to prove reachability by using the above theorem.

B.3. Example. Consider the term rewriting system R1 in Example 4.3.1 to be

R.

R





x + 0 . x

x + s(y) . s(x + y)

We will prove T ({+, s, 0}) ⇒ N. From Property B.1(4), it is sufficient to prove

N + N ⇒ N by using the theorem. Take the test set S = {x + 0, x + s(y)} for

N + N with ϕ(x) = ϕ(y) = N and the well-founded ordering >
2
. Note that >

2
is

stable under substitution. We must verify the conditions in the theorem for x + 0

and x + s(y) respectively.

For x + 0, x + 0
∗→x. Consider the pair of x + 0 and x. Then, the pair trivially

satisfies conditions (1) and (2) in the theorem. Condition (3) is also satisfied since

ϕ(x) = N.

For x + s(y), x + s(y)
∗→ s(x + y). We must verify the conditions in the theorem

126



for the pair of x + s(y) and s(x + y) ≡ s( )[x + y]. Condition (1) is satisfied since

x + s(y) >
2

x + y. Condition (2) is satisfied since x + y ∈ T ({s, 0}, V ) + T ({s, 0}, V ).

Since ϕ(s( ))[N] = s(N), condition (3) is satisfied. Therefore, N + N ⇒ N follows

from the theorem.

B.4. Example. Consider the term rewriting system R1 in Example 4.4.4 to be

R. Note that R does not have the strongly normalizing property.

R





d(x) . if(x, 0, s(s(d(x− s(0)))))

h(x) . if(x, 0, if(x− s(0), 0, s(h(x− s(s(0))))))

if(0, y, z) . y

if(s(x), y, z) . z

x− 0 . x

s(x)− s(y) . x− y

We will prove T ({d, h, s, 0}) ⇒ N. From Property B.1(5), it is sufficient to prove

T ({d, s, 0}) ⇒ N and T ({h, s, 0}) ⇒ N.

Let us prove T ({d, s, 0}) ⇒ N. From Property B.1(4), it is sufficient to prove

d(N) ⇒ N by using the theorem. Take the test set S = {d(0), d(s(x))} for d(N)

with ϕ(x) = N and the substitution preserved well-founded ordering >
1
. We must

verify the conditions in the theorem for d(0) and d(s(x)), respectively.

For d(0), d(0)
∗→ 0. Consider the pair of d(0) and 0. Then, the conditions are

trivially satisfied.

For d(s(x)), d(s(x))
∗→ s(s(d(x))). Consider the pair of d(s(x)) and s(s(d(x))) ≡

s(s( ))[d(x)]. Condition (1) is satisfied since d(s(x)) >
1

d(x). Condition (2) is sat-

isfied since d(x) ∈ d(T ({s, 0}, V )). Since ϕ(s(s( )))[N] = s(s(N)), condition (3) is

also satisfied. Hence, T ({d, s, 0}) ⇒ N follows from the theorem.

Next, let us show T ({h, s, 0}) ⇒ N. From property B.1(4), it is sufficient to prove

127



h(N) ⇒ N by using the theorem. Take the test set S = {h(0), h(s(0)), h(s(s(x)))}
for h(N) with ϕ(x) = N and the well-founded ordering >

1
. Note that >

1
is stable

under substitution. We need to verify the conditions in the theorem for h(0), h(s(0)),

and h(s(s(x))), respectively. For h(0) and h(s(0)), it can be easily shown that the

conditions are satisfied.

For h(s(s(x))), h(s(s(x)))
∗→ s(h(x)). Consider the pair of h(s(s(x))) and s(h(x)) ≡

s( )[h(x)]. Condition (1) is satisfied since h(s(s(x))) >
1

h(x). Condition (2) is satis-

fied since h(x) ∈ h(T ({s, 0}, V )). Since ϕ(s( ))[N] = s(N), condition (3) is satisfied.

Hence, T ({h, s, 0}) ⇒ N follows from the theorem.

B.5. Example. Consider the term rewriting system R2 in Example 4.5.5 to be

R.

R





f(0) . s(0)

f(s(0)) . s(0)

f(s(s(x))) . p(h(g(x)))

g(0) . 〈s(0), s(0)〉
g(s(x)) . h(g(x))

h(x) . 〈p(x) + q(x), p(x)〉
p(〈x, y〉) . x

q(〈x, y〉) . y

x + 0 . x

x + s(y) . s(x + y)

We will prove T ({f, +, s, 0}) ⇒ N. From T ({+, s, 0}) ⇒ N and Property B.1(5),

it is sufficient to prove T ({f, s, 0}) ⇒ N. From Property B.1(4), it is sufficient to

prove f(N) ⇒ N. Take the test set S = {f(0), f(s(0)), f(s(s(x)))} for f(N) with

ϕ(x) = N and the well-founded ordering >
1
. Note that >

1
is stable under substitution.

128



We must verify the conditions in the theorem for f(0), f(s(0)) and f(s(s(x))),

respectively. For f(0), f(s(0)), it is obvious that the conditions are satisfied.

