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Abstract. The decreasing diagrams technique (van Oostrom, 1994) has
been successfully used to prove confluence of rewrite systems in vari-
ous ways; using rule-labelling (van Oostrom, 2008), it can also be ap-
plied directly to prove confluence of some linear term rewriting systems
(TRSs) automatically. Some efforts for extending the rule-labelling are
known, but non-left-linear TRSs are left beyond the scope. Two methods
for automatically proving confluence of non-(left-)linear TRSs with the
rule-labelling are given. The key idea of our methods is to combine the
decreasing diagrams technique with persistency of confluence (Aoto &
Toyama, 1997).
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1 Introduction

Decreasing diagrams [11] give a characterization of confluence of abstract rewrite
systems; the criterion based on decreasing diagrams can be adapted to prove
confluence of rewrite systems in various ways. In particular, rule-labelling [12]
has been adapted to prove confluence of left-linear TRSs [1, 8, 19] automatically.
A property of TRSs is said to be persistent if the property is preserved under
elimination of sorts [20]. It is shown in [2] that confluence is persistent, that is, if
a many-sorted TRS is confluent on (many-sorted) terms then so is the underlying
unsorted TRS on all (i.e. including ill-sorted) terms.

In this paper, the decreasing diagrams technique and persistency of conflu-
ence are combined to give methods for proving confluence of non-linear TRSs
automatically. For proving confluence of TRSs R, we consider a subsystem Rτ

nl

which is obtained from some many-sorted versionRτ ofR. Based on assumptions
on the subsystem Rτ

nl , we develop two confluence criteria based on decreasing
diagrams with rule-labelling—one of the criteria is based on the assumption
that Rτ

nl is terminating, and the other is based on the assumption that Rτ
nl is

innermost normalizing. These two criteria are incomparable, and the proofs of
the correctness are given independently. Both of the criteria, however, can be
applied to prove confluence of non-left-linear non-terminating TRSs, for which
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no decreasing diagrams technique with rule-labelling has been known and only
few techniques for proving confluence have been known.

The rest of the paper is organized as follows. Section 2 covers preliminaries;
some common notions and notations to be used in Sections 3 and 4 are also
presented. In Section 3, we introduce the class of strongly quasi-linear TRSs and
show a confluence criterion for TRSs in this class. In Section 4, we introduce the
class of quasi-linear TRSs and show a confluence criterion for TRSs in this class.
We also show that these two criteria are incomparable. In Section 5, we report
on an implementation of these criteria in our confluence prover ACP [3] and on
experiments. Related work is also explained in Section 5. Section 6 concludes.

2 Preliminaries

We fix notations assuming basic familiarity with term rewriting [4].
The transitive (reflexive, transitive and reflexive, equivalence) closure of a

relation→ (on a set A) is denoted by
+
→ (

=
→,

∗
→,

∗
↔, respectively). An element a

is a normal form if a→ b for no b; normalizing if a
∗
→ b for some normal form b;

terminating if there exists no infinite sequence a = a0 → a1 → · · · . The relation
→ is normalizing (terminating) if so are all a ∈ A; confluent if

∗
←◦

∗
→ ⊆

∗
→◦

∗
←.

