
Improving Rewriting Induction Approach for
Proving Ground Confluence
Takahito Aoto1, Yoshihito Toyama2, and Yuta Kimura1

1 Faculty of Engineering, Niigata University,
8050 Ikarashi 2-no-cho, Nishi-ku, Niigata, 950-2181, Japan
{aoto@, kimura@nue.}ie.niigata-u.ac.jp

2 RIEC, Tohoku University,
2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
toyama@riec.tohoku.ac.jp

Abstract
In (Aoto&Toyama, FSCD 2016), a method to prove ground confluence of many-sorted term
rewriting systems based on rewriting induction is given. In this paper, we give several methods
that add wider flexibility to the rewriting induction approach for proving ground confluence.
Firstly, we give a method to deal with the case in which suitable rules are not presented in
the input system. Our idea is to construct additional rewrite rules that supplement or replace
existing rules in order to obtain a set of rules that is adequate for applying rewriting induction.
Secondly, we give a method to deal with non-orientable constructor rules. This is accomplished
by extending the inference system of rewriting induction and giving a sufficient criterion for the
correctness of the system. Thirdly, we give a method to deal with disproving ground confluence.
The presented methods are implemented in our ground confluence prover AGCP and experiments
are reported. Our experiments reveal the presented methods are effective to deal with problems
for which state-of-the-art ground confluence provers can not handle.

1998 ACM Subject Classification F.4.2 Grammars and Other Rewriting Systems, I.2.3 Deduc-
tion and Theorem Proving

Keywords and phrases Ground Confluence, Rewriting Induction, Non-Orientable Equations,
Term Rewriting Systems

Digital Object Identifier 10.4230/LIPIcs.FSCD.2017.7

1 Introduction

Confluence is an important property of computational models having non-deterministic
computations. In term rewriting, confluence has caught attention many years. Recent
interest has been shifted toward the automated methods for proving confluence. Thus, many
confluence tools have been developed in past years, and efforts to have yearly confluence
competitions continues1. Confluence property considered on the set of ground terms is called
ground confluence. Confluence implies ground confluence, but not vice versa. In equational
logic, ground terms are concerned with the validity on the initial models (inductive validity),
and thus, it arises when studying in topics such as inductive theorem proving and correct
program transformations, which is closely related to inductive validity.

Ground confluence of many-sorted term rewriting systems (TRSs, for short) has been
studied in e.g. [4, 5, 8, 9]. Recently, two automated tools for ground confluence appeared

1 http://coco.nue.riec.tohoku.ac.jp

© Takahito Aoto, Yoshihito Toyama, and Yuta Kimura;
licensed under Creative Commons License CC-BY

2nd International Conference on Formal Structures for Computation and Deduction (FSCD 2017).
Editor: Dale Miller; Article No. 7; pp. 7:1–7:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSCD.2017.7
http://coco.nue.riec.tohoku.ac.jp
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

7:2 Improving Rewriting Induction Approach for Proving Ground Confluence

[2, 12]—one tool is based on rewriting induction [7, 13], which is originally a method for
proving inductive theorems, and the other is based on tree automata technique. However,
both approaches have some limitations—in rewriting induction approach, the input TRS
needs to have a quasi-reducible terminating set of rewrite rules, since the method is based
on noetherian induction using reduction order of terminating rewriting systems; in tree
automata approach, the input TRS needs to be left-linear right-ground.

In this paper, we give several methods that add wider flexibility to the rewriting induction
approach for proving ground confluence. Firstly, we give a method to deal with the case in
which suitable rewrite rules are not presented in the input system. Our idea is to construct
additional rewrite rules that supplement or replace existing rules. This approach also provides
a way to deal with some kind of non-orientable rewrite rules. But it turns out the approach
is not capable of some rules, e.g. those for adding flexibility of the data structures. To deal
also with such rules, we next extend the inference system of rewriting induction and give a
sufficient criterion for the correctness of the system. The last ingredient of the paper is about
disproving ground confluence—we design an inference rule of rewriting induction for refuting
ground confluence in the course of rewriting induction derivation. All the presented methods
are implemented in our ground confluence prover AGCP and experiments are reported.

The rest of the paper is organized as follows. Section 2 fixes notations used in this paper,
and presents basic backgrounds on ground confluence proving based on rewriting induction.
In Section 3, we present a method to find and construct a suitable defining rules and a
method to replace some non-orientable constructor rules, for the rewriting induction to
work. In Section 4, we give an extension of rewriting induction system for bounded ground
convertibility that can also deals with non-orientable rewrite rules; and then, this rewriting
induction system is applied to obtain a new ground confluence criterion. Section 5 deals
with proving ground non-confluence. Implementation and experiments of these methods are
reported in Section 6. Section 7 concludes.

2 Preliminaries

We assume basic familiarity with term rewriting (e.g. [15]).
For a quasi-order%, its strict part and equivalent part are denoted by� and≈, respectively.

The reflexive (reflexive transitive, symmetric, equivalent) closure of a relation → is denoted
by →= (resp. →∗, ↔, ↔∗) and n-fold composition by →n (n ≥ 0). We write %→ (≈→, �→)
to denote % ∩→ (resp. ≈ ∩→, � ∩→). Let → be a relation and % a quasi-order on a set.
Elements x and y are bounded convertible if x = x0 ↔ x1 ↔ · · · ↔ xn = y for some x0, . . . , xn
such that x % xi or y % xi (0 ≤ i ≤ n); we write x↔∗- y if x and y are bounded convertible.
We use ◦ for the function composition. A relation → is confluent if ∗←◦→∗ ⊆ →∗ ◦ ∗←.

A many-sorted signature is given by a non-empty set S of sorts and a set F of many-sorted
function symbols. We use V to denote the set of many-sorted variables. We will not explicitly
state the sort information if it is understood from the context. The sets of function symbols
and variables in a term t are denoted by F(t) and V(t), respectively. A term t is ground
if V(t) = ∅; it is linear if any variable occurs at most once in t. We use] for the disjoint
union. We consider a partition of function symbols F = D] C; function symbols in D are
called defined symbols and those in C are constructors. For any G ⊆ F , the set of (ground)
terms over function symbols G is denoted by T(G,V) (resp. T(G)). Terms in T(C,V) are
called constructor terms. A term t is basic if it has the form f(c1, . . . , cn) for some f ∈ D
and c1, . . . , cn ∈ T(C,V). The set of basic subterms of t is denoted by B(t).

A substitution is a sort-preserving mapping θ : V → T(F ,V) such that dom(θ) = {x ∈

T. Aoto et al. 7:3

V | θ(x) 6= x} is finite. A substitution θ is ground (constructor, ground constructor) if
θ(x) ∈ T(F) (resp. T(C,V), T(C)) for all x ∈ dom(θ); we assume dom(θ) ⊆ V(t) when we
write tθ for a substitution θ. A set L of terms covers a term t if for any ground constructor
substitution σgc, there exists l ∈ L such that ∃θ. tσgc = lθ.

For a position p in a term t, t(p) denotes the function symbol or variable at p and t|p
denotes the subterm at position p. We use ε for the root position. A context C[] is a term
with a sorted hole, and C[t] denotes the term obtained by filling the hole with a term t of
the same sort. A relation is a rewrite relation if it closed under contexts and substitutions. A
rewrite quasi-order is a quasi-order whose strict part and equivalent part are rewrite relations.
A rewrite quasi-order is a reduction quasi-order if its strict part is well-founded.

For any equation s .= t, we assume s and t have the same sort. (Indirected) equations
s
.= t and t .= s are identified. A set {s1

.= t1, . . . , sn
.= tn} of equations is (ambiguously)

abbreviated as {si
.= ti}i when no confusion arises. A directed equation is denoted by s→ t.