For f(s(s(x))), f(s(s(x)))
∗→ p(h(g(x))). Consider the pair of f(s(s(x))) and

p(h(g(x))). Then, conditions (1) and (2) are trivially satisfied. For condition (3), we

must prove ϕ(p(h(g(x)))) = p(h(g(N))) ⇒ N. If g(N) ⇒ 〈N,N〉 then the condition

is satisfied since p(h(g(N))) ⇒ p(h(〈N,N〉)) ⇒ p(〈p(〈N,N〉)+q(〈N,N〉), p(〈N,N〉)〉)
⇒ p(〈N + N,N〉) ⇒ N + N ⇒ N.

Now, we prove g(N) ⇒ 〈N,N〉 by using the theorem. Take the test set S =

{g(0), g(s(x))} for g(N) with ϕ(x) = N and the well-founded ordering >
1
. Note that

>
1

is stable under substitution. We must verify the conditions in the theorem for

g(0) and g(s(x)), respectively.

For g(0), g(0)
∗→ 〈s(0), s(0)〉. Consider the pair of g(0) and 〈s(0), s(0)〉. Then,

conditions (1) and (2) are trivially satisfied. Condition (3) follows from ϕ(〈s(0), s(0)〉)
= {〈s(0), s(0)〉} ⇒ 〈N,N〉.

For g(s(x)), g(s(x))
∗→h(g(x)). Consider the pair of g(s(x)) and h(g(x)) ≡

h( )[g(x)]. Then, condition (1) is satisfied since g(s(x)) >
1

g(x). Condition (2) is

satisfied since g(x) ∈ g(T ({s, 0}, V )). Condition (3) follows from ϕ(h( ))[〈N,N〉] =

h(〈N,N〉) ⇒ 〈p(〈N,N〉) + q(〈N,N〉), p(〈N,N〉)〉 ⇒ 〈N + N,N〉 ⇒ 〈N,N〉.

129



Appendix C

Fast Knuth-Bendix Completion

with a Term Rewriting System

Compiler

A term rewriting system compiler can greatly improve the execution speed of reduc-

tions by transforming rewriting rules into target code. In this appendix, we present

a new application of the term rewriting system compiler: the Knuth-Bendix com-

pletion algorithm. The compiling technique proposed in this algorithm, is dynamic

in the sense that rewriting rules are repeatedly compiled in the completion process.

The execution time of the completion with dynamic compiling is ten or more times

as fast as that obtained with a traditional term rewriting system interpreter [102].

C.1. Introduction

A term rewriting system compiler translates rewriting rules into target code in an-

other language such as LISP [47, 91], PASCAL [29], C [84], or an assembly language

[42]. The execution time of compiled code is usually hundreds or thousands of times

as fast as that of the corresponding term rewriting system interpreter.

In this appendix, we propose a new application of a term rewriting system com-

130



piler: the Knuth-Bendix completion algorithm [59]. The Knuth-Bendix completion

algorithm is well known as a useful technique to solve the word problem of an equa-

tional theory [22, 27, 39, 59]. However, as far as the author knows, the Knuth-Bendix

algorithm has up to now only been executed with a term rewriting system inter-

preter. The reason why it has never been executed with a term rewriting system

compiler is as follows:

(1) In the completion process, rewriting rules are repeatedly modified; hence, they

must be recompiled each time. This dynamic compiling is difficult for most

term rewriting system compilers which cannot produce compiled code quickly.

(2) Most term rewriting system compilers have been developed for functional pro-

gramming languages or algebraic specifications of which rules are restricted by

some properties, such as left-linearity, non-ambiguity (i.e. the non-overlapping

property), and strong sequentiality [29, 42, 73, 84]. On the other hand, the

completion process must treat any rules without such restrictions.

Recently, Tomura [91] and Kaplan [47] proposed independently an interesting

term rewriting system compiler based on some tricky use of LISP features which

translates rewriting rules into LISP functions; for example, the term rewriting sys-

tem

Rminus





minus(x, 0) . x

minus(s(x), s(y)) . minus(x, y)

minus(x, x) . 0

is translated into the LISP function minus as follows:

131



(defun minus (X Y)

(cond [(eq Y 0) X]

[(and (eq (car X) ’s) (eq (car Y) ’s)) (minus (cdr X) (cdr Y))]

[(equal X Y) 0]

[t (list ’minus X Y)] )).

Their compiler has advantages for the Knuth-Bendix completion algorithm; it

produces compiled code quickly and accepts a wide class of rewriting rules. Fur-

thermore, since the completion process treats only terminating rules, we may use

the innermost reduction strategy for computing normal forms which simplifies the

compiler for our application. Thus, we can easily apply this compiler to the comple-

tion algorithm. Several benchmarks show that the execution time of the completion

with dynamic compiling is ten or more times as fast as that obtained with a term

rewriting system interpreter [102].

C.2. Benchmarks for TRS Compiler

The purpose of this benchmarks is to compare the performance of a traditional

TRS (Term Rewriting System) interpreter and that of the TRS compiler proposed

by Kaplan before using them in the Knuth-Bendix completion algorithm. Both

systems compute normal forms in the same way, i.e. by the left-innermost reduction

strategy [58, 72].