We denote a set of (arity-fixed) function symbols by F , an enumerable set
of variables by V, and the set of terms by T(F ,V). A variable in a term t
is linear if it occurs only once in t, otherwise non-linear. The set of variables
(linear variables, non-linear variables) in t is denoted by V(t) (Vl(t), Vnl(t),
respectively). A term t is ground if V(t) = ∅. A position is a sequence of positive
integers, where ǫ stands for the empty sequence. The set of positions (function
positions, variable positions) of a term t is denoted by Pos(t) (PosF (t), PosV(t),
respectively). We use 6 for the prefix order on positions. Positions p and q are
disjoint (p ‖ q) if p 66 q and q 66 p. The symbol (subterm) of a term t at the
position p is denoted by t(p) (t|p, respectively). The subterm relation is denoted
by ✂; its strict part is by ✁. We write θ : X → T to if the substitution θ satisfies
θ(x) = x for all x ∈ V \ X and θ(x) ∈ T for any x ∈ X. The most general
unifier of s and t is denoted by mgu(s, t). A rewrite rule l → r satisfies l /∈ V
and V(r) ⊆ V(l). Rewrite rules are identified modulo renaming of variables. A
rewrite rule l→ r is linear if l and r are linear. The set of non-linear variables of a
rewrite rule l→ r is given by Vnl(l→ r) = Vnl(l)∪Vnl(r); that of linear variables
is by Vl(l→ r) = V(l) \Vnl(l→ r). A term rewriting system (TRS ) is a set R of
rewrite rules; R is linear if so are all its rewrite rules. A rewrite step s →R t is
written as s→p,l→r,θ t to specify the position p, the rewrite rule l→ r ∈ R and
the substitution θ employed. If s →p,l→r,θ t or s ←p,l→r,θ t, we (ambiguously)
write s↔p,l→r,θ t. If not necessary, subscripts p, l→ r, θ,R will be dropped. The
set of normal forms (w.r.t. the rewrite relation →R) is denoted by NFR(F ,V), or
just NF(F ,V). A TRS R is normalizing (terminating, confluent) if so is→R. We
write s→im t if s→p t is innermost, i.e. any proper subterm of s|p is a normal
form. A term or a TRS is innermost normalizing (innermost terminating) if it
is normalizing (terminating, respectively) w.r.t. →im .
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A conversion γ : s1 ↔l1→r1 s2 ↔l2→r2 · · · ↔ln−1→rn−1
sn is specified as

γ : s1
∗
↔ sn if the detail is not necessary. We put Rules(γ) = {li → ri | 1 ≤

i < n}, or Rules(s1
∗
↔ sn) = {li → ri | 1 ≤ i < n} for brevity. A conversion

t1 ←p1,l1→r1,θ1 s →p2,l2→r2,θ2 t2 is called a peak ; it is a disjoint peak if p1 ‖ p2,
it is a variable peak if p1 = p2.o.q for some o ∈ PosV(l2) and q or the other way
round, it is a overlap peak if p1 = p2.o for some o ∈ PosF (l2) or the other way
round; furthermore, an overlap peak is trivial if p1 = p2 and l1 → r1 = l2 → r2.
For rewrite rules l1 → r1, l2 → r2 ∈ R (w.l.o.g. V(l1)∩V(l2) = ∅), any non-trivial
overlap peak of the form l2[r1]qθ ←q,l1→r1,θ l2θ →ǫ,l2→r2,θ r2θ is called a critical
peak, if q ∈ PosF (l2) and θ = mgu(l1, l2|q). The set of critical peaks of rules
from R is denoted by CP(R).

Decreasing Diagrams. Let ≻ be a partial order on a set L of labels. For α, β ∈ L,
subsets gα,gα∨β ⊆ L are given by gα = {γ ∈ L | γ ≺ α} and gα∨β = {γ ∈
L | γ ≺ α ∨ γ ≺ β}. Let A be a set and →α be a relation on A for each α ∈ L.
We let →ℓ =

⋃

α∈ℓ→α for ℓ ⊆ L. Then the relation →L is said to be locally

decreasing w.r.t. ≻ if, for any α, β ∈ L,←α◦→β ⊆
∗
↔gα◦

=
→β◦

∗
↔gα∨β◦

=
←α◦

∗
↔gβ .

Proposition 2.1 (Confluence by decreasing diagrams [12]). A relation
→L is confluent if it is locally decreasing w.r.t. some well-founded partial order
≻ on L.

In order to apply this proposition for proving the confluence of a TRS R, we
need to set relations→α (α ∈ L) on T(F ,V) such that

⋃

α∈L→α =→R. For this,
we consider a labelling function, say lab, that assigns a label to each rewrite step,
and put s →α t if α = lab(s → t). We say a peak t1 ←α s →β t2 is decreasing

w.r.t. lab (and ≻) if there exists a conversion t1
∗
↔gα ◦

=
→β◦

∗
↔gα∨β◦

=
←α◦

∗
↔gβ tn

(Figure 1). Then, by the proposition, R is confluent if there exist a labelling
function lab such that any peak is decreasing w.r.t. lab.