For a set E of directed equations, we put E↔ = {l .= r | l → r ∈ E}. For a set E of
equations (directed equations) the smallest rewrite relation containing E is denoted by ↔E

(resp. →E). A directed equation l→ r subjected to l /∈ V and V(l) ⊇ V(r) is a rewrite rule.
A (many-sorted) term rewriting system (TRS for short) is a finite set of rewrite rules. A TRS
R is left-linear if l is a linear term for all l→ r ∈ R; it is variable preserving if V(l) = V(r)
for all l → r ∈ R. A TRS R is (ground) confluent if →R is confluent on T(F ,V) (T(F),
respectively); R is terminating if →R is well-founded; R is sufficiently complete if for any
tg ∈ T(F) there exists ug ∈ T(C) such that tg →∗R ug. The set of rules l→ r ∈ R satisfying
l(ε) /∈ D is denoted by Rc and called the set of constructor rules. For a rewrite quasi-order
%, the strict part of R is given by R� = {l→ r ∈ R | l � r} and the equivalent part of R
by R≈ = {l→ r ∈ R | l ≈ r}. Note, as easily seen, R≈ is variable preserving.

A most general unifier of terms s and t is denoted by mgu(s, t). Let l1 → r1, l2 → r2 be
rewrite rules whose variables are w.l.o.g. renamed so that V(l1) ∩ V(l2) = ∅. We say l1 → r1
overlaps on l2 → r2 when l1 and non-variable subterm l2|p of l2 unify. The overlap arises
a critical pair l2[r1]pθ ̂xr2θ, where θ = mgu(l1, l2|p). The set of critical pairs arises from
overlaps of rules in R on rules in S is denoted by CP(R,S). We put CP(R) = CP(R,R)
and regard it as the set of equations induced from the critical pairs.

We write R⊗f = {f(. . . , xi−1, l, xi+1, . . .)→ f(. . . , xi−1, r, xi+1, . . .) | 1 ≤ i ≤ n, l→ r ∈
R}, where x1, . . . , xn are pairwise distinct variables not in l. Let LHS(R) = {l | l→ r ∈ R}
and LHS(f,R) = {l | l(ε) = f, l→ r ∈ R}. A TRS R is said to be a strongly quasi-reducible
(w.r.t. D) if LHS(Rc ⊗ f) ∪ LHS(f,R) covers f(x1, . . . , xn) for each f ∈ D. It easily follows
from the definition that any strongly quasi-reducible TRS is quasi-reducible TRS [2]. Thus,
any terminating and strongly quasi-reducible TRS is sufficiently complete [10].

In [2], the first two authors give a system of rewriting induction for proving ground
confluence of TRSs—its inference rules are given in Figure 1. In Expand rule, we put
Expdu(s, t) = {C[r]µ → tµ | µ = mgu(l, u), l → r ∈ (R \ Rc) ∪ (Rc ⊗ f)}, where s = C[u]
and u(ε) = f . We write 〈E,H〉 ;R,D,% 〈E′, H ′〉 (or 〈E,H〉 ; 〈E′, H ′〉 if no confusion
arises) when 〈E′, H ′〉 is obtained from 〈E,H〉 by an inference rule.

Let % be a quasi-order on terms. An equation s .= t is bounded ground convertible (by R
w.r.t. %) if all ground instantiation sθg and tθg are bounded convertible for the relation →R
and quasi-order %. Then we have the following proposition.

I Proposition 1 ([2]). Let % be a reduction quasi-order and R a strongly quasi-reducible
TRS w.r.t. D such that R ⊆ �. (1) If 〈E, ∅〉 ∗;R,D,% 〈∅, H〉 for some H, then E is bounded
ground convertible by R w.r.t. %. (2) If 〈CP(R), ∅〉 ∗;R,D,% 〈∅, H〉 for some H, then R is
ground confluent.

FSCD 2017

7:4 Improving Rewriting Induction Approach for Proving Ground Confluence

Expand
〈E] {s .= t}, H〉

〈E ∪ {s′i
.= ti}i, H ∪ {s→ t}〉

u ∈ B(s), {si → ti}i = Expdu(s, t),
si

%→∗H↔ s′i
Simplify

〈E] {s .= t}, H〉
〈E ∪ {s′ .= t}, H〉 s

�→R∪H ◦
%→∗H↔ s′

Delete
〈E] {s .= t}, H〉

〈E, H〉
s→=

H t

Figure 1 Inference rules of rewriting induction for ground confluence proof

An equation s .= t is an inductive theorem of R if sθg ↔∗R tθg for any ground substitution
θg. We write R |=ind E for a set E of equations if any equation s .= t ∈ E is an inductive
theorem of R. Clearly, if an equation is bounded ground convertible by R, then it is an
inductive theorem of R. In practice, it is often useful to incorporate the following easily
obtained property into ground confluence proofs by rewriting induction:

I Proposition 2 ([2]). Let R be a TRS. Suppose R0 ⊆ R is ground confluent. If R0 |=ind
R \R0 then R is ground confluent.

All in all, the procedure for ground confluence proof is described as follows:

Basic GCR Procedure

Input: many-sorted TRS R
Output: YES or MAYBE

1. Compute (possibly multiple) candidates for the partition F = D] C of function symbols.
2. Compute (possibly multiple) candidates for strongly quasi-reducible R0 ⊆ R.
3. Find a reduction quasi-order % such that R0 ⊆ �.
4. Run rewriting induction for deriving 〈CP(R0) ∪ (R \R0), ∅〉 ∗;R0,D,% 〈∅, H〉 for some H.
5. Return YES if it succeeds in step 4, otherwise MAYBE.

3 Rule Complementation and Instantiation

For our basic GCR procedure to work, it is required that there exists strongly quasi-reducible
and terminating subset R0 ⊆ R. Experiments in [2], however, reveal that there are cases
that there does not exist such an R0.

I Example 3. Let F = {eq : Nat × Nat → Bool, neq : Nat × Nat → Bool, not : Bool →
Bool, s : Nat→ Nat, 0 : Nat, true : Bool, false : Bool} and

R =

eq(0, 0) → true (a) eq(0, s(y)) → false (b)
eq(s(x), s(y)) → eq(x, y) (c) eq(x, y) → eq(y, x) (d)
not(true) → false (e) not(false) → true (f)
neq(x, y) → not(eq(x, y)) (g) neq(x, s(x)) → true (h)

T. Aoto et al. 7:5

Then, only possible reduction eq(s(0), 0)→∗R false has the following form: eq(s(0), 0)→{(d)}
eq(0, s(0)) →{(b)} false. Hence, in order to make R0 strong quasi-reducible, one needs
(d) ∈ R0. But having (d) ∈ R0 makes R0 non-terminating. Thus, there exists no quasi-
reducible and terminating subset R0 of R. A natural candidate of R0 here would be

R′0 =
{

eq(0, 0) → true (a) eq(0, s(y)) → false (b)
eq(s(x), 0) → false (b′) eq(s(x), s(y)) → eq(x, y) (c)

}
∪ {(e), (f), (g)}

Indeed, the rewrite rule (b′) is equationally valid as: eq(s(x), 0)→{(d)} eq(0, s(x))→{(b)} false.
However, the rewrite rule (b′) is not contained in R. Let R′ = R ∪ {(b′)}. Then, we have
→R ⊆ →R′ ⊆ →∗R, and thus, ground confluence of R′ implies that of R. Indeed, CP(R′0) = ∅
and R′0 |=ind {(b), (h)} is obtained in our basic GCR procedure, and thus ground confluence
of R′ can be shown. The key part of this procedure is to find the lacking pattern eq(s(x), 0)
and obtain a suitable rewrite rule (b′).

In the previous example, we supplement rewrite rules. There are cases that we need to
replace the rewrite rules, instead of supplementing new ones.