The original TRS compiler proposed by Tomura [91] and Kaplan [47] translates

rewriting rules into compiled code through two phases; in the first phase, the TRS

compiler generates a LISP function f for each function symbol f , and in the second

phase, this function f is compiled into native machine code by a LISP compiler.

However, the execution time of the second phase is usually too long for repeated

compiling in the Knuth-Bendix completion process. Thus, our TRS compiler does

132



not have the second phase; the LISP function f generated by the first phase is directly

computed by a LISP interpreter.

By using the following rules, the factorial function fact(n) = n! is computed

by both systems. Here, natural numbers n are represented in the usual way:

0, s(0), s(s(0)), · · ·.

Rfact





plus(x, 0) . x

plus(x, s(y)) . s(plus(x, y))

times(x, 0) . 0

times(x, s(y)) . plus(times(x, y), x)

fact(0) . s(0)

fact(s(x)) . times(s(x), fact(x))

The benchmarks have been made on a TOSHIBA J-3100GT (IBM PC compatible

laptop computer with CPU 80286 (8 Mhz)). Both the TRS interpreter and the TRS

compiler are written in MuLISP-87. The TRS interpreter is compiled by MuLISP-87

compiler. As stated above, the functions generated by the TRS compiler are not

compiled by LISP compiler; they are directly evaluated by MuLISP-87 interpreter.

The results are shown in the following table:

n=0 n=1 n=2 n=3 n=4 n=5 n=6 n=7

TI (sec.) 0.16 0.55 1.20 3.24 19.67 340.30 ∞ ∞
TC (sec.) 0.00 0.00 0.01 0.02 0.07 0.22 1.10 7.30

TI/TC — — 120 162 281 1546.82 ∞ ∞

Here, TI and TC show the execution time by the interpreter and by the compiled

code respectively. ∞ in TI shows that the computation is impossible because of

memory overflow.

133



C.3. Fast Knuth-Bendix Completion

C.3.1 Completion with Dynamic Compiling

A complete (i.e., confluent and terminating) term rewriting system R which produces

the same equality as the one generated by an equational theory E is very important

to solve the word problem of E [22, 39, 59]. Knuth and Bendix [59] proposed

a famous procedure to find a complete term rewriting system R from a given an

equational theory E. According to Dershowitz [19] and Klop [58], a simple version

of this procedure is given as follows:

134



Knuth-Bendix completion algorithm

The procedure has as input a finite set R of rules, a finite set E of equations, and

a program to compute a well-founded monotonic ordering > on terms. The critical

pairs 〈P, Q〉 are presented in E as equations P = Q.

Repeat while E is not empty. If E is empty, we have successful termination.

(1) Remove an equation M = N (or N = M) from E such that M > N . If such

an equation does not exist, terminate with failure.

(2) Move each rule from R to E whose left-hand side contains an instance of M .

(3) Extend E with all critical pairs in R caused by the rule M . N .

(4) Add M . N to R.

(5) Use R to normalize the right-hand sides of rules in R.

(6) Use R to normalize both sides of equations in E. Remove each equation that

becomes an identical equation.

The Knuth-Bendix completion algorithm spends the greater part of the execution

time on (i) computing normal forms and (ii) generating critical pairs. In particular,

the completion procedure with a TRS interpreter spends most time on normalizing.

Hence, the execution time of the completion can be extremely improved by replacing

the TRS interpreter with the TRS compiler described in Section C.1. The procedure

with the TRS compiler is given as follows:

135



Knuth-Bendix completion algorithm with TRS compiler

Repeat while E is not empty. If E is empty, we have successful termination.

(1) Remove an equation M = N (or N = M) from E such that M > N . If such

an equation does not exist, terminate with failure.

(2) Move each rule from R to E whose left-hand side contains an instance of M .

(3) Extend E with all critical pairs in R caused by the rule M . N .

(4) Add M . N to R.

(5) Compile R into compiled code C.

(6) Use C to normalize the right-hand sides of rules in R.

(7) Use C to normalize both sides of equations in E. Remove each equation that

becomes an identical equation.

In the above algorithm, normal forms are computed with compiled code C in

(6), (7). (On the other hand, a traditional algorithm computes normal forms with

rewriting rules R in interpreter mode. See (5), (6) in the previous algorithm.) Thus,

rewriting rules R are repeatedly compiled into compiled code C at (5) while the

iteration continues. We call this dynamic compiling.

Remark. Purdom and Brown [78] also proposed a dynamic updating technique

for the Knuth-Bendix completion algorithm different from our dynamic compiling.

They showed that by repeatedly updating their pattern representation, the number

of matching routine called in the completion process can be reduced into about 1/5.

136



C.3.2. Benchmarks for Completion with TRS Compiler

We compare the execution time of the Knuth-Bendix completion with dynamic com-

piling, with that of a traditional completion. The examples for the benchmarks are

given in the appendix. The benchmarks have been made under the same conditions

described in Section C.2. Both the completion algorithms are written in MuLISP-87

and compiled by MuLISP-87 compiler. The results are shown in the following table:

group group’ group” l-r-s c-group rev

TI (sec.) 107.73 130.19 1440.30 222.40 5.27 10.50

TC (sec.) 10.11 12.14 60.26 15.32 1.43 2.41

TI/TC 10.66 10.72 23.90 14.52 3.69 4.36

N 16 18 40 16 3 7

Here, TI and TC show the execution time by the completion algorithm with an

interpreter and with dynamic compiling, respectively. N shows the number of the

compiling times in the completion process. The benchmarks show that the execution

time of the completion with dynamic compiling is ten or more times as fast as that

with a traditional term rewriting system interpreter.

