
Ground Confluence Proof with Pattern Complementation∗

Takahito Aoto1 and Yoshihito Toyama2

1 Faculty of Engineering, Niigata University
aoto@ie.niigata-u.ac.jp
2 RIEC, Tohoku University

toyama@nue.riec.tohoku.ac.jp

Abstract

In (Aoto&Toyama, FSCD 2016), we gave a procedure for proving ground confluence of many-sorted

TRSs based on rewriting induction for proving bounded ground convertibility. The procedure needs to

find a strongly quasi-reducible terminating set of rules from the given input TRS to make the rewriting

induction work. It turns out, however, that such a subset of rewrite rules is often not present in the

input TRS. In this note, we propose an improvement of the procedure; in the new procedure, firstly

the lack of defining patterns is detected using pattern complementation procedure (Lazrek et al., I&C

1990), and then possible defining rules that can be appended to obtain a strongly quasi-reducible

terminating TRS are searched. The new procedure is useful to prove ground confluence of some TRSs

automatically which have been failed in the previous procedure.

1 Introduction

A term rewriting system (TRS for short) is ground confluent if all ground terms are confluent.
Procedures for proving ground confluence have been studied in e.g. [2, 5, 3, 4]. In [1], a procedure
for proving ground confluence of many-sorted TRSs based on rewriting induction, aiming for
proving bounded ground convertibility. For making the rewriting induction work, the procedure
needs to find a strongly quasi-reducible terminating set of rules from the given input TRS. It
turns out, however, that such a subset of rewrite rules is often not present in the input TRS.

In this note, we propose an improvement of the procedure. In our new procedure, firstly
the lack of defining patterns is detected using pattern complementation procedure [6]. Then
the rewrite rules to define such pattern are searched by combining multiple rewrite steps of
the input TRS. Then founded rewrite rules are added to the input TRS to form a strongly
quasi-reducible terminating subset of rewrite rules so that the rewriting induction can work on
it. We also report a result of preliminary experiment.

2 Preliminaries

We assume basic familiarity with (many-sorted) term rewriting (e.g. [7]).
The transitive reflexive (reflexive, symmetric, reflexive symmetric, equivalence) closure of a

relation → is denoted by
∗→ (resp.

=→, ↔,
=↔,

∗↔). For any quasi-order %, we put � = % \ -
and ≈ = % ∩-. A quasi-order % is well-founded if so is its strict part �.

Let S be a set of sorts. Each many-sorted function f is equipped with its sort declaration
f : α1 × · · · × αn → α0, where α0, . . . , αn ∈ S (n ≥ 0). The set of terms over the set of many-
sorted function symbols F and the set of variables V is denoted by T(F ,V). The set of function
symbols (variables) contained in a term t is denoted by F(t) (resp. V(t)). The set of ground

∗This work is partially supported by JSPS KAKENHI (Nos. 15K00003, 25280025).



Ground Confluence Proof with Pattern Complementation Aoto and Toyama

terms over G ⊆ F is denoted by T(G). A ground substitution is a mapping from V to T(F).
A rewrite relation (quasi-order) is a relation (resp. quasi-order) on terms closed under contexts
and substitutions. A rewrite relation (quasi-order) is a reduction relation (resp. quasi-order) if
it is well-founded. (Indirected) equations l

.
= r and r

.
= l are identified. A directed equation

l → r is a rewrite rule if l /∈ V and V(l) ⊇ V(r) hold. A (many-sorted) term rewriting system
(TRS for short) is a finite set of rewrite rules. The smallest rewrite relation containing R is
denoted by →R. The set of critical pairs of a TRS R is denoted by CP(R).

Terms s and t are joinable w.r.t. the rewrite relation →R (denoted by s ↓R t) if s
∗→R u

and t
∗→R u for some u. A TRS R is (ground) confluent if s ↓R t holds for any (ground)

terms s, t such that u
∗→R s and u

∗→R t for some (resp. ground) term u. Terms s and t are

ground convertible if sσg
∗↔R tσg holds for any ground substitution σg. An equation s

.
= t is

an inductive theorem of a TRS R, or inductively valid in R, if s and t are ground convertible.
We write R |=ind E for a set E of equations (pairs, rewrite rules) if every equation s

.
= t is an

inductive theorem for any s
.
= t (〈s, t〉, s→ t) in E.

We consider a partition of function symbols into the set D of defined symbols, and the set C
of constructors i.e. F = D ] C. Terms in T(C, V ) are constructor terms. Then a mapping from
V to T(C) is called a ground constructor substitution. The set of ground basic terms is defined
by TB(D, C) = {f(c1, . . . , cn) | f ∈ D, ci ∈ T(C)}. A TRS R is said to be quasi-reducible if no
ground basic terms are normal. Clearly, if R is a quasi-reducible terminating TRS then for any
ground term s there exists t such that s

∗→ t ∈ T(C).

