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A Quarter Century Ago ..

Kokich Futatsugi and Yoshihito Toyama
Term rewriting systems and their applications: A survey
J. IPS Japan 24 (2) (1983) 133-146, in Japanese.
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Contents of Survey (1983)

1. Introduction

2. What is term rewriting system

3. Theory of term rewriting systems

confluence, termination, Knuth-Bendix completion,
strategies (by Toyama)

4. Applications of term rewriting systems

algebraic specification, program transformation,
equational program (by Futatsugi)

5. Conclusion
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Confluence
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Confluence implies at most one normal form for any term. Thus,
confluent term rewriting systems give flexible computation and
effective deduction for equational systems.
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Classical Criteria for Confluence

When the survey (1983) was planed, we knew only three
confluence criteria:

••◦ Terminating TRS is confluent iff all critical pairs in it are joinable
(Knuth and Bendix 1970).

••◦ Left-linear non-overlapping TRS is confluent (Rosen 1973).

••◦ Left-linear parallel-closed TRS is confluent (Huet 1980).
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Classical Criteria for Confluence

When the survey (1983) was planed, we knew only three
confluence criteria:

••◦ Terminating TRS is confluent iff all critical pairs in it are joinable
(Knuth and Bendix 1970).

TRS is terminating if every reduction terminates.
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Confluence Criterion for Terminating TRS

••◦ Terminating TRS is confluent iff all critical pairs in it are joinable
(Knuth and Bendix 1970).

**

Thus confluence of terminating TRSs is decidable.
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Classical Criteria for Confluence

When the survey (1983) was planed, we knew only three
confluence criteria:

••◦ Terminating TRS is confluent iff all critical pairs in it are joinable
(Knuth and Bendix 1970).

••◦ Left-linear non-overlapping TRS is confluent (Rosen 1973).

••◦ Left-linear parallel-closed TRS is confluent (Huet 1980).
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Classical Criteria for Confluence

When the survey (1983) was planed, we knew only three
confluence criteria:

••◦ Terminating TRS is confluent iff all critical pairs in it are joinable
(Knuth and Bendix 1970).

••◦ Left-linear non-overlapping TRS is confluent (Rosen 1973).

Term is linear if no variable occurs more than once.

TRS is left-linear if the left-hand side is linear
for every rewrite rule.

TRS is non-overlapping if it has no critical pairs.
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Confluence Criteria (30 years ago)

Left-Linear Non-Left-Linear

Terminating

Non-
Terminating

Non-Overlapping

Knuth-Bendix

Rosen

(1970)

(1973)
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Classical Criteria for Confluence

When the survey (1983) was planed, we knew only three
confluence criteria:

••◦ Terminating TRS is confluent iff all critical pairs in it are joinable
(Knuth and Bendix 1970).

••◦ Left-linear non-overlapping TRS is confluent (Rosen 1973).

••◦ Left-linear parallel-closed TRS is confluent (Huet 1980).

Huet criterion for left-linear TRS was extended by Toyama (1981,
1988), van Oostrom (1995), Gramlich (1996), Oyamaguchi and
Ohta (1997, 2003), Okui (1998), et al.
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Confluence Criterion (Huet 1980)

••◦ Left-linear TRS is confluent if every critical pair satisfies

Parallel reduction is defined by
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Confluence Criterion (Toyama 1988)

••◦ Left-linear TRS is confluent if every critical pair satisfies

*

Parallel reduction is defined by
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Confluence Criterion (van Oostrom 1995)

••◦ Left-linear TRS is confluent if every critical pair satisfies

*

Development reduction is defined by
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Confluence Criteria

Left-Linear Non-Left-Linear

Terminating

Non-
Terminating

Non-Overlapping

Knuth-Bendix

Rosen

(1970)

(1973)
Huet
(1980)

van Oostrom
   (1995)

Toyama
(1988)

et. al.
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Criteria for Non-Left-Linear Non-Terminating TRS?

Non-overlapping does not imply confluence for non-left-linear non-
terminating TRSs.

R





f(x, x) → a

f(x, g(x)) → b

c → g(c)

(Huet 1980)

f(c, c) f(c, g(c))

a

b
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Criteria for Non-Left-Linear Non-Terminating TRS?

Questions:

••◦ Is a left-linear non-overlapping TRS + {D(x, x) → E}
confluence? (Staples 1975)

••◦ Is a left-linear non-overlapping TRS + parallel-if confluence?

parallel-if





if(true, x, y) → x

if(false, x, y) → y

if(z, x, x) → x

(O’Donnell 1977)

Note that we cannot apply all the confluence criteria which have
been mentioned to this problem.
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Combinatory Reduction Systems (Klop 1980)

Answers:
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Negative Result by Klop

CL + {Dxx → E} is not confluent.