Appendix

We present the equational theories E [39, 59] used in the benchmarks of Section C.3.2

and the complete term rewriting system R generated by the Knuth-Bendix comple-

tion algorithm.

Groups (group). Egroup defines group theory by:

137



Egroup





1 ∗ x = x

I(x) ∗ x = 1

(x ∗ y) ∗ z = x ∗ (y ∗ z)

Then the complete system Rgroup is:

Rgroup





I(1) = 1

1 ∗ x = x

x ∗ 1 = x

I(I(x)) = x

I(x) ∗ x = 1

x ∗ I(x) = 1

I(x ∗ y) = I(y) ∗ I(x)

(x ∗ y) ∗ z = x ∗ (y ∗ z)

I(x) ∗ (x ∗ y) = y

x ∗ (I(x) ∗ y) = y

138



Groups’(group’). Egroup′ defines group theory by a right identity and a right inverse:

Egroup′





x ∗ 1 = x

x ∗ I(x) = 1

(x ∗ y) ∗ z = x ∗ (y ∗ z)

Then the complete system of Egroup′ is Rgroup.

Groups” (group”). Egroup′′ defines group theory by Taussky’s presentation:

Egroup′′





1 ∗ 1 = 1

x ∗ I(x) = 1

(x ∗ y) ∗ z = x ∗ (y ∗ z)

f(1, x, y) = x

f(x ∗ y, x, y) = g(x ∗ y, y)

Then the complete system Rgroup′′ is:

Rgroup′′





I(1) = 1

1 ∗ x = x

x ∗ 1 = x

g(1, x) = I(x)

f(x, y) = g(x, I(y) ∗ x)I(I(x)) = x

I(x) ∗ x = 1

x ∗ I(x) = 1

I(x ∗ y) = I(y) ∗ I(x)

(x ∗ y) ∗ z = x ∗ (y ∗ z)

I(x) ∗ (x ∗ y) = y

x ∗ (I(x) ∗ y) = y

139



(l,r)-Systems (l-r-s). El−r−s defines (l,r)-system by:

El−r−s





1 ∗ x = x

x ∗ I(x) = 1

(x ∗ y) ∗ z = x ∗ (y ∗ z)

Then the complete system Rl−r−s is:

Rl−r−s





I(1) = 1

1 ∗ x = x

I(I(x)) = x ∗ 1

I(x) ∗ 1 = I(x)

x ∗ I(x) = 1

I(x ∗ y) = I(y) ∗ I(x)

(x ∗ y) ∗ z = x ∗ (y ∗ z)

I(x) ∗ (x ∗ y) = y

x ∗ (I(x) ∗ y) = y

Central Groupoids (c-group). Ec−group defines central groupoids theory by:

Ec−group

{
(x ∗ y) ∗ (y ∗ z) = y

Then the complete system Rc−group is:

Rc−group





(x ∗ y) ∗ (y ∗ z) = y

x ∗ ((x ∗ y) ∗ z) = x ∗ y

(z ∗ (x ∗ y)) ∗ y) = x ∗ y

140



Reverse (rev). Erev defines the reverse of a list:

Erev





append(nil, y) = y

append(cons(x, y), z) = cons(x, append(y, z))

reverse(nil) = nil

reverse(cons(x, y)) = append(reverse(y), cons(x, nil))

reverse(reverse(x)) = x

Then the complete system Rrev is:

Rrev





append(nil, y) = y

append(cons(x, y), z) = cons(x, append(y, z))

reverse(nil) = nil

reverse(reverse(x)) = x

reverse(cons(x, y)) = append(reverse(y), cons(x, nil))

reverse(append(x, cons(y, nil))) = cons(y, reverse(x))

141



Bibliography

[1] L. Bachmair and N. Dershowitz, Commutation, transformation, and termina-

tion, Lecture Notes in Comput. Sci. Vol. 230 (Springer-Verlag, 1986) 5-20.

[2] H. P. Barendregt, The lambda calculus, its syntax and semantics (North-

Holland, 1981).

[3] J. A. Bergstra and J. W. Klop, Conditional rewrite rules: Confluence and

termination, J. Comput. and Syst. Sci. 32 (1986) 323-362.

[4] G. Berry and J. J. Lévy, Minimal and optimal computations of recursive pro-

grams, J. ACM 26 (1979) 148-175.

[5] R. V. Book, Confluent and other types of Thue systems, J. ACM 29 (1982)

171-182.

[6] V. Breazu-Tannen, Combining algebra and higher-order types, Proc. of the

third IEEE Symp. on Logic in Computer Science (1988) 82-90.

[7] V. Breazu-Tannen and J. Gallier, Polymorphic rewriting conserves algebraic

strong normalization and confluence, Lecture Notes in Comput. Sci. 372

(Springer-Verlag, 1989) 137-150.