Persistency. Let S be a set of sorts. A sort assignment τ assigns τ(x) ∈ S
to each variable x ∈ V and τ(f) ∈ Sn+1 to each function symbol f ∈ F of
arity n, in such a way that {x ∈ V | τ(x) = σ} is infinite for any σ ∈ S. Sort
assignment τ induces a many-sorted signature—the set of well-sorted terms is
denoted by T(F ,V)τ . We write tτ to denote t ∈ T(F ,V)τ ; τ(t) = σ if the sort of
t ∈ T(F ,V)τ is σ. A quasi-order & on S is given like this: σ & ρ if there exists
a well-sorted term of sort σ having a subterm of sort ρ.

A sort assignment τ is consistent with a TRS R if (l and r are well-sorted
and) τ(l) = τ(r) for all l → r ∈ R where w.l.o.g. the sets of variables in rewrite
rules are supposed to be mutually disjoint. A sort assignment τ consistent with
a TRS R induces a many-sorted TRS Rτ ; the rewrite relation of Rτ (and hence
the notions of confluence, etc.) is defined on T(F ,V)τ . If no confusion arises,
many-sorted TRSs are called TRSs for simplicity.

Proposition 2.2 (Persistency of confluence [2]). For any sort assignment
τ consistent with R, Rτ is confluent iff R is confluent.
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α

β

∗ gβ

∗

gα

=

β

= α

∗

gα∨β

f(f(x, x), f(x, x)) g(f(x, x))

f(g(x), f(x, x)) f(g(x), g(x)) g(g(x))

r1 (= β)

r1 (= α)

r1 r1

r1

Fig. 1. Decreasing peak and an non-decreasing peak by r1 : f(x, x) → g(x)

2.1 Non-Linear Sorts

We will give confluence criteria based on decreasing diagrams in the following two
sections, one in each of sections; these two criteria are incomparable and their
correctness are proven independently. Some notions, however, are shared—we
introduce these notions in this subsection.

Our confluence criteria based on decreasing diagrams aim at dealing with
non-linear rewrite rules. For this, we extend the rule-labelling [12], which con-
siders a function δ : R → L and labels each rewrite step by lab(s →l→r t) =
δ(l→ r). To show the confluence of a TRS R by decreasing diagrams with only
rule-labelling, R needs to be linear [12, 1]—if a non-linear rewrite rule is con-
tained then one always obtains non-decreasing peaks (Figure 1). Our idea to deal
with such cases is to restrict rewrite rules usable in instantiations of non-linear
variables (of other rewrite rules) by considering well-sorted terms. The set of
rewrite rules usable in instantiations of non-linear variables of rewrite rules in
Uτ is denoted by Uτ

nl and is formally given as below.

Definition 2.3 (non-linear sort, many-sorted TRS Rτ
nl). Let R be a TRS,

τ a sort assignment consistent with R and Uτ ⊆ Rτ . A sort σ ∈ S is said to be
a non-linear sort of Uτ if there exist l → r ∈ Uτ and x ∈ Vnl(l → r) such that
τ(x) = σ. The set of non-linear sorts of Uτ is denoted by Snl(U

τ ). By non-linear
sorts, we mean non-linear sorts of Rτ . We define the set Uτ

nl ⊆ R
τ as

Uτ
nl = {l→ r ∈ Rτ | ∃σ ∈ Snl(U

τ ). τ(l) . σ}.

(Uτ
nl is written as Rτ

nl if we take Uτ = Rτ .) We also put Uτ
l = Rτ \ Uτ

nl .

Clearly, Snl and ()nl are monotone, i.e. Uτ ⊆ T τ implies Snl(U
τ ) ⊆ Snl(T

τ )
and Uτ

nl ⊆ T τ
nl .

Example 2.4. Let S = {0, 1, 2} and

R =

{

(r1) f(x, x)→ f(h(b), h(a)) (r2) h(x)→ k(x, x)
(r3) k(a, b) → h(a) (r4) a → b

}

.