CL

{
Sxyz → (xz)(yz)
Kxy → y
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Negative Result by Klop

R





A → CA

Cz → Dz(Cz)
Dzz → E

A CA DA(CA) D(CA)(CA) E

C(CA)

CE

DE(CE)

DE(DE(CE))

*
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Positive Result by Klop

CL + {Dxx → E} is not confluent. But

CL + {D(x, x) → E} is confluent (Klop 1980).

This is the first non-trivial example of confluent non-left-linear
non-terminating TRS.

Question:
What is the essential difference between them?

Answer:
Modularity (Toyama 1987)
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Direct Sum of TRSs

Let R1 on F1 and R2 on F2 be two TRSs with F1 ∩ F2 = φ.
Then the direct sum R1 ⊕R2 is defined as the new TRS R1 ∪R2

on F1 ∪ F2.

F F21

Mixed Term
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Modularity of Confluence (Toyama 1987)

R1 and R2 are confluent ⇐⇒ R1 ⊕ R2 is confluent.

Example: Let R on F be a left-linear non-overlapping TRS, and
let F ∩ {if, true, false} = φ. Then R + parallel-if is confluent.

parallel-if





if(true, x, y) → x

if(false, x, y) → y

if(z, x, x) → x

Note that R is confluent from Rosen criterion, and parallel-if is
confluent from Knuth-Bendix criterion.
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Modularity of Confluence

Left-Linear Non-Left-Linear

Terminating

Non-
Terminating

Non-Overlapping

Knuth-Bendix
(1970)

1

2

R

R

+ R
2

R1
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Modularity of Confluence

I presented my result in a small workshop at Kyoto, 1983.
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Modularity of Confluence

Barendregt participated in the same workshop. He asked ...
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Contradiction to Klop’s Example?

CL + {Dxx → E} is not confluent (Klop 1980).

CL

{
Sxyz → (xz)(yz)
Kxy → y

CL and {Dxx → E} are confluent respectively,
and {S, K} ∩ {D} = φ.
From the modularity CL + {Dxx → E} should be confluent.
Does it contradict Klop’s example?
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Contradiction to Klop’s Example?

CL + {Dxx → E} is not confluent (Klop 1980).

CL

{
Sxyz → (xz)(yz)
Kxy → y

CL and {Dxx → E} are confluent respectively,
and {S, K} ∩ {D} = φ.
From the modularity CL + {Dxx → E} should be confluent.
Does it contradict Klop’s example?

This is not the case.
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Contradiction to Klop’s Example?

CL + {(D•x)•x → E} is not confluent (Klop 1980).

CL

{
((S•x)•y)•z → (x•z)•(y•z)
(K•x)•y → y

CL + {Dxx → E} is not direct sum
since {S, K, •} ∩ {D, •} = {•}.
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Modularity of Termination

I submitted my result to J. ACM and received the referee reports
in 1984, in which one referee asked

“Can the author prove by his analysis of of the layer structure of
R1 ⊕ R2 - terms also the following:

R1 and R2 are terminating ⇐⇒ R1 ⊕ R2 is terminating?

Maybe this fact, which would also be whorthwhile to have, can
be obatained with relatively little extra effort.”

My answer for the question was completely YES, because ...
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Modularity of Termination

I had already proved the fact:
R1 and R2 are terminating ⇐⇒ R1 ⊕ R2 is terminating.
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Modularity of Termination

The following page concludes that:
R1 and R2 are terminating ⇐⇒ R1 ⊕ R2 is terminating.
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Modularity of Termination

I tried to complete my proof by adding the details to
the following sketch. But ...
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Modularity of Termination

A proof of one assumption always produced another new
assumpution which I had to prove, and this repeating process
seemed to continue without end.

One morning I was walking on the street and waited for the traffic
light to change.
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Modularity of Termination

A proof of one assumption always produced another new
assumpution which I had to prove, and this repeating process
seemed to continue without end.

One morning I was walking on the street and waited for the traffic
light to change.

When I walked across on the road,
an example appeared in my mind automatically.
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Counter Example (Toyama 1987)

R1
{

f(0, 1, x) → f(x, x, x)

R2

{
g(x, y) → x

g(x, y) → y

R1 and R2 are terminating but R1 ⊕ R2 is not:

f(g(0, 1), g(0, 1), g(0, 1)) →
f(0, g(0, 1), g(0, 1)) →
f(0, 1, g(0, 1)) →
f(g(0, 1), g(0, 1), g(0, 1)) → · · ·

Thus termination is not modular.
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Confluence Criteria for Non-Disjoint Union

R1 and R2 are confluent ⇐⇒ R1 ⊕ R2 is confluent.