[8] B. Buchberger and R. Loos, Algebraic simplification, in: B. Buchberger,

G. E. Collins and R. Loos, eds., Computer Algebra Symbolic and Algebraic

Computation (Springer-Verlag, 1983) 11-43.

142



[9] R. M. Burstall and J. Darlington, A transformation system for developing

recursive programs, J. ACM 24 (1977) 44-67.

[10] R. M. Burstall, D. B. MacQueen and D. T. Sannella, HOPE: An experimental

applicative language, Proc. of the 1st International Conference on Lisp (1980)

136-143.

[11] J. Christian, High-performance permutative completion, MCC Technical Re-

port ACT-AI-303-89 (1989).

[12] A. Church, The calculi of lambda conversion (Princeton University Press,

1941).

[13] A. Church and J. B. Rosser, Some properties of conversion, Trans. Amer.

Math. Soc. 39 (1936) 472-482.

[14] H. Comon, Sufficient completeness, term rewriting systems and “anti-

unification”, Lecture Notes in Comput. Sci. 230 (Springer-Verlag, 1986) 128-

140.

[15] H. B. Curry and R. Feys, Combinatory logic I (North-Holland, 1958).

[16] H. B. Curry, J. R. Hindley and J. P. Seldin, Combinatory logic II (North-

Holland, 1972).

[17] N. Dershowitz and Z. Manna, Proving termination with multiset orderings,

C. ACM 22 (1979) 465-476.

[18] N. Dershowitz, Termination of linear rewriting systems: Preliminary version,

Lecture Notes in Comput. Sci. 115 (Springer-Verlag, 1981) 448-458.

[19] N. Dershowitz. Termination, Lecture Notes in Comput. Sci. 220 (Springer-

Verlag, 1985) 180-224.

143



[20] N. Dershowitz, Computing with rewriting systems, Information and Control

65 (1985) 122-157.

[21] N. Dershowitz and D. A. Plaisted, Equational programming, in: J. E. Hayes,

D. Michie, and J. Richards, eds., Machine Intelligence 11 (Oxford 1987) 21-56.

[22] N. Dershowitz and J. P. Jouannaud, Rewrite Systems, to appear in:

J. V. Leeuwen, ed., Handbook of Theoretical Computer Science (North-

Holland).

[23] D. J. Dougherty, Adding algebraic rewriting to untyped lambda calculus, Pre-

liminary Draft, Wesleyan University (1989).

[24] P. J. Downey and R. Sethi, Correct computation rules for recursive languages,

SIAM J. Comput. 5 (1976) 378-401.

[25] L. Fribourg, SLOG: A logic programming language interpreter based on clausal

superposition and rewriting, Proc. of the 1985 Symp. on Logic Programming

(1985) 172-184.

[26] L. Fribourg, A strong restriction of the inductive completion procedure,

J. Symbolic Computation 8 (1989) 253-276.

[27] K. Futatsugi and Y. Toyama, Term rewriting systems and their applications:

A survey, J. IPS Japan 24 (2) (1983) 133-146, in Japanese.

[28] H. Ganzinger and R. Giegerich, A note on termination in combinations of

heterogeneous term rewriting systems, EATCS Bulletin 31 (1987) 22-28.

[29] A. Geser, H. Hussmann, and A. Mück, A compiler for a class of conditional

term rewriting systems, Lecture Notes in Comput. Sci. 308 (Springer-Verlag,

1988) 84-90.

[30] J. A. Goguen, J. W. Thatcher and E. G. Wagner, An initial algebra approach

to the specification, correctness, and implementation of abstract data types,

144



in: R. Yeh, ed., Current Trends in Programming Methodology 4, (Prentice-

Hall, 1978) 80-149.

[31] J. A. Goguen, How to prove algebraic inductive hypotheses without induc-

tion, with applications to the correctness of data type implementation, Lecture

Notes in Comput. Sci. 87 (Springer-Verlag, 1980) 356-373.

[32] J. A. Goguen and J. Meseguer, EQLOG: Equality, types and generic modules

for logic programming, in: D. DeGroot and G. Lindstrom, eds., Logic Pro-

gramming: Functions, relations and equations (Prentice-Hall 1986) 295-363.

[33] J. V. Guttag and J. J. Horning, The algebraic specification of abstract data

types, Acta Informatica 10 (1978) 27-52.

[34] J. R. Hindley, The Church-Rosser property and a result in combinatory logic,

Ph.D. Thesis, Univ. of Newcastle-upon-Tyne (1964).

[35] J. Hsiang, Refutational theorem proving using term-rewriting systems, Artifi-

cial Intelligence 25 (1985) 255-300.

[36] J. Hsiang. Private communication (July 28, 1986).

[37] G. Huet, Confluent reductions: Abstract properties and applications to term

rewriting systems, J. ACM 27 (1980) 797-821.

[38] G. Huet and J. M. Hullot, Proofs by induction in equational theories with

constructors, J. Comput. and Syst. Sci. 25 (1982) 239-266.

[39] G. Huet and D. C. Oppen, Equations and rewrite rules: A survey, in:

R.V. Book, ed., Formal languages: perspectives and open problems, (Academic

Press, 1980) 349-405.