I Example 4. Let F = {zero : Nat→ Bool, if : Bool× Nat× Nat→ Nat, + : Nat× Nat→
Nat, − : Nat × Nat → Nat, ∗ : Nat × Nat → Nat, fact : Nat → Nat, s : Nat → Nat, 0 :
Nat, true : Bool, false : Bool} and

R =

zero(0) → true if(true, y, z) → y

zero(s(x)) → false if(false, y, z) → z

+(0, y) → y −(0, y) → 0
+(s(x), y) → s(+(x, y)) −(x, 0) → x

+(x, s(y)) → s(+(y, x)) −(s(x), s(y)) → −(x, y)
∗(0, y) → 0 ∗(s(x), y) → +(∗(x, y), y)
fact(x) → if(zero(x), s(0), ∗(x, fact(−(x, s(0))))) (a)

The rewrite rule (a) is the only rule that defines the function fact. Thus, we need to have
(a) ∈ R0, but the lhs of (a) embeds in the rhs, and thus there is no reduction quasi-order %
such that (a) ∈ �. To make the rewriting induction work, we replace the rule (a) with the
following two rules that inductively defines the function fact:{

fact(0) → s(0) (a′)
fact(s(x)) → ∗(s(x), fact(x)) (a′′)

}
These new rules are obtained by:

fact(0)→R if(zero(0), s(0), . . .)→R if(true, s(0), . . .)→R s(0)
fact(s(x))→R if(zero(s(x)), . . . , ∗(s(x), fact(−(s(x), s(0)))))→∗R ∗(s(x), fact(x))

In this example, we need to construct a pattern {fact(0), fact(s(x))} that covers fact(x).

Such lacking patterns can be characterized by the notion of complement of patterns:
A finite set P of basic terms is called a pattern. Intuitively, the set P can be regarded as
expressing a set of ground terms given as Inst(P) = {pσgc | p ∈ P, σgc : V → T(C)}. TB(D, C)
denotes the set of ground basic terms over D and C. A finite set Q of terms is said to be
a complement (w.r.t. TB(D, C)) of P if Inst(P)] Inst(Q) = TB(D, C). We (ambiguously)
denote Q as TB(D, C)	 P .

I Example 5. LetD = {eq}, C = {s, 0, true, false} and P = {eq(0, 0), eq(0, s(y)), eq(s(x), s(y))}.
Then TB(D, C)	 P = {eq(s(x), 0)}.

FSCD 2017

7:6 Improving Rewriting Induction Approach for Proving Ground Confluence

A pattern P is linear if so are all its elements. Theorem 1 of [11] gives an algorithm to
compute Q from P (complementation algorithm) for any linear pattern P , and we use it in
the following procedure.

I Definition 6 (Rule Complementation Procedure).
1. For each f ∈ D,

a. take Sf ⊆ {l→ r ∈ R | l(ε) = f} such that LHS(Sf) is a linear pattern, and
b. take l1, . . . , ln such that {l1, . . . , ln} = TB({f}, C)	 LHS(Sf) and r1, . . . , rn such that
li →∗R ri for each i, and let S ′f = Sf ∪ {li → ri | 1 ≤ i ≤ n}.

2. Finally, put R1 = Rc ∪
⋃
f∈D S ′f .

I Theorem 7. Suppose R1 is obtained from R by the rule complementation procedure. If
R1 is ground confluent and R1 |=ind R \R1, then R is ground confluent.

Proof. Suppose R1 is ground confluent and R1 |=ind R \ R1. Then R1 ∪ R is ground
confluent by Proposition 2. From the procedure, we have →R ⊆ →R1∪R ⊆ →∗R. Thus,
ground confluence of R follows. J

I Example 8. Let R be a TRS given in Example 4. Take Sfact = ∅, and one can put P =
TB({fact}, C)	∅ = {fact(0), fact(s(x))}. By fact(0)→∗R 0 and fact(s(x))→∗R ∗(s(x), fact(x)),
one gets R1 = R \ {(a)} ∪ {(a′), (a′′)}. Then one successfully proves that R1 is ground
confluent and R1 |=ind {(a)}. Thus, it follows that R is ground confluent.

The following example shows the condition R1 |=ind R \ R1 in Theorem 7 can not be
dropped.

I Example 9. Let F = {zero : Nat→ Bool, if : Bool× Nat× Nat→ Nat, f : Nat→ Nat, s :
Nat→ Nat, 0 : Nat, true : Bool, false : Bool} and

R =

zero(0) → true if(true, y, z) → y

zero(s(x)) → false if(false, y, z) → z

f(0) → 0 (a)
f(x) → if(zero(x), s(0), 0) (b)

Take Sf = {(a)} and TB({f}, C)	LHS(Sf) = {f(s(x))}. By f(s(x))→ if(zero(s(x)), s(0), 0)→
if(false, s(0), 0) → 0, one gets S ′f = {(a)} ∪ {f(s(x)) → 0}. Now as R1 is orthogonal, R1
is ground confluent. On the other hand, we have 0 ←R f(0) →R if(zero(0), s(0), 0) →R
if(true, s(0), 0)→R s(0), and thus R1 is not ground confluent. Note here R1 6|=ind {(b)}.

Instantiation technique is also useful for dealing with non-orientable constructor rules.
The following example illustrates this.

I Example 10 (COPS #74). Let R be a (uni-sorted) TRS as follows:
a → c (a) b → c (b) f(a, b) → d (c)
f(x, c) → f(c, c) (d) f(c, x) → f(c, c) (e)
d → f(a, c) (f) d → f(c, b) (g)

Let C = {f, c}. Take Rc = {(d), (e)}, R0 = {(a), (b), (g)}∪Rc and R\R0 = {(c), (f)}. Then
R0 is strongly quasi-reducible. However, R0 ⊆ � does no hold because f(x, c) 6� f(c, c) as
well as f(c, x) 6� f(c, c).

T. Aoto et al. 7:7

Instantiation technique can be used as follows. First, add some instantiation R′c of rewrite
rules (d) and (e) and replace partitions as follows:

R′c =

f(c, c) → f(c, c) (h)
f(f(x, y), c) → f(c, c) (h′)
f(c, f(x, y)) → f(c, c) (h′′)

 ,
R′0 = {(a), (b), (g)} ∪ R′c

R \R′0 = {(c), (d), (e), (f)}

Because C = {f, c}, f(c, x) .= f(c, c) are inductive theorems of R′0. Thus, ∗→R and ∗→R∪R′c
coincide on ground terms. Evidently, one can further remove trivial rule (h), and thus one
can use R′′0 = R′0 \ {(h)} ⊆ �. Then the ground confluence of R′′0 can be shown, and from
R′′0 |=ind {(c), (d), (e), (f)}, one can conclude ground confluence of R.

Now we formalize this idea. A substitution σ is linear if σ(x) is linear for all x ∈ dom(σ)
and V(σ(x)) ∩ V(σ(y)) = ∅ for any distinct x, y ∈ dom(σ). A complement of a linear
constructor substitution σ is a set of linear constructor substitutions Comp(σ) such that
for any term t and ground constructor substitution θgc, there exists ρ ∈ Comp(σ) ∪ {σ}
such that tθg is an instance of tρ. Definition 11 of [11] gives an algorithm to compute a
complement Comp(σ) of a linear constructor substitution σ, and we use it in the following
procedure.

I Definition 11 (Rule Instantiation Procedure). Let F = D] C be an arbitrary partition.
Suppose l→ r ∈ Rc and there exists σ = mgu(l, r) such that σ is a linear substitution. Put
R2 = (R \ {l→ r}) ∪ {lρ→ rρ | ρ ∈ Comp(σ)}.

I Theorem 12. Suppose that R� is strongly quasi-reducible and R2 is obtained from R by
the rule instantiation procedure. If R2 is ground confluent, then so is R.