F F21

Drawback:
The disjointness requirement F1 ∩ F2 = φ is too strong.
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Confluence Criteria for Non-Disjoint Union

R1 and R2 are confluent ⇐⇒ R1 ⊕ R2 is confluent.

F F21

••◦ Layer-preserving TRS (Ohlebusch 1994)

••◦ Labeling (Zantema 1995, Toyama 1998)

••◦ Persistence (Zantema 1994)

••◦ Membership conditional TRS (Toyama 1988)

••◦ Conditional linearization (Toyama and Oyamaguchi 1995)

••◦ Non-E-overlapping TRS (Oyamaguchi and Ohta 1993)
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Layer-Preserving TRS (Ohlebusch 1994)

R1 and R2 are layer-preserving and confluent
⇒ R1 ∪ R2 is confluent.

A A 21
B

F F1 2

Let B = F1 ∩ F2 and Ai = Fi − B (i = 1, 2).

Ri (i = 1, 2) is layer-preserving if

(i) ∀l → r ∈ Ri[root(l) ∈ Ai ⇒ root(r) ∈ Ai].

(ii) ∀l → r ∈ Ri[root(l) ∈ B ⇒ l, r ∈ T (B, V )].
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Layer-Preserving TRS (Ohlebusch 1994)

R1 and R2 are layer-preserving and confluent
⇒ R1 ∪ R2 is confluent.

A A 21
B

F F1 2

R





f(x, a(g(x))) → g(f(x, x))
f(x, g(x)) → g(f(x, x))
a(x) → x

h(x) → h(a(h(x)))

is confluent since ...

c©Yoshihito Toyama 40/62



RTA’05 April 19, 2005

Layer-Preserving TRS (Ohlebusch 1994)

R1 and R2 are layer-preserving and confluent
⇒ R1 ∪ R2 is confluent.

A A 21
B

F F1 2

A1 = {f, g}, A2 = {h}, B = {a}.

R1





f(x, a(g(x))) → g(f(x, x))
f(x, g(x)) → g(f(x, x))
a(x) → x

R2
{

h(x) → h(a(h(x)))

are layer-preserving and confluent.
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Top-Down Labeling (Toyama 1998)

R1 and R2 are layer-preserving ⇒ R1 ∪ R2 ' Rlab
1 ⊕ Rlab

2 .

B

F F1 2 F F1 2

B

lab lab

lab Blab
Labeling

A1 A2

R





f(x, a(g(x))) → g(f(x, x))
f(x, g(x)) → g(f(x, x))
a(x) → x

h(x) → h(a(h(x)))

is confluent since ...
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Top-Down Labeling (Toyama 1998)

R1 and R2 are layer-preserving ⇒ R1 ∪ R2 ' Rlab
1 ⊕ Rlab

2 .

B

F F1 2 F F1 2

B

lab lab

lab Blab
Labeling

A1 A2

A1 = {f, g}, A2 = {h}, B = {a}.

Rlab
1





f1(x, a1(g1(x))) → g1(f1(x, x))
f1(x, g1(x)) → g1(f1(x, x))
a1(x) → x

Rlab
2

{
a2(x) → x

h2(x) → h2(a2(h2(x)))

are disjoint and confluent.
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Semantic Labeling (Zantema 1995)

R1 and R2 are compatible with labeling ⇒ R1∪R2 ' Rlab
1 ⊕Rlab

2 .

B

F F1 2 F F1 2

B

lab lab

lab Blab
Labeling

A1 A2

R





a(f(x), y) → f(a(f(y), x))
a(b(x), y) → a(x, b(x))
a(g(x), x) → g(b(g(x)))

is confluent since ...
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Semantic Labeling (Zantema 1995)

R1 and R2 are compatible with labeling ⇒ R1∪R2 ' Rlab
1 ⊕Rlab

2 .

B

F F1 2 F F1 2

B

lab lab

lab Blab
Labeling

A1 A2

A1 = {f}, A2 = {g}, B = {a, b}.