[40] T. Ida, A. Aiba and Y. Toyama, T: A simple reduction language based on

combinatory term rewriting, in: K. Fuchi and M. Nivat, eds., Programming of

Future Generation Computer I (North-Holland, 1988) 217-236.

145



[41] Y. Inagaki and T. Naoi, Term rewriting systems and functional programming,

J. IPS Japan 29 (8) (1988) 829-835, in Japanese.

[42] K. Inoue, H. Seki, K. Taniguchi, and T. Kasami, Compiling and optimizing

methods for the functional language ASL/F, Science of Computer Program-

ming 7-3 (1986) 297-312.

[43] T. Ito, Mathematical theory of programs and its applications (1) ∼ (4), J. IPS

Japan 22 (7) (1981) 681-691, J. IPS Japan 22 (9) (1981) 884-895, J. IPS Japan

22 (11) (1981) 1069-1079, J. IPS Japan 23 (2) (1982) 147-157, in Japanese.

[44] J. P. Jouannaud and H. Kirchner, Completion of a set of rules modulo a set

of equations, SIAM J. Comput. 15 (1986) 1155-1194.

[45] J. P. Jouannaud and E. Kounalis, Automatic proofs by induction in theories

without constructors, Information and Computation 82 (1989) 1-33.

[46] J. P. Jouannaud and M. Munoz, Termination of a set of rules modulo a set

of equations, Lecture Notes in Comput. Sci. Vol. 170 (Springer-Verlag, 1984)

175-193.

[47] S. Kaplan, A compiler for conditional term rewriting systems, Lecture Notes

in Comput. Sci. 256 (Springer-Verlag, 1987) 25-41.

[48] S. Kaplan, Conditional rewrite rules, Theoretical Comput. Sci. 33 (1984) 175-

193.

[49] D. Kapur and P. Narendran, An equational approach to theorem proving in

first-order predicate calculus, General Electric Corporate Research Develop-

ment Report, No.84CRD322 (1985).

[50] D. Kapur, P. Narendran, and H. Zhang, Proof by induction using test sets,

Lecture Notes in Comput. Sci. 230 (Springer-Verlag, 1986) 99-117.

146



[51] D. Kapur, P. Narendran, and H. Zhang, Complexity of sufficient-completeness,

Lecture Notes in Comput. Sci. 241 (Springer-Verlag, 1986) 426-442.

[52] D. Kapur and H. Zhang, RRL: A rewrite rule laboratory, Lecture Notes in

Comput. Sci. 310 (Springer-Verlag, 1988) 768-769.

[53] H. Kirchner, A general inductive completion algorithm and application to

abstract data types, Lecture Notes in Comput. Sci. 170 (Springer-Verlag, 1985)

282-302.

[54] H. Kirchner, Schematization of infinite sets of rewriting rules: Application

to divergence of completion processes, Lecture Notes in Comput. Sci. 256

(Springer-Verlag, 1987) 180-191.

[55] S. C. Kleene, λ-definability and recursiveness, Duke Math. J. 2 (1936) 340-353.

[56] J. W. Klop, Combinatory reduction systems, Dissertation, Univ. of Utrecht,

1980.

[57] J. W. Klop and H. P. Barendregt, Private communication (January 19, 1986).

[58] J. W. Klop, Term rewriting systems: A tutorial, EATCS Bulletin 32 (1987)

143-182.

[59] D. E. Knuth and P. G. Bendix, Simple word problems in universal algebras, in:

J. Leech, ed., Computational problems in abstract algebra (Pergamon Press,

1970) 263-297.

[60] E. Kounalis, Completeness in data type specifications, Lecture Notes in Com-

put. Sci. 204 (Springer-Verlag, 1985) 348-362.

[61] M. Kurihara and I. Kaiji, Modular term rewriting systems: Termination, con-

fluence and strategies, Preliminary Draft, Hokkaido University (1988).

147



[62] P. Lescanne, Computer experiments with the REVE term rewriting system

generator, Proc. 10th ACM Conf. of Principle of Programming Languages

(1983) 99-108.

[63] J. McCarthy, Basis for a mathematical theory of computation, in: P. Braffort

and D. Hirschberg, eds., Computer Programming and Formal Systems (North-

Holland, 1963) 33-70.

[64] A. Middeldorp, A sufficient condition for the termination of the direct sum of

term rewriting systems, Proc. of the 4th IEEE Symp. on Logic in Computer

Science (1989) 394-401.

[65] A. Middeldorp, Modular aspects of properties of term rewriting systems re-

lated to normal forms, Lecture Notes in Comput. Sci. 355 (Springer-Verlag,

1989) 263-277.

[66] A. Middeldorp, Confluence of the disjoint union of conditional term rewriting

systems, Preliminary Draft, CWI, Amsterdam (1989).

[67] A. Middeldorp, Termination of the disjoint union of conditional term rewriting

systems, Preliminary Draft, CWI, Amsterdam (1989).

[68] A. Middeldorp, Unique normal forms of the disjoint union of conditional term

rewriting systems, Preliminary Draft, CWI, Amsterdam (1990).