Proof. Suppose R� is strongly quasi-reducible, l → r ∈ R and σ = mgu(l, r) is a linear
substitution. Let S = {lδ → rδ | δ ∈ Comp(σ)} and S ′ = S ∪ {lσ → rσ}. Let R′ = R ∪ S.
Then, since l → r ∈ R, we have →R′ = →R, and thus R is ground confluent iff so is R′.
We now show if R2 is ground confluent then R′ is ground confluent. To show this, from
R′ = R2 ∪ {l → r} and Proposition 2, it suffices to show R2 |=ind l

.= r. Since l and r are
unifiable and � is well-founded, we have l → r /∈ R�. Thus R� ⊆ R2. Hence, as R� is
strongly quasi-reducible and terminating, for any ground substitution θg there exists a ground
constructor substitution θgc such that θg(x)→∗R2

θgc(x). Thus for any ground substitution
θg, we have lθg →∗R2

lθgc and rθg →∗R2
rθgc. By the property of complement, mentioned

above, for any lθgc, there exists δ ∈ Comp(σ) ∪ {σ} such that lθgc is an instance of lδ. Thus,
lθgc →S′ rθgc. Since lσ = rσ, we have lθgc →=

S rθgc. As S ⊆ R2, we have lθg ↔∗R2
rθg.

Hence R2 |=ind l
.= r. J

4 Relaxing Ordering-Constraints in Rewriting Induction

The technique in the previous section enables us to deal with non-orientable rule l→ r ∈ R
if it can be moved to conjecture part and replaced with strictly decreasing rule. However, if
the rule is a constructor rule, this may be not possible in nature.

I Example 13. Let F = {sum : Btree → Nat, + : Nat × Nat → Nat, node : Nat × Btree ×
Btree→ Btree, leaf : Nat→ Btree, s : Nat→ Nat, 0 : Nat} and R be the following TRS:

sum(leaf(x)) → x sum(node(x, yt, zt)) → +(x,+(sum(yt), sum(zt)))
+(x, 0) → x +(x, s(y)) → s(+(x, y))
node(x, yt, zt) → node(x, zt, yt)

FSCD 2017

7:8 Improving Rewriting Induction Approach for Proving Ground Confluence

Modify
〈E] {s .= t}, H〉
〈E ∪ {s′ .= t}, H〉 s

≈→R s′

Figure 2 Modify inference rule

Now the non-orientable node(x, yt, zt) → node(x, zt, yt) can not be replaced with strictly
decreasing rules nor moved to the conjecture part. Thus, the previous techniques cannot
deal with this case.

To deal with such a case, we first extend our rewriting induction system. The idea is
to allow a constructor rewrite rule l→ r such that l ≈ r. We assume that a TRS R and a
reduction quasi-order % satisfy R ⊆ % and R� is strongly quasi-reducible.

I Definition 14. Inference rules of rewriting induction for proving bounded ground convert-
ibility of many-sorted TRSs is obtained from those given in Figure 1 by (i) adding Modify
rule in Figure 2, and (ii) replacing Expd operation in Expand rule with Expd� defined as
follows:

Expd�u (s, t) = {C[r]µ→ tµ | µ = mgu(l, u), l � r, l→ r ∈ (R \Rc) ∪ (Rc ⊗ f)},

where s = C[u] and u(ε) = f .

We now provide the key property of the system (see Appendix B for the proof).

I Theorem 15. If 〈E, ∅〉;∗ 〈∅, H〉 for some H, then E is bounded ground convertible by R
w.r.t. %.

Allowing (constructor) rewrite rules l → r such that l ≈ r makes the bounded ground
convertibility alone insufficient for guaranteeing ground confluence. Thus, we need an
extension of Newman’s Lemma [15] to suit our situation (see Appendix A for the proof).

I Lemma 16. Let % be a well-founded quasi-order. Suppose Rd = R\Rc, Rd ⊆ �, Rc ⊆ %
and Rc is ground confluent. Then, R is ground confluent if the following two conditions are
satisfied for any ground terms ug, vg:
(i) ug

≺←R ◦ →Rd
vg implies ug ↔∗R- vg, and

(ii) ug
≈←R ◦ →Rd

vg implies ug →Rd
◦ ↔∗R- vg.

Henceforth, we put Rd = R\Rc and assume Rd ⊆ �, Rc ⊆ % (thus, R≈ ⊆ Rc) and R�
is strongly quasi-reducible. The idea to obtain a ground confluence proof of R by our new
rewriting induction system for bounded ground convertibility is to apply Lemma 16 with the
help of the assumption that Rc is ground confluent and Theorem 15. The condition (i) of the
lemma is guaranteed by requesting 〈CP(R�)\CP(R�c), ∅〉;∗ 〈∅, H〉, thanks to Theorem 15.

To guarantee the condition (ii) of the lemma, we assume R is supplemented by {l→ r |
l � r, l→ r ∈ Rc ⊗ f, f ∈ D} so that Rd is quasi-reducible. This is possible since we assume
that R� is strongly quasi-reducible, and the addition does not affect whether R is ground
confluent or not. Furthermore, we need to modify inference rules of rewriting induction and
the starting set of equations from CP(R≈c ,Rd) or CP(Rd,R≈c) by marking the left-hand side

T. Aoto et al. 7:9

Expand
〈E] {s◦ .= t}, H〉

〈E ∪ {s′i
.= ti}i, H ∪ {s→ t}〉

u ∈ B(s), {si → ti}i = Expd�u (s, t),
si

%→∗H↔ s′i
Simplify

〈E] {s◦ .= t}, H〉
〈E ∪ {s′ .= t}, H〉 s

�→R◦∪H ◦
%→∗H↔ s′

Modify
〈E] {s .= t}, H〉
〈E ∪ {s′ .= t}, H〉 s

≈→R s′

Delete
〈E] {s◦ .= t}, H〉

〈E, H〉
s→=

H t

Figure 3 Inference rules of rewriting induction for ground confluence proof

or the right-hand side which is required to apply Rd. We denote a marked term s as s• and
a marked equation as s• .= t or s .= t•. Then we have the following set of equations.

CP%(R) = CP(R�) \ CP(R�c) ∪ {s• .= t | ŝxt ∈ CP(R≈c ,Rd)}
∪ {s .= t• | ŝxt ∈ CP(Rd,R≈c)}

By extending Expand, Simplify and Delete rules of rewriting induction for treating marked
equations, we obtain inference rules of Figure 3 for proving ground confluence of R.

I Definition 17. Inference rules of rewriting induction for proving ground confluence of
many-sorted TRSs is given in Figure 3. Here, E is the set of marked or unmarked equations,
and s◦ denotes a marked term s• or an unmarked term s. In Simplify rule, R◦ denotes Rd if
s◦ is a marked term or R if s◦ is an ummarked term.

Note that only Expand, Simplify or Delete rule is applied to a marked equation, and then,
the mark is removed; in other words, marked equations can be removed only by applying
one of them. For unmarked equations, any of four inference rules is applied.

Using our new rewriting induction system for ground confluence proof, we obtain the
following new ground confluence criterion (see Appendix B for the proof).

I Theorem 18. Let F = D] C be an arbitrary partition. Suppose that % is a reduction
quasi-order such that R ⊆ %. Suppose that R� is left-linear and strongly quasi-reducible,
R≈ ⊆ Rc and Rc is ground confluent. If 〈CP%(R), ∅〉 ∗; 〈∅, H〉 for some H, then R is
ground confluent.

I Example 19. Let R be the TRS given in Example 13. Take C = {0, s, leaf, node},
Rc = R≈ = {node(x, yt, zt) → node(x, zt, yt)} and Rd = R�. It is obvious that R�
is left-linear and strongly quasi-reducible and Rc is ground confluent. Then we have
CP%(R) = {sum(node(x, zt, yt))• .= +(x,+(sum(yt), sum(zt)))}. Applying inference rules of

FSCD 2017

7:10 Improving Rewriting Induction Approach for Proving Ground Confluence

Figure 3, we obtain 〈CP%(R), ∅〉 ∗; 〈∅, H〉, where

H =

+(x,+(s(y), z)) → s(+(x,+(z, y))),
+(x,+(0, y)) → +(x, y),
+(x,+(y, z)) → +(x,+(z, y)),
+(x,+(y, sum(zt))) → +(x,+(sum(zt), y)),
+(x,+(sum(yt), sum(zt))) → +(x,+(sum(zt), sum(yt)))

 .

Thus, from Theorem 18 it follows that R is ground confluent.