Rlab
1

{
a1(f1(x), y) → f1(a1(f1(y), x))
a1(b1(x), y) → a1(x, b1(x))

Rlab
2

{
a2(b2(x), y) → a2(x, b2(x))
a2(g2(x), x) → g2(b2(g2(x)))

are disjoint and confluent.
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Persistence (Zantema 1994)

Rτ is confluent for some typing τ ⇒ R is confluent.
(Aoto and Toyama 1997)

R





f(x) → g(x)
a(x, y) → a(f(x), f(x))
b(f(x), x) → b(x, f(x))
b(g(x), x) → b(x, g(x))

is confluent since Rτ is confluent for

τ





f : 1 → 1
g : 1 → 1
a : 1 × 1 → 2
b : 1 × 1 → 3
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Membership Conditional Rewrite Rules

λ+{δxx → T} is not confluent (Klop 1980), but

λ+δ is confluent (Church 1941)

δ

{
δMM → T if M is a closed normal form
δMN → F if M, N are closed normal forms and M 6≡ N
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Membership Conditional TRS (Toyama 1988)

R





f(x, x) → 0
f(g(x), x) → 1
2 → g(2)

is not confluent, but

RMC





f(x, x) → 0 if x ∈ T (F ′, V )
f(g(x), x) → 1 if x ∈ T (F ′, V )
2 → g(2)

is confluent, where F ′ = {f, g, 0, 1}.

Note that every term in T (F ′, V ) is closed and terminating w.r.t.
reduction.
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Membership Condition + Persistence

R





f(x, x) → f(g(x), x)
f(g(x), x) → f(h(x), h(x))
h(g(x)) → g(g(h(x)))

is confluent, since:

RMC





f(x, x) → f(g(x), x) if x ∈ T (F ′, V )
f(g(x), x) → f(h(x), h(x)) if x ∈ T (F ′, V )
h(g(x)) → g(g(h(x))) if x ∈ T (F ′, V )

is confluent, where F ′ = {g, h}. Thus Rτ is confluent for

τ





f : 0 × 0 → 1
g : 0 → 0
h : 0 → 0
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Conditional Liniearization

R has unique normal form if RL is confluent.
(de Vrijer and Klop 1989)

R = CL + {Dxx → E} has unique normal form since

conditional linearization
RL = CL + {Dxx′ → E if x = x′} is confluent.
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Conditional Liniearization

R has unique normal form if RL is confluent.
(de Vrijer and Klop 1989)

A simple-right-linear R is confluent if RL is non-overlapping.
(Toyama and Oyamaguchi 1995)

R





f(x, x, y) → h(y, c)
g(x) → f(x, c, g(c))
c → h(c, c)

is confluent since

RL





f(x′, x′′, y′) → h(y, c) if x′ = x, x′′ = x, y′ = y

g(x′) → f(x, c, g(c)) if x′ = x

c → h(c, c)

is non-overlapping.
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E-Overlapping and Strongly Overlapping

••◦ We say that R is E-overlapping if

*
ε

l

r

l’

r’

non-touching

••◦ We say that R is strongly overlapping if RL is overlapping.

R is strongly overlapping if R is E-overlapping.
(Ogawa and Ono 1989)

Note that strongly overlapping is a decidable approximation of
E-overlapping.
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Confluence Criteria for Non-E-Overlapping TRS

Non-E-Overlapping Right-Ground TRS
(Oyamaguchi and Ohta 1993)

Non-E-Overlapping Simple-Right-Linear TRS
(Oyamaguchi and Toyama 1995)

Non-E-Overlapping Strongly Depth-Preserving TRS
(Gomi, Oyamaguchi, Ohta 1996)

Root-E-Closed Strongly Depth-Preserving TRS
(Gomi, Oyamaguchi, Ohta 1998)
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Strongly Depth-Preserving TRS (Gomi et al 1996)

Non-E-overlapping strongly depth-preserving TRS is confluent.

x x
x

x x

min
max

min max>_LHS RHS

R





f(x, x) → a

c → h(c, g(c))
f(g(x), g(x)) → f(x, h(x, g(c)))

is confluent since

R is non-E-overlapping strongly depth-preserving.
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Decidability of Confluence

Confluence is Decidable for:

Ground TRS (Dauchet et al. 1987, Oyamaguchi 1987)

Right-Ground TRS (Godoy, Tiwari, Verma 2004)

Right-(Ground or Variable) TRS (Godoy, Tiwari 2004)

Shallow Right-Linear TRS (Godoy, Tiwari 2005)

Confluence is Undecidable for:

Flat TRS (Jacquemard, 2003)
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Confluence Criteria

Left-Linear Non-Left-Linear

Terminating

Non-
Terminating

Non-Overlapping

Knuth-Bendix

Rosen

(1970)

(1973)Huet

(1980)
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Future Directions

For non-left-linear and non-terminating TRSs:

••◦ New confluence criteria

••◦ Relation among different proofs and techniques

••◦ Theoretical characterization of confluence

••◦ Automated provers for confluence
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