[69] D. R. Musser, On proving inductive properties of abstract data types, Proc.

7th ACM Sympo. Principles of Programming Languages (1980) 154-162.

[70] T. Nipkow and G. Weikum, A decidability result about sufficient-completeness

of axiomatically specified abstract data type, Lecture Notes in Comput. Sci.

145 (Springer-Verlag, 1983) 257-267.

[71] A. Ohsuga and K. Sakai, Metis: A term rewriting system generator, ICOT

Technical Memorandum TM-0226 (1986).

148



[72] M. J. O’Donnell, Computing in systems described by equations, Lecture Notes

in Comput. Sci. Vol. 58 (Springer-Verlag, 1977).

[73] M. J. O’Donnell, Equational logic as a programming language (The MIT Press,

1985).

[74] M. Oyamaguchi, The Church-Rosser property for ground term rewriting sys-

tems is decidable, Theoretical Comput. Sci. 49 (1987) 43-79.

[75] E. Paul, Proof by induction in equational theories with relations between

constructors, in: B. Courcelle, ed., 9th Colloquium on trees in algebra and

programming (Cambridge University Press, 1984) 211-225.

[76] E. Paul, On solving the equality problem in theories defined by Horn clauses,

Theoretical Comput. Sci. 44 (1986) 127-153.

[77] D. A. Plaisted, Semantic confluence tests and completion methods, Informa-

tion and Control 65 (1985) 182-215.

[78] P. W. Purdom and C. A. Brown, Fast many-to-one matching algorithms, Lec-

ture Notes in Comput. Sci. 202 (Springer-Verlag, 1985) 407-416.

[79] J. C. Raoult and J. Vuillemin, Operational and semantic equivalence between

recursive programs, J. ACM 27 (1980) 772-796.

[80] J. C. Raoult, On graph rewriting, Theoretical Comput. Sci. 32 (1984) 1-24.

[81] B. K. Rosen, Tree-manipulating systems and Church-Rosser theorems,

J. ACM 20 (1973) 160-187.

[82] J. B. Rosser, A mathematical logic without variables, Annals of Math. 36

(1935) 127-150.

[83] M. Rusinowitch, On termination of the direct sum of term rewriting systems,

Inform. Process. Lett. 26 (1987) 65-70.

149



[84] M. Sakai, T. Sakabe, and Y. Inagaki, Direct implementation system of alge-

braic specifications of abstract data types, Computer Software 4-4 (Iwanami,

1987) 16-27, in Japanese.

[85] M. Sato and T. Sakurai, QUTE: A functional language based on unification, in:

D. DeGroot and G. Lindstrom, eds., Logic Programming: Functions, relations

and equations (Prentice-Hall 1986) 131-155.

[86] M. Schönfinkel, Über die bausteine der mathematischen logik, Math. Annalen

92 (1924) 305-316. Translated as: On the building blocks of mathematical

logic, in: J. V. Heyenoort, ed., From Frege to Gödel (Harvard Univ. Press,

1967) 355-366.

[87] J. Staples, Church-Rosser theorem for replacement systems, Lecture Notes in

Mathematics 450 (Springer-Verlag, 1975) 291-307.

[88] Y. Sugiyama, K. Taniguchi, and T. Kasami, A specification defined as as

extension of a base algebra, Trans. IECE Japan, J64-D, 4 (1981) 324-331, in

Japanese.

[89] J. J. Thiel, Stop losing sleep over incomplete data type specifications, Proc.

11th ACM Sympo. Principles of Programming Languages (1984) 76-82.

[90] A. Togashi and S. Noguchi, Some decision problems and their time complexity

for term rewriting systems, Trans. IECE Japan, J66-D (1983) 1177-1184, in

Japanese.

[91] S. Tomura and K. Futatsugi, Transformation system from term rewriting

systems into LISP programs, IEICE (the Institute of Electronics, Informa-

tion and Communication Engineers) technical report SS86-11 (1986) 15-20, in

Japanese.

[92] Y. Toyama, On commutativity of term rewriting systems, Trans. IECE Japan,

J66-D (1983) 1370-1375, in Japanese.

150



[93] Y. Toyama, On equivalence transformations for term rewriting systems, Lec-

ture Notes in Computer Science 220 (Springer-Verlag, 1985) 44-61.

[94] Y. Toyama, How to prove equivalence of term rewriting systems without induc-

tion, Lecture Notes in Computer Science 230 (Springer-Verlag, 1986) 118-127.

[95] Y. Toyama, On the Church-Rosser property for the direct sum of term rewrit-

ing systems, J. ACM 34 (1987) 128-143.

[96] Y. Toyama, Counterexamples to termination for the direct sum of term rewrit-

ing systems, Inform. Process. Lett. 25 (1987) 141-143.

[97] Y. Toyama, Confluenct term rewriting systems with membership conditions,

Lecture Notes in Computer Science 308 (Springer-Verlag, 1988) 128-141.

[98] Y. Toyama, Commutativity of term rewriting systems, in: K. Fuchi and

L. Kott, eds., Programming of Future Generation Computer II (North-

Holland, 1988) 393-407.