Take a sort assignment τ = {f : 1 × 1 → 2, k : 0 × 0 → 1, h : 0 → 1, a :
0, b : 0} consistent with R. We have Snl({(r1)}) = {1}, Snl({(r2)}) = {0},
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Snl({(r3)}) = Snl({(r4)}) = ∅ and Snl(R
τ ) = {0, 1}. We have Rτ

nl = {(r1)}nl =
{(r2), (r3), (r4)}, {(r2)}nl = {(r4)}, {(r3)}nl = {(r4)}nl = ∅ and R

τ
l = {(r1)}.

Note that any subterm of a term of non-linear sort has non-linear sort. Sim-
ilarly, if s →l→r t and τ(s) ∈ Snl(U

τ ) then l → r ∈ Uτ
nl , and thus, there is no

critical peak of the form t1 ←Rτ

l
◦ →Rτ

nl
t2.

In the next section (Section 3), we will give a confluence criterion that can
be applied if Rτ

nl is terminating. In Section 4, we consider the case that Rτ
nl is

(possibly not terminating but) innermost normalizing.

3 Confluence of Strongly Quasi-Linear TRSs

In this section, we give a confluence criterion based on the decreasing diagrams
and strong quasi-linearity, a notion for many-sorted TRSs given as follows.

Definition 3.1 (strongly quasi-linear). A many-sorted TRS Rτ is strongly
quasi-linear if the many-sorted TRS Rτ

nl is terminating.

Clearly, if Rτ is strongly quasi-linear, any (well-sorted) term of non-linear
sort is terminating. Note that any (well-sorted) term is terminating w.r.t. Rτ

nl .
For strongly quasi-linear TRSs, the following labelling function is considered.

Definition 3.2 (labelling for strongly quasi-linear TRS). Let Rτ be a
strongly quasi-linear TRS.

1. Let L be a set and > a well-founded partial order on it. We consider the set
L ∪ T(F ∪ V)τ as the set of labels.

2. We define a relation ≻ on L ∪ T(F ∪ V)τ as follows: α ≻ β if either (i)
α, β ∈ L and α > β, (ii) α ∈ L and β ∈ T(F ,V)τ , or (iii) α, β ∈ T(F ,V)τ

and α
+
→Rτ

nl
β.

3. Let δ : Rτ
l → L. The labelling function labδ from the rewrite steps of Rτ to

L ∪ T(F ∪ V)τ is given like this:

labδ(s→l→r t) =

{

δ(l→ r) if l→ r ∈ Rτ
l

s if l→ r ∈ Rτ
nl

The labelling given like labδ(s→ t) = s is called source-labelling [12]. Thus,
our labelling is a combination of the rule-labelling and the source-labelling1.

In the rest of this section, we assume that τ is a sort assignment consistent
with R and that Rτ is strongly quasi-linear. Furthermore, we suppose a set L
of labels with a well-founded partial order > and δ : Rτ

l → L are fixed.
The next lemma is an immediate corollary of well-foundedness of the partial

order > on L and the termination of Rτ
nl .

Lemma 3.3. The relation ≻ on L ∪ T(F ,V)τ is a well-founded partial order.

1 A similar idea has been adapted in Theorem 5 of [12].
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It is trivial to show that disjoint peaks are decreasing. The proof that variable
peaks are decreasing is straightforward but interesting, as it reveals why our
choice of the labelling function matters (and other variations do not work).

Lemma 3.4. Any disjoint peak is decreasing w.r.t. labδ.

Lemma 3.5. Any variable peak is decreasing w.r.t. labδ.

Thus, it remains to show that overlap peaks are decreasing, but this does
not hold in general. We reduce decreasingness of overlap peaks to that of crit-
ical peaks, where decreasingness of critical peaks is guaranteed by a sufficient
criterion, which we introduce below.

ǫ
v2

v1

α Rτ

nl

β(= α)

Rτ

nl

∗ Rτ

nl

∗

Rτ

nl

(i)

ǫ
v2

v1

(ii)

α Rτ

l

β

Rτ

l ∗ gβ

∗

gα

=

β

= α

∗

gα∨β

ǫ
v2

v1

(iii)

α Rτ

nl

β

Rτ

l

∗ gβ

∗

Rτ

nl
=

β

Fig. 2. Hierarchically decreasing critical peaks

Definition 3.6 (hierarchical decreasingness). Any critical peak v1 ←l1→r1

◦ →l2→r2 v2 is said to be hierarchically decreasing w.r.t. δ and > if either one
of the following conditions (i)–(iii) holds (Figure 2):

(i) l1 → r1, l2 → r2 ∈ R
τ
nl and v1

∗
→ ◦

∗
← v2 (and hence v1

∗
→Rτ

nl
◦

∗
←Rτ

nl
v2).