5 Disproving Ground Confluence

In this section, we deal with methods to disprove ground confluence. We present two
mechanisms to disprove ground confluence—the first one is given as an additional inference
rule of rewriting induction and the second one is a general method that is obtained by
modifying a method for disproving confluence [1]. From here on, for some set A of terms,
rules, etc. we denote those of sort τ by Aτ if the sort information is necessary.

Non-confluence is usually shown by selecting some candidates of non-joinable term-pair
〈t, u〉 such that t ∗← ◦ →∗ u, and proving t and u are not joinable. This idea is naturally
incorporated into the setting of ground confluence disproving. However, one needs to be
careful about the rewrite sequence for counterexample can be instantiated by ground terms;
that is, it may happen that tg ∗← s→∗ ug for ground terms ug, tg and term s, but there is
no ground instantiation of s, and in such a case, even if tg and ug are not joinable, this does
not imply ground non-confluence of the system. To avoid such pitfalls, it is better to exclude
rewrite rules that can not be instantiated by ground terms. This motivates us to introduce
the following definitions.

I Definition 20 (redundant rewrite rules). A sort τ is said to be redundant if T (F)τ = ∅. A
rule l→ r ∈ R is redundant if there exists a redundant sort τ such that (1) l→ r ∈ Rτ or
(2) V(l) ∩ Vτ 6= ∅. A TRS R is non-redundant if R contains no redundant rules.

It is easy to see redundancy is decidable. Since removing redundant rules preserves
ground (non-)confluence, one can work with non-redundant TRSs to prove or disprove
ground confluence:

I Theorem 21. Let R′ be obtained by removing redundant rules in R. Then, R′ is ground
confluent if and only if so is R.

Proof. It suffices to have →R =→R′ on T(F). (⊇) is clear as R′ ⊆ R. Suppose sg →R tg.
Then sg →l→r tg for some non-redundant rule l→ r ∈ R since no redundant rule is applied
in a ground rewrite step. Thus, sg →R′ tg. J

Any rewrite sequence s→∗ t by non-redundant rules has a ground instantiation. Thus,
for non-redundant TRS R, if t +

R← ◦ →
+
R u and there exists ground instantiations tθg and

uθg which are not joinable, then R is not ground confluent. In the remainder of this section,
we assume R is non-redundant.

Several inference rules of rewriting induction for refuting inductive conjectures are known
(e.g. [6, 14])—for example, when R has free constructors, if there exists s .= t ∈ E with
s(ε), t(ε) ∈ C and s(ε) 6= t(ε), one can infer ⊥ from 〈E,H〉, meaning that the initial equation
of the derivation is not an inductive theorem of R. Here, the correctness of such rules is
guaranteed by the assumption that R is confluent [14]. On the other hand, since we are

T. Aoto et al. 7:11

Disprove
〈E ∪ {s .= t}, H〉

⊥ s ><R t

Figure 4 Inference rule for disproving

dealing with proving ground confluence of R, it is not appropriate to assume confluence of
R. However, as we will see below, it turns out that not the same but a similar idea can be
used for refuting ground confluence.

First, we need a couple of preparations before presenting our inference rule for refuting
ground confluence.

I Definition 22. A function symbol f is said to be stable (in a TRS R) if for any rewrite
rule l → r ∈ R, f = l(ε) implies f = r(ε). A term s is root-stable if s(ε) ∈ F and s(ε) is
stable.

A term s is a minimal form (of a TRS R) if s→R t implies s = t. A term is a ground
minimal form if it is ground and a minimal form. We denote the set of ground minimal forms
of R of sort τ by GMF(R)τ .

We are now ready to present the key definition of our inference rule.

I Definition 23. For terms s and t of the same sort, we write s ><R t if either (i) s, t are
root-stable (in R) with s(ε) 6= t(ε), (ii) s(ε) = t(ε) /∈ {l(ε) | l → r ∈ R} and s|i >< t|i for
some 1 ≤ i ≤ arity(s(ε)), (iii) s ∈ Vτ \ V(t) and there exist ug, vg ∈ GMF(R)τ such that
ug 6= vg, or (iv) s ∈ Vτ , t is root-stable and there exists a root-stable term u of sort τ such
that u(ε) 6= t(ε).

The intended property of the relation ><R is as follows (see Appendix C for the proof).

I Lemma 24. Suppose V(s) ∪ V(t) contains no variable of redundant sort. If s ><R t, then
there exists a ground substitution θg such that sθg and tθg are not joinable by R.

I Definition 25. Rewriting induction with disproof is obtained by adding the inference rule
in Figure 4, where R is the input TRS of the problem.

I Lemma 26. Let 〈E0, ∅〉
∗
; 〈Ei, Hi〉. (1) l ↔∗E0∪R r for any l .= r ∈ Ei and l → r ∈ Hi.

(2) R |=ind E0 then R |=ind Ei.

Proof. (1) Straightforward, using induction on the length of 〈E0, ∅〉
∗
; 〈Ei, Hi〉. (2) Imme-

diately follows from (1). J

I Theorem 27. Suppose R is non-redundant and R |=ind R0. If 〈CP(R0)∪(R\R0), ∅〉 ∗; ⊥
then R is not ground confluent.

Proof. Suppose 〈CP(R0) ∪ (R\R0), ∅〉 ∗; 〈E,H〉; ⊥. Then, by the definition of Disprove
inference rule, there exists s .= t ∈ E such that s ><R t. Hence, by Lemma 24, there
exists ground instances sθg, tθg that are not joinable by R. On the other hand, since
R |=ind CP(R0) ∪ (R\R0), we have R |=ind s

.= t by Lemma 26. Hence, by non-redundancy
of R, we have a ground rewrite sequence sθg ↔∗R tθg. Thus, R is not ground confluent. J

Note here the Disprove inference rule should be used with the side condition s ><R t and
not with s ><R0 t. This is a sharp contrast with other inference rules, which are concerned
with R0 (and not with R). The following example illustrates such replacement is incorrect.

FSCD 2017

7:12 Improving Rewriting Induction Approach for Proving Ground Confluence

I Example 28. Let R be as follows:{
b → c (a) c → b (b) b → a (c)

}
Note thatR is ground confluent. Take C = {a, c} andR0 = {(a)}. Then, CP(R0)∪(R\R0) =
{(b), (c)}, and thus, a rewriting induction derivation 〈{(b), (c)}, ∅〉;∗ 〈{c .= a}, ∅〉. Now, c, a
are root-stable in R0 and c 6= a. Hence, c ><R0 a. Thus, if we had replaced the condition
s ><R t with s ><R0 t, we could have derived ⊥.

In [5] a procedure with SPIKE for disproving ground confluence is proposed, but it works
on the assumption that R is terminating; thus, it cannot deal with non-orientable constructor
rules. On the other hand, Theorem 27 can be applied to R having non-orientable constructor
rules.

To end the section, we explain how methods for disproving confluence [1] can be incor-
porated to prove ground non-confluence. The basic idea of disproving confluence is to take
some terms s, t such that s +← ◦ →+ t and show s and t are not joinable. Since such s, t
are obtained by taking forward closure or backward closure of rewrite rules and computing
critical pairs.

In the case of disproving ground confluence we first instantiate s, t with some ground terms.
Thus, we take some 〈sθg, tθg〉 as a candidate. The rest of technique to show non-joinability of
sθg, tθg remain the same. Note we first need to remove redundant rules beforehand, otherwise,
s +← ◦ →+ t may not have ground instantiation, and the non-joinability of sθg, tθg does not
necessarily implies ground non-confluence.

6 Implementation and Experiments

All the techniques presented in this paper have been implemented in our ground confluence
prover AGCP [2]. Our improved procedure is described as follows.

Improved GCR Procedure

Input: many-sorted TRS R
Output: YES, NO or MAYBE

1. Check redundancy of sorts and remove redundant rules (Section 5).
2. Compute (possibly multiple) candidates for the partition F = D] C of function symbols.
3. Select constructor rules from R and construct a constructor subsystem Rc by the rule

instantiation procedure (Section 3).
4. For each f ∈ D, construct multiple candidates of defining rules for f using the rule

complementation procedure (Section 3), and construct R0 from Rc by adding a candidate
for each.