3 Ground Confluence Proof by Rewriting Induction

In [1], the authors give a system of rewriting induction for proving ground confluence of many-
sorted term rewriting systems. The procedure is described as follows:

GCR Procedure 1

Input: TRS R
Output: YES or MAYBE

1. Compute (possibly multiple) candidates for the partition F = D ] C of function symbols.

2. Compute (possibly multiple) candidates for strongly quasi-reducible R0 ⊆ R.

3. Find a reduction quasi-order % such that R0 ⊆ �.

4. Run rewriting induction for proving bounded ground convertibility of CP(R0) with %.

5. Run rewriting induction for proving R0 |=ind (R \R0).

6. Return YES if it succeeds in steps 4 and 5, otherwise MAYBE.

Note here that strong quasi-reducibility [1] and quasi-reducibility coincide when constructors
are free, i.e.D = {l(ε) | l→ r ∈ R}. To make the explanation simple, here after we only consider
free constructors.

Proposition 1 ([1]). If GCR Procedure 1 returns YES then R is ground confluent.

As indicated above, for the procedure shown to work, it is required that there exists
(strongly) quasi-reducible and terminating subset R0 ⊆ R. Experiments in [1], however, reveal
that there are cases that there does not exist such an R0.

2



Ground Confluence Proof with Pattern Complementation Aoto and Toyama

Example 2 (Cops 128). Let F = {plus : Nat× Nat→ Nat, s : Nat→ Nat, 0 : Nat} and

R =

 plus(0, y) → y (a)
plus(x, s(y)) → s(plus(x, y)) (b)
plus(x, y) → plus(y, x) (c)


Then there exists no quasi-reducible and terminating subsets of R.

A natural candidate of quasi-reducible terminating R0 here would be

R0 =

{
plus(0, y) → y (a)
plus(s(x), y) → s(plus(x, y)) (b′)

}
Indeed, the rewrite rule (b′) is equationally valid as

plus(s(x), y)→(c) plus(y, s(x))→(b) s(plus(y, x))→(c) s(plus(x, y))

However, the rewrite rule (b′) is not contained in R and thus the procedure given in [1] fails to
prove ground confluence of this system.

4 Ground Confluence Proof with Pattern Complementa-
tion

A finite set P of basic terms is called a pattern. Intuitively, the set P can be regarded as
expressing a set of ground terms given as Inst(P ) = {pσgc | p ∈ P, σgc : V → T(C)}. A finite set
Q of terms is said to be a complement (w.r.t. TB(D, C)) of P if Inst(P ) ] Inst(Q) = TB(D, C).
We denote Q as TB(D, C)	 P .

A pattern P is linear if so are all its elements. Theorem 1 of [6] gives an algorithm to
compute Q from P (complementation algorithm) for any linear pattern P .

Example 3. Let R be TRS in Example 6. Let P0 = {plus(0, y)} and P1 = {plus(x, s(y))}.
Then TB(D, C)	 P0 = {plus(s(x), y)} and TB(D, C)	 P1 = {plus(x, 0)}. Furthermore, we have
TB(D, C)	 (P0 ∪ P1) = {plus(s(x), 0)}.

GCR Procedure 2

Input: TRS R
Output: YES or MAYBE

1. Compute (possibly multiple) candidates for the partition F = D ] C of function symbols.

2. Find left-linear R0 ⊆ R and a reduction quasi-order % such that R0 ⊆ �.

3. Compute a complement P = TB(D, C)	 lhs(R0), where lhs(R0) = {l | l → r ∈ R0}. For

each p ∈ P find p′ such that p
∗→R p′ and p � p′. Let R1 = R0 ∪ {p→ p′ | p ∈ P}.

4. Run rewriting induction for proving bounded ground convertibility of CP(R1) with %.

5. Run rewriting induction for proving R1 |=ind (R \R0).

6. Return YES if it succeeds in steps 4 and 5, otherwise MAYBE.

3



Ground Confluence Proof with Pattern Complementation Aoto and Toyama

Table 1: Preliminary experiments

problem added equation(s)
steps

#1 #2 #3
Cops 128 +(s(x), 0)→ s(x) × X X

Cops 130

 and3(F,T,T)→ F
and3(F,F,T)→ F
and3(T,F,T)→ F

 × × X

Cops 133 +(0, s(x))→ s(x) × X X
Cops 137 max(0, s(y))→ s(y) × X X
Cops 140 +(s(x), 0)→ s(x) × X X
Cops 146 +(0, s(x))→ s(x) × X X
Cops 165 max(0, s(y))→ s(y) × X X
Cops 174 +(0, s(x))→ s(x) × X X
Cops 180 +(s(x), 0)→ s(x) × X X
Cops 186 +(0, s(x))→ s(x) × X X
Cops 197 or(F,T)→ T × X X
Cops 210 +(s(x), 0)→ s(x) × X X
Cops 234 eq(0, 0)→ true X X X

total time (seconds) 32.694 32.620 33.052

Theorem 4. If GCR Procedure 2 returns YES then R is ground confluent.

Proof. Let R′ = R ∪ (R1 \ R0). Then we have →R ⊆ →R′ ⊆ ∗→R and thus the ground
confluence of R follows from that of R′.