(ii) l1 → r1, l2 → r2 ∈ R
τ
l and v1

∗
↔gα ◦

=
→β ◦

∗
↔gα∨β ◦

=
←α ◦

∗
↔gβ v2 and

(iii) l1 → r1 ∈ R
τ
nl , l2 → r2 ∈ R

τ
l and v1

∗
→Rτ

nl
◦

=
→β ◦

∗
↔gβ v2,

where α = δ(l1 → r1) and β = δ(l2 → r2). A many-sorted TRS Rτ is said to be
hierarchically decreasing (w.r.t. δ and >) if so are all critical peaks of Rτ .

Note that the remaining case, i.e. the case of l1 → r1 ∈ R
τ
l and l2 → r2 ∈ R

τ
nl

needs not be considered (see a remark below Example 2.4). It may look the
conditions (i) and (iii) can be obtained by reducing the decreasingness by using
the fact that any label of rewrite steps of Rτ

nl is smaller than any label of rewrite
steps of Rτ

l , but this is not true; in fact, these conditions are weaker than what
are possible according to the definition of decreasingness.

The following properties are used to reduce the decreasingness of overlap
peaks to that of critical peaks. For a rewrite step γ : s→l→r t, a context C and
a substitution θ, we put C[γθ] : C[sθ]→l→r C[tθ] ([19]).
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Lemma 3.7. Let γ, γ′ be rewrite steps of Rτ , C a context, θ a substitution and
∝ ∈ {=,≺}. If labδ(γ) ∝ labδ(γ

′) then labδ(C[γθ]) ∝ labδ(C[γ′θ]).

Lemma 3.8. If Rτ is hierarchically decreasing w.r.t. δ, then any overlap peak
is decreasing w.r.t. labδ.

Proof. It follows from the definition of hierarchical decreasingness that any crit-
ical peak is decreasing. Then the claim follows using Lemma 3.7. ⊓⊔

Now we arrive at the main theorem of this section.

Theorem 3.9 (confluence of strongly quasi-linear TRSs). If Rτ is strongly
quasi-linear and hierarchically decreasing, then R is confluent.

Proof. Every peak is decreasing w.r.t. labδ by Lemmas 3.4, 3.5 and 3.8. Thus,
the claim follows from Propositions 2.1 and 2.2. ⊓⊔

Example 3.10. Let

R =







(r1) f(x, h(x))→ f(h(x), h(x)) (r2) f(x, k(y, z))→ f(h(y), h(y))
(r3) h(x) → k(x, x) (r4) k(a, a) → h(b)
(r5) a → b







We consider S = L = N and the standard relation> on N. Take a sort assignment
τ = {f : 0× 0→ 1, k : 0× 0→ 0, h : 0→ 0, a : 0, b : 0} consistent with R. Then
Snl(R

τ ) = {0} and Rτ
nl = {(r3), (r4), (r5)} is terminating. Thus Rτ is strongly

quasi-linear. Take δ = {(r1) 7→ 0, (r2) 7→ 0} : Rτ
l → N. We have

CP(R) =















(cp1) f(x, k(x, x))←(r3) f(x, h(x))→(r1) f(h(x), h(x))
(cp2) f(x, h(b))←(r4) f(x, k(a, a))→(r2) f(h(a), h(a))
(cp3) k(b, a)←(r5) k(a, a)→(r4) h(b)
(cp4) k(a, b)←(r5) k(a, a)→(r4) h(b)















.

We now check that every critical peak is hierarchically decreasing.

– (cp1) We have (r3) ∈ Rτ
nl , (r1) ∈ R

τ
l and δ((r1)) = 0. Thus f(x, k(x, x))←Rτ

nl

◦ →0 f(h(x), h(x)). Since f(x, k(x, x))→0 f(h(x), h(x)), the condition (iii) of
hierarchical decreasingness holds.