5. Find a reduction quasi-order % satisfying conditions of Theorem 18 for R0 (Section 4). If
it fails try another candidate of defining rules; if the candidates are exhausted, try another
partition F = D]C. Run rewriting induction to obtain 〈CP%(R0)∪(R\R0), ∅〉 ∗; 〈∅, H〉
for some H or 〈CP%(R0) ∪ (R \R0), ∅〉 ∗; ⊥. (Sections 4 and 5). If it succeeds, return
YES or NO accordingly. If the number of rewriting induction steps exceeds a limit, then
try another candidate of defining rules.

6. Run the ground non-confluence check incorporated from the methods for disproving
confluence [1] (Section 5). If it fails, return MAYBE.

T. Aoto et al. 7:13

AGCP (A) FORT (F) ALL A \ ALL F \ ALL
(coco2016) (coco2016)

YES 105 83 140 0 43
NO 0 32 34 0 2
YES+NO 105 115 174 0 45
Table 1 Test on 244 examples of CoCo 2016 GCR demonstration category

Below we explain some details of the procedure and heuristics employed in our imple-
mentation.

We take l→ r ∈ R satisfying F(l)∪F(r) ⊆ C as a constructor rule; those F(l)∪F(r) 6⊆ C
and l(ε) /∈ D are moved to the conjecture part. Succeedingly, Rc is modified by the rule
instantiation procedure in Section 3. For checking ground confluence of Rc, few basic
techniques for checking confluence are employed.
For each f ∈ D, we construct multiple candidates of defining rules for f as follows. Firstly,
from R, we exclude the rules whose lhs is not a linear basic term and those having a
subterm of r that unifies with l, and such rules are moved to the conjecture part; let
the result be S. Then, we try to select minimal subsets of f -rules in S that is strongly
quasi-reducible. If there is no such subset, we perform three ways to supplement rewrite
rules using the rule complementation procedure in Section 3.

If LHS(f,S) is non-empty, a complement pattern of LHS(f,S) is computed and rewrite
rules for the such patterns are added.
If LHS(f,S) is empty, we take basic patterns such as only i-th argument is extended
(i.e. {f(x1, . . . , xi−1, u, xi+1, . . . , xn) | u = c(ȳ), c ∈ C}) and those and all arguments
are extended, and rewrite rules for the such patterns are added.
If there is a rule such that recursive call on the rhs of the rule has an argument, say
u, whose root symbol is a defined symbol, then we seek for rewrite rules l→ r and σ
such that σ = mgu(l, u) and take a rewrite rule for the pattern lσ.

Each of these cases, for each pattern l, we seek for reducts of l within some steps, and
take a term r of minimal size to generate an added rule l→ r.
A reduction quasi-order used in the rewriting induction is selected from recursive path
orders with multiset and lexicographic status. We obtain it by encoding ordering con-
straints expressing that there is at least one candidate of strictly decreasing strongly
quasi-reducible defining rules for each defined function symbol and constructor rules are
weakly decreasing, and solving them using an SMT-solver.
For the marked term t•, we try to remove the mark at the very first steps of the rewriting
induction.
Modify rules is used before applying Simplify or Delete rules—this is a similar heuristics
to the one how weakly decreasing rewrite steps by H↔ are included [2].
We impose a limitation of the length of rewriting induction derivation; when the length
reaches the limit, we seek for a defined symbol, say f , whose defining rules may be a
cause of the divergence by checking the root of innermost basic subterms of rewrite rules
in H-part. We then switch the defining rules for f to the next candidate.

FSCD 2017

7:14 Improving Rewriting Induction Approach for Proving Ground Confluence

redun- RI general comple- instan- non-ori. others totalancy disproof disproof mentation tiation con. rules
YES 2 - - 13 13 4 6 35
NO (34) 6 28 - - - 0 34
Table 2 Analyzing effective techniques in 69 examples from ALL \ A

ACP AGCP ALL
YES 0 13 30
NO 43 0 3
MAYBE 12 42 22
Table 3 Test on new 55 examples

We have tested our prover on the collection of 244 examples that was used in the GCR
demonstration category of Confluence Competition 2016. The collection is contributed by
two participants AGCP [2] and FORT [12] of the category. The result is summarized in
Table 1. Our new prover succeeds in proving ground confluence or non-confluence for 174
problems in total (shown in the column below ALL), where as AGCP and FORT prove 105
and 115, respectively (shown in the columns below AGCP and FORT). The row titled YES
shows the number of success in ground confluence proving and the one titled NO shows the
number of success in ground non-confluence proving. The total increase from AGCP is 65, and
the increase in proving ground confluence is 35 and those in proving ground non-confluence is
34. A \ALL (F \ALL) denotes the number of problems for which A (resp. F) succeeds but
our prover fails. Table 2 shows the analysis on which technique contributes the success in 69
examples in ALL \A. It can be seen that each of presented techniques affects for increasing
the power of the prover. “Other” refers to improvements using more sophisticated strategies
and reduction orderings.

Many problems in the collection of 244 examples of CoCo 2016 GCR demonstration
category stem from problems for confluence of first-order TRSs, and thus it contains many
problems for which confluence of unsorted versions can be proved by the state-of-the-art
confluence provers. This motivates us to construct problems which are non-confluent or for
which confluence proof can not be handled by the state-of-the-art confluence provers. Thus,
we constructed new 55 examples including Examples 3, 4, 9, 13, all of which are non-confluent
(indicated by NO) or can not be handled (indicated by MAYBE) by the confluent prover ACP
[3]. The result is summarized in Table 3. All the details of the experiments are available at
http://www.nue.ie.niigata-u.ac.jp/tools/agcp/experiments/fscd17/.

7 Conclusion

In this paper, we have presented methods that strengthen the rewriting induction approach
for proving ground confluence of many-sorted term rewriting systems. The first method is
concerned with how to replace or supplement initial rewrite rules to obtain an appropriate
set of rewrite rules for rewriting induction work. The second method is concerned with the
non-orientable constructor rules for which the first method can not deal with. For this, we
have extended rewriting induction inference system to deal with weakly decreasing rewrite
rules. Then we obtain a correctness criteria for the ground confluence proving so that one
can deal with non-orientable constructor rules. We believe that our extension provides a
basis for dealing with term rewriting systems acting on more flexible data structures. As

http://www.nue.ie.niigata-u.ac.jp/tools/agcp/experiments/fscd17/

T. Aoto et al. 7:15

the last ingredient, we have presented methods to deal with proving ground non-confluence.
All of these techniques have been implemented and experiments have shown that presented
methods are effective to deal with problems for which state-of-the-art ground confluence
provers can not handle.

Acknowledgements Thanks are due to the anonymous reviewers. This work is partially
supported by JSPS KAKENHI No. 15K00003.

References
1 T. Aoto. Disproving confluence of term rewriting systems by interpretation and ordering.

In Proc. of 9th FroCoS, volume 8152 of LNAI, pages 311–326. Springer-Verlag, 2013.
2 T. Aoto and Y. Toyama. Ground confluence prover based on rewriting induction. In Proc.

of 1st FSCD, volume 52 of LIPIcs, pages 33:1–12. Schloss Dagstuhl, 2016.
3 T. Aoto, Y. Yoshida, and Y. Toyama. Proving confluence of term rewriting systems auto-

matically. In Proc. of 20th RTA, volume 5595 of LNCS, pages 93–102. Springer-Verlag,
2009.

4 K. Becker. Proving ground confluence and inductive validity in constructor based equational
specifications. In Proc. of 4th TAPSOFT, volume 668 of LNCS, pages 46–60. Springer-
Verlag, 1993.

5 A. Bouhoula. Simultaneous checking of completeness and ground conflunce for algebraic
specifications. ACM Transactions on Computational Logic, 10(2):20:1–33, 2009.