[99] Y. Toyama, J. W. Klop, H. P. Barendregt, Termination for the direct sum of

left-linear term rewriting systems: Preliminary draft, Lecture Notes in Com-

put. Sci. 355 (Springer-Verlag, 1989) 477-491.

[100] Y. Toyama, J. W. Klop, H. P. Barendregt, Termination for the direct sum

of left-linear complete term rewriting systems, CWI Report CS-R8923 (1989),

submitted to J. ACM.

[101] Y. Toyama, Membership conditional term rewriting systems, Trans. IEICE

Japan, E72 (1989) 1224-1229.

[102] Y. Toyama, Fast Knuth-Bendix completion with a term rewriting system com-

piler, Inform. Process. Lett. 32 (1989) 325-328.

[103] Y. Toyama, How to prove equivalence of term rewriting systems without in-

duction, to appear in Theoretical Comput. Sci. 78 (1991).

151



[104] D. A. Turner, The semantic elegance of applicative languages, Proc. ACM

Symp. on Functional Programming Languages and Computer Architecture

(1981) 85-92.

[105] D. A. Turner, Miranda: A non-strict functional language with poloimorphic

types, Lecture Notes in Comput. Sci. 201 (Springer-Verlag, 1985) 1-16.

[106] J. Vuillemin, Correct and optimal implementations of recursion in a simple

programming language, J. Compt. and Syst. Sci. 9 (1974) 332-354.

[107] J. Vuillemin, Syntaxe, sémantique et axiomatique d’un langage de program-

mation simple, Th. de Université de Paris VII (1974)

152



Paper List

1. Y. Toyama, On the Church-Rosser property for the direct sum of term rewrit-

ing systems, J. ACM 34 (1987) 128-143.

2. Y. Toyama, Counterexamples to termination for the direct sum of term rewrit-

ing systems, Inform. Process. Lett. 25 (1987) 141-143.

3. Y. Toyama, J.W. Klop, H.P. Barendregt, Termination for the direct sum of

left-linear complete term rewriting systems, CWI Report CS-R8923 (1989),

submitted to J. ACM.

4. Y. Toyama, J.W. Klop, H.P. Barendregt, Termination for the direct sum of

left-linear term rewriting systems: Preliminary draft, Proc. of the 3rd Inter-

national Conference on Rewriting Techniques and Applications, Lecture Notes

in Comput. Sci. 355 (Springer-Verlag, 1989) 477-491.

Chapter 3

5. Y. Toyama, Commutativity of term rewriting systems, in: K. Fuchi and

L. Kott, eds., Programming of Future Generation Computer II (North-Holland,

1988) 393-407.

6. Y. Toyama, On commutativity of term rewriting systems, Trans. IECE Japan,

J66-D (1983) 1370-1375, in Japanese.

153



Chapter 4

7. Y. Toyama, How to prove equivalence of term rewriting systems without in-

duction, to appear in Theoretical Comput. Sci. 78 (1991).

8. Y. Toyama, How to prove equivalence of term rewriting systems without in-

duction, Proc. of the 8th International Conference on Automated Deduction,

Lecture Notes in Computer Science 230 (Springer-Verlag, 1986) 118-127.

9. Y. Toyama, On equivalence transformations for term rewriting systems, Proc.

of RIMS Symposia on Software Science and Engineering II, Lecture Notes in

Computer Science 220 (Springer-Verlag, 1985) 44-61.

Chapter 5

10. Y. Toyama, Membership conditional term rewriting systems, Trans. IEICE

Japan, E72 (1989) 1224-1229.

11. Y. Toyama, Confluenct term rewriting systems with membership conditions,

Proc. of the 1st International Workshop on Conditional Term Rewriting Sys-

tems, Lecture Notes in Computer Science 308 (Springer-Verlag, 1988) 128-141.

154



Others

12. Y. Toyama, Fast Knuth-Bendix completion with a term rewriting system com-

piler, Inform. Process. Lett. 32 (1989) 325-328.

13. T. Ida, A. Aiba and Y. Toyama, T: A simple reduction language based on

combinatory term rewriting, in: K. Fuchi and M. Nivat, eds., Programming of

Future Generation Computer I (North-Holland, 1988) 217-236.

14. K. Futatsugi and Y. Toyama, Term rewriting systems and their applications:

A survey, J. IPS Japan 24 (2) (1983) 133-146, in Japanese.

15. Y. Toyama, A comment on call by need, J. IPS Japan 25 (3) (1984) 249-251,

in Japanese.

16. K. Fuchi, T. Kurokawa, Y. Toyama, etc., New Generation Programming (Ky-

orichu, 1986), in Japanese.

17. Y. Toyama, Greatest common divisor: Euclid’s algorithms for universal alge-

bra, polynomial ideal, and automated theorem proving, to appear in: T. Ida,

ed., New Programming Paradigm II (Kyorichu, 1990), in Japanese.

18. T. Sugawara and Y. Toyama, Theory of inductive inference: A tutorial, J.

Instrument and Control Engineers, 25 (1986) 781-786, in Japanese.

19. Y. Toyama and M. Kimura, On Learning automata in non-stationary random

environments, Trans. IECE Japan, J60-D (1977) 1085-1092, in Japanese.

155