Example 5. Let R be a TRS given in Example 6. Suppose - be the lpo based on the
precedence plus � s � 0. Then the GCR Procedure 2 puts R0 = {(a), (b)} and one has
P = TB(D, C) 	 lhs(R0) = {plus(s(x), 0)}. By plus(s(x), 0) → plus(0, s(x)) → s(x), one gets
R1 = R0∪{plus(s(x), 0)→ s(x)}. Then CP(R1) = ∅ and one successfully proves R1 |=ind {(c)}
by rewriting induction. Thus R is proved to be ground confluent.

5 Implementation and Experiment

A preliminary implementation has been done on AGCP so that when no strongly quasi-reducible
subset is found it computes a complement of the defining patterns and adds defining rules.
We used rewrite steps of length up to 7 to find p′ such that p

∗→R p′ in the Step 3 of the
GCR procedure 2. We tested our preliminary implementation on the collection of 121 ground
confluence problems given in [1].

We found that 13 new examples can be handled using our preliminary implementation. The
summary is presented in Table 1. Here, the column below “steps” shows results when length of
rewrite steps to find p′ are changed. Here, X shows success and and × shows failure. All these
examples are proved by ≤ 3 steps, one needs 3 steps only for Cops 130. Total time indicates
the time required for running the prover on the collection of 121 ground confluence problems.
Tests are performed on a PC with one 2.50GHz CPU and 4G memory. We impose 5 (resp. 1)
seconds time limit rewriting induction proof (resp. computation of constructors). It turns out
that changing the length from 1 step to 3 does not affect the total running time. However, with

4



Ground Confluence Proof with Pattern Complementation Aoto and Toyama

length 7, the total time exceeds 2 minutes and with length 8 we cannot complete the experiment
within 10 minutes.

Example 6 (Cops 130). Let F = {and3 : Bool× Bool× Bool→ Bool,T : Bool,F : Bool} and

R =

 and3(x, y,F) → F (a)
and3(T,T,T) → T (b)
and3(x, y, z) → and3(y, z, x) (c)


Let D = {and3} and C = {T,F}. Take R0 = {(a), (b)}. Then one obtains TB(D, C)	 lhs(R0) =
{and3(F,T,T), and3(F,F,T), and3(T,F,T)}. Then and3(F,T,T) →R and3(T,T,F) →R F and
and3(F,F,T)→R and3(F,T,F)→R F. But and3(T,F,T)→R and3(F,T,T)→R and3(T,T,F)→R
F. Let us consider multiset path ordering with and3 � T � F. Then considering 2 steps at p

∗→ p′

in the Step 3 of the procedure does not suffice as and3(T,F,T) 6�mpo and3(T,T,F). By consider-

ing 3 steps at p
∗→ p′ in the Step 3 of the procedure, we obtain a rewrite rule and3(T,F,T)→ F

such that and3(T,F,T) �mpo F.

Sometimes computation of p
∗→ p′ diverges. The next example illustrates this.

Example 7. Cops 62 contains the following rewrite rules:

mod(0, y) → 0 (a) mod(x, 0) → x (c)
mod(x, s(y)) → if(<(x, s(y)), x,mod(−(x, s(y)), s(y))) (b)

Then R0 = {. . . , (a), (c), . . .} and (b) /∈ R0 due to ordering restriction. Then mod(s(x), s(y)) ∈
P , and the procedure searches some rewrite rule mod(s(x), s(y)) → r. However, the set {r |
mod(s(x), s(y))

∗→R r} is infinite and there is no r satisfying mod(s(x), s(y)) � r.

6 Conclusion

We have shown how the procedure for proving ground confluence of many-sorted TRSs in [1]
is improved by constructing new rewrite rules necessary for making the rewriting induction
work. We have presented our new procedure and shown its correctness. We have reported on
our preliminary implementation and experiment. There are 13 new examples for which ground
confluence can be proved from the collection of 121 examples, where the previous procedure
can prove 86 problems.

References

[1] T. Aoto and Y. Toyama. Ground confluence prover based on rewriting induction. In Proc. of 1st
FSCD, volume 52 of LIPIcs, pages 33:1–12, 2016.

[2] K. Becker. Proving ground confluence and inductive validity in constructor based equational spec-
ifications. In Proc. of 4th TAPSOFT, volume 668 of LNCS, pages 46–60. Springer-Verlag, 1993.

[3] A. Bouhoula. Simultaneous checking of completeness and ground conflunce for algebraic specifica-
tions. ACM Transactions on Computational Logic, 10(2):20:1–33, 2009.

[4] H. Ganzinger. Ground term confluence in parametric conditional equational specifications. In Proc.
of 4th STACS, volume 247 of LNCS, pages 286–298, 1987.

[5] R. Göbel. Ground confluence. In Proc. of 2nd RTA, volume 256 of LNCS, pages 156–167, 1987.

[6] A. Lazrek, P. Lescanne, and J. J. Thiel. Tools for proving inductive equalities, relative completeness,
and ω-completeness. Information and Computation, 84:47–70, 1990.

[7] Terese. Term Rewriting Systems. Cambridge University Press, 2003.

5


	Introduction
	Preliminaries
	Ground Confluence Proof by Rewriting Induction
	Ground Confluence Proof with Pattern Complementation
	Implementation and Experiment
	Conclusion