6 A. Bouhoula, E. Kounalis, and M. Rusinowitch. Automated mathematical induction.
Journal of Logic and Computation, 5(5):631–668, 1995.

7 N. Dershowitz and U. S. Reddy. Deductive and inductive synthesis of equational programs.
Journal of Symbolic Computation, 15:467–494, 1993.

8 H. Ganzinger. Ground term confluence in parametric conditional equational specifications.
In Proc. of 4th STACS, volume 247 of LNCS, pages 286–298. Springer-Verlag, 1987.

9 R. Göbel. Ground confluence. In Proc. of 2nd RTA, volume 256 of LNCS, pages 156–167.
Springer-Verlag, 1987.

10 D. Kapur, P. Narendran, and H. Zhang. On sufficient-completeness and related properties
of term rewriting systems. Acta Informatica, 24(4):395–415, 1987.

11 A. Lazrek, P. Lescanne, and J. J. Thiel. Tools for proving inductive equalities, relative
completeness, and ω-completeness. Information and Computation, 84:47–70, 1990.

12 F. Rapp and A. Middeldorp. Automating the first-order theory of rewriting for left-linear
right-ground rewrite systems. In Proc. of 1st FSCD, volume 52 of LIPIcs, pages 36:1—-12.
Schloss Dagstuhl, 2016.

13 U. S. Reddy. Term rewriting induction. In Proc. of CADE-10, volume 449 of LNAI, pages
162–177. Springer-Verlag, 1990.

14 S. Shimazu, T. Aoto, and Y. Toyama. Automated lemma generation for rewriting induction
with disproof. JSSST Computer Software, 26(2):41–55, 2009. In Japanese.

15 Terese. Term Rewriting Systems. Cambridge University Press, 2003.
16 V. van Oostrom. Confluence by decreasing diagrams. Theoretical Computer Science,

126(2):259–280, 1994.

A Proof of Lemma 16

We first present a couple of preparations. Elements x and y are convertible below z if
x = x0 ↔ x1 ↔ · · · ↔ xn = y for some x0, . . . , xn such that z � xi (0 ≤ i ≤ n); we write
x↔∗≺z y if x and y are convertible below z.

FSCD 2017

7:16 Improving Rewriting Induction Approach for Proving Ground Confluence

A labelled relation→ =
⋃
i∈L→i is locally decreasing if there exists a well-founded partial

order� on L such that l← ◦ →m ⊆ ↔∗gl ◦ →=
m ◦ ↔∗gl,m ◦ =

l ← ◦ ↔∗gm, where→gl=
⋃
i≺l→i

and →gl,m =→gl ∪→gm. Any locally decreasing relation is confluent [16].

I Lemma 29. Let % be a well-founded quasi-order. Suppose → =→d ∪→e, →d ⊆ � and
→e ⊆ %. Then, → is confluent if the following three conditions are satisfied:
(a) y ≺← x→d z implies y ↔∗≺x z,
(b) y ≈← x→d z implies y →d ◦↔∗≺x z, and
(c) y ←e ◦→e z implies y →=

e ◦ =←e z.

Proof. Consider the source labeling, i.e. the labeling such that each x→ y is labelled with
x. Then, we easily obtain that → is locally decreasing; thus, it is confluent. J

The diamond property (c) in Lemma 29 can be relaxed to the confluence property (c’) as
follows.

I Lemma 30. Let % be a well-founded quasi-order. Suppose → =→d ∪→c, →d ⊆ � and
→c ⊆ %. Then, → is confluent if the following three conditions are satisfied:
(a’) y ≺← x→d z implies y ↔∗≺x z,
(b’) y ≈← x →d z implies y →d ◦↔∗≺x z, and
(c’) →c is confluent.

Proof. Take →∗c as →e and apply Lemma 29. We have →∗c ⊆ %, and the condition (c) in
Lemma 29 is obviously satisfied. We next show (b) in Lemma 29. We show n ≈←c x →d ⊆
→d ◦ ↔∗≺x (n ≥ 0) by induction on n. Let y n ≈←c x

′ ←c x →d z. From (b’) we have
y
n←c x

′ →d u↔∗≺x z for some u. From induction hypothesis, it follows that y →d ◦ ↔∗≺x′
u ↔∗≺x z. As x ≈ x′, we obtain y →d ◦ ↔∗≺x z. Thus, (b) has been proved. We now
show (a) in Lemma 29. Suppose y ≺← x →d z. The case y d← x →d z is clear. Otherwise,
y ∗←c y

′′ ≺←c y
′ ∗ ≈←c x →d z for some y′, y′′. By (b), y ∗←c y

′′ ≺←c y
′ →d ◦ ↔∗≺x z. From

y′ ≈ x, we obtain y ↔∗≺x z. Thus, (a) has been proved. Now, applying Lemma 29, we obtain
that →d ∪

∗→c is confluent. From → ⊆→d ∪→∗c ⊆
∗→, it follows that → is confluent. J

The convertibility below x conditions (a’) and (b’) in Lemma 30 can be replaced with
the bounded convertibility conditions (a”) and (b”) as follows.

I Lemma 31. Let % be a well-founded quasi-order. Suppose → =→d ∪→c, →d ⊆ � and
→c ⊆ %. Then, → is confluent if the following three conditions are satisfied:
(a”) y ≺←◦→d z implies y ↔∗- z,
(b”) y ≈←◦→d z implies y →d ◦↔∗- z, and
(c”) →c is confluent.

Proof. From (a”) and (b”) it is obvious that (a’) and (b’) in Lemma 30 are satisfied. J

Therefore, Lemma 16 follows from Lemma 31 immediately by taking→ =→R,→c =→Rc

and →d =→Rd
.

B Proofs of Theorems 15 and 18

Proof of Theorem 15. Let 〈E0, H0〉 ; 〈E1, H1〉 ; · · · ; 〈Em, Hm〉 with H0 = ∅ and
Em = ∅. Let E∞ =

⋃
iEi. As H0 = ∅, it easily follows Hi ⊆ E∞ from the inference

rules of rewriting induction. We prove the theorem by contradiction. We first introduce

T. Aoto et al. 7:17

a well-founded order on equations s .= t � s′
.= t′ by {s, t} �m {s′, t′}, where �m denotes

the multiset extension of �. Suppose that E0 is not bounded ground convertible. Then
there exists a minimal ground equation sσg

.= tσg that is an instance of s .= t ∈ E∞ and not
bounded convertible. From the minimality of sσg

.= tσg and the strong quasi-reducibility of
R�, σg must be a ground constructor substitution on V(s) ∪ V(t). We prove the following
claim.
Claim. If s .= t ∈ Ek then there exists s′ .= t ∈ Ek+1 and s′σg

.= tσg is a minimal ground
equation that is not bounded convertible.
Proof of Claim. If no inference rule is applied to s .= t in 〈Ek, Hk〉; 〈Ek+1, Hk+1〉, the claim
is obvious. We distinguish four cases by the inference rule applied and show a contradiction
except for (Modify). Note that H ⊆ E∞ in the following cases. Thus if s↔H t for ground
terms s, t then there exist u .= v ∈ E∞ and θg such that s = uθg, t = vθg.

(Expand) We have 〈E]{s .= t}, H〉; 〈E∪{s′i
.= ti}i, {s→ t}∪H〉, where Expd�u (s, t) =

{si → ti}i, u ∈ B(s), and si
%→∗H↔ s′i for each i. Since σg is a ground constructor

substitution, we have sσg →R siθg →Expd�u (s,t) tσg and sσg � siθg for some θg and i.

Thus, sσg →R siθg
%→∗H↔ s′iθg ↔E∞ tσg. Then, for any step ug ↔H vg in siθg

%→∗H↔ s′iθg,
we have sσg � ug, vg, and hence sσg

.= tσg � ug
.= vg. As sσg � s′iθg, sσg

.= tσg �
s′iθg

.= tσg. From the minimality of sσg
.= tσg, it follows that ug

.= vg and s′iθg
.= tσg are

bounded convertible. Thus sσg
.= tσg is bounded convertible; this contradicts the choice

of sσg
.= tσg.

(Simplify) We have 〈E] {s .= t}, H〉; 〈E ∪ {s′ .= t}, H〉 for some E,H, where s �→R∪H
ŝ

%→∗H↔ s′. Then, s �→R∪H ŝ = s1 ↔H s2 ↔H · · · ↔H sk = s′ ↔E∞ t with si % si+1 for
i = 1, . . . , k − 1. We distinguish two cases.
a. Case s �→R ŝ. Then sσg � ŝσg and thus sσg � siσg for i = 1, . . . , k. Hence, we have
sσg

.= tσg � siσg
.= si+1σg for i = 1, . . . , k − 1 and sσg

.= tσg � s′σg
.= tσg. As

siσg
.= si+1σg (i = 1, . . . , k − 1) and s′σg

.= tσg are bounded convertible, sσg
.= tσg is

bounded convertible, contradiction.
b. Case s �→H ŝ. Then s↔E∞ ŝ with s � ŝ and sσg � siσg for all i = 1, . . . , k. Hence, we

have sσg
.= tσg � siσg

.= si+1σg for i = 1, . . . , k−1 and sσg
.= tσg � s′σg

.= tσg. Thus,
siσg

.= si+1σg (i = 1, . . . , k − 1) and s′σg
.= tσg are bounded convertible. By s �→H ŝ,

there exists w → ŵ ∈ H such that s = C[wθ] and ŝ = C[ŵθ] for some context C and
substitution θ. If θg = σg ◦ θ is not a constructor ground substitution on V(w) ∪ V(ŵ),
then sσg = C[wθ]σg = Cσg[wθg]

+→R sρg (or tσg
+→R tρg) for some ground constructor

substitution ρg and sσg
.= tσg � sρg

.= tρg. As sρg
.= tρg is bounded convertible,

it follows that sσg
.= tσg is bounded convertible, contradiction. Thus, suppose that

θg = σg ◦ θ is a constructor ground substitution. As w → ŵ ∈ H, there exists some
p < k such that Expand rule is applied to w .= ŵ ∈ Ep with u ∈ B(w) in 〈Ep, Hp〉;

〈Ep+1, Hp+1〉. Thus, fromHp ⊆ H it follows that wθg →R ◦
%→∗H↔ ◦ ↔E∞ ŵθg. Hence,

sσg = C[wθ]σg = Cσg[wθg] →R wg
%→∗H↔ w′g ↔E∞ Cσg[ŵθg] = C[ŵθ]σg = ŝσg

and sσg � wg. Furthermore, for any step ug ↔H vg in wg
%→∗H↔ w′g, we have

sσg
.= tσg � ug

.= vg. As siσg
.= si+1σg (i = 1, . . . , k − 1), s′σg

.= tσg and ug
.= vg are

bounded convertible, it follows that sσg
.= tσg is bounded convertible, contradiction.

(Modify) We have 〈E] {s .= t}, H〉; 〈E ∪ {s′ .= t}, H〉 for some E,H, where s ≈→R s′.
If s′σg

.= tσg is bounded convertible, it follows that sσg
.= tσg is bounded convertible,

contradiction. Hence s′σg
.= tσg is not bounded convertible. As s ≈ s′, the minimality of

FSCD 2017

7:18 Improving Rewriting Induction Approach for Proving Ground Confluence

s′σg
.= tσg is clear.

(Delete) We have 〈E] {s .= t}, H〉; 〈E,H〉, where s = t or s→H t. From the choice of
sσg

.= tσg, we have s 6= t. Let s→H t and w → ŵ ∈ H such that s = C[wθ], t = C[ŵθ]
for some θ. Then, there exists some p < k such that Expand rule is applied to w .= ŵ ∈ Ep
in 〈Ep, Hp〉; 〈Ep+1, Hp+1〉. Hence, in the same way as the case (Simplify)-b, it is shown
that sσg

.= tσg is bounded convertible, contradiction.

Therefore, Claim holds. From Claim, we easily obtain En 6= ∅ (k ≤ n ≤ m); this contradicts
Em = ∅. J

Proof of Theorem 18. We show the conditions of Lemma 16 are satisfied. To show the
condition (i), suppose ug ←R� ◦ →Rd

vg. If the redexes contracted in the peak ug ←R�
◦ →Rd

vg occur at independent positions or variable overlapping positions then it is trivial.
If the peak is critical overlapping, then by CP(R�,Rd) ⊆ CP%(R) and Theorem 15, we
obtain ug

∗↔R- vg. It remains to show the condition (ii) of Lemma 16, that is, the claim
that if ug ←R≈ ◦ →Rd

vg then ug →Rd
◦ ∗↔R- vg for ground terms ug, vg. If the redexes

contracted in the peak ug ←R≈ ◦ →Rd
vg occur at independent positions, then it is trivial. If

the peak is variable overlapping then from the left-linearity of R� and the variable-preserving
property of R≈, it obviously follows. Suppose that the peak is critical overlapping and
ug = C[sθg], vg = C[tθg], s ̂xt ∈ CP(R≈c ,Rd) or t ̂xs ∈ CP(Rd,R≈c). Then, from
s•

.= t ∈ CP%(R) and 〈CP%(R), ∅〉 ∗; 〈∅, H〉 it follows that Expand, Simplify or Delete
rule is eventually applied to s• .= t. Thus, in a similar way to the proof of Theorem 15 we
obtain that sθg →Rd

◦ ∗↔R- tθg for each applied inference rule. Note here we have s 6= t

by ŝxt ∈ CP(R≈c ,Rd) or t̂xs ∈ CP(Rd,R≈c) as Rd ⊆ �, and thus s• →H t if Delete is
applied. Therefore, ug = C[sθg]→Rd

◦ ∗↔R- C[tθg] = vg.
J

C Proof of Lemma 24

Proof. By induction on |s|.
1. Suppose sθg →∗ ug ∗← tθg. Since s, t /∈ V, sθg(ε) = s(ε) and tθg(ε) = t(ε). By root

stability, sθg(ε) = ug(ε) and tθg(ε) = ug(ε), and thus s(ε) = t(ε). A contradiction to
s(ε) 6= t(ε).

2. Suppose s(ε) = t(ε) /∈ {l(ε) | l → r ∈ R}. Then sθg →∗ s′ implies s|iθg →∗ s′|i, and
tθg →∗ t′ implies t|iθg →∗ t′|i. Thus if sθg →∗ ug ∗← tθg then sθg|i →∗ ug|i ∗← tθg|i.
Thus s|iθg and t|iθg are joinable. On the other hand, by induction hypothesis and our
assumption s|i >< t|i, there exists θg such that s|iθg and t|iθg are not joinable. Hence,
sθg →∗ ug ∗← tθg does not hold.

3. Take an arbitrary ground instantiation tθg of t. If tθg →∗ ug, then take ρg = θg]{s 7→ vg}
and then sρg = vg and ug are not joinable; hence, so are sρg and tρg (= tθg). Next,
suppose otherwise, i.e. tθg 6→∗ ug. Then, take ρg = θg] {s 7→ ug} and then sρg = ug and
tθg (= tθg) are not joinable by the assumption.

4. Take any ground instance tg of t. Since tg(ε) = t(ε) is stable, for any vg such that
tg →∗ vg, we have vg(ε) = t(ε). Let ug be a ground instance of root-table term u of sort
τ . Then ug is root-stable and ug(ε) = u(ε) 6= t(ε) by our assumption. Thus ug →∗ u′g
implies u′g(ε) = ug(ε). Take ρg = θg] {s 7→ ug}. Then sρg = ug →∗ ◦ ∗← tθg implies
ug(ε) = t(ε), which is a contradiction.

J

	Introduction
	Preliminaries
	Rule Complementation and Instantiation
	Relaxing Ordering-Constraints in Rewriting Induction
	Disproving Ground Confluence
	Implementation and Experiments
	Conclusion
	Proof of Lemma 16
	Proofs of Theorems 15 and 18
	Proof of Lemma 24