– (cp2) We have (r4) ∈ Rτ
nl (r2) ∈ Rτ

l and δ((r2)) = 0. f(x, h(b)) ←Rτ

nl

◦ →0 f(h(a), h(a)). Since f(x, h(b)) →Rτ

nl
f(x, k(b, b)) →0 f(h(b), h(b)) ←Rτ

nl

f(h(a), h(b))←Rτ

nl
f(h(a), h(a)), the condition (iii) of hierarchical decreasing-

ness holds.

– (cp3), (cp4) We have (r4), (r5) ∈ Rτ
nl . It is easy to check the condition (i)

of hierarchical decreasingness holds.

Thus, every critical peak is hierarchically decreasing. Hence, by Theorem 3.9, it
follows that R is confluent.
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4 Confluence of Quasi-Linear TRSs

In this section, we give a confluence criterion based on the decreasing diagrams
and quasi-linearity, a notion for many-sorted TRSs obtained by replacing “ter-
mination of Rτ

nl” of strong quasi-linearity by “innermost normalization of Rτ
nl .”

Definition 4.1 (quasi-linear). A many-sorted TRS Rτ is quasi-linear if the
many-sorted TRS Rτ

nl is innermost normalizing.

Clearly, strongly quasi-linear (many-sorted) TRSs are quasi-linear but not
vice versa.

To deal with non-linear TRSs, we here introduce a many-sorted linear TRS
Rτ

nf , which is obtained by instantiating non-linear variables by ground normal
forms. We will give a translation from a quasi-linear TRS Rτ to a many-sorted
TRS Rτ

nf with infinite number of linear rewrite rules. Then we show that con-
fluence of Rτ

nf implies that of Rτ .
We will distinguish object terms to be rewritten and rewrite rules. To deal

with confluence, variables in object terms can always be regarded as constants.
Thus, consider constants cx corresponding to each variable x, and let CV =
{cx | x ∈ V}. Now, we consider the set T(F ∪ CV) as the set of object terms
to be rewritten. Suppose t ∈ T(F ,V) and V(t) = {x1, . . . , xn}. Let tc be the
term in T(F ∪ CV) obtained by replacing each xi with cxi

(1 ≤ i ≤ n). Then
s →R t iff sc →R tc. Hence R is confluent on T(F ,V) iff R is confluent on
T(F ∪CV). Similarly, by extending sort assignment τ by τ(cx) = τ(x), it follows
that Rτ is confluent on T(F ,V)τ iff Rτ is confluent on T(F ∪CV)

τ . Henceforth,
let NF(F ∪ CV)

τ be the set of normal forms from T(F ∪ CV)
τ (w.r.t. →Rτ ).

Definition 4.2 (linearization of quasi-linear TRSs). Let Rτ be a quasi-
linear TRS. For Uτ ⊆ Rτ , we define a many-sorted TRS Uτ

nf by

Uτ
nf =

⋃

l→r∈Uτ

{lθ̂ → rθ̂ | θ̂ : Vnl(l→ r)→ NF(F ∪ CV)
τ}.

(Uτ
nf is written as Rτ

nf if we take Uτ = Rτ .) We write a rewrite rule of Uτ
nf as

lθ̂ → rθ̂, for brevity, to denote l→ r ∈ Uτ and θ̂ : Vnl(l→ r)→ NF(F ∪ CV)
τ .

Example 4.3. Let S = {0, 1, 2} and

R =
{

(r1) f(x, x, y)→ f(x, g(x), y) (r2) f(x, y, z)→ h(a)
}

.

Take a sort assignment τ = {f : 0 × 0 × 1 → 2, g : 0 → 0, h : 0 → 2, a : 0}
consistent with R. Since Vnl(r1) = {x} and Vnl(r2) = ∅, we obtain Rτ

nf =
{f(s, s, y)→ f(s, g(s), y) | s ∈ NF(F ∪ CV)

τ , τ(s) = 0} ∪ {f(x, y, z)→ h(a)}.

It is clear that Rτ
nf is a linear TRS, as all non-linear variables of rewrite rules

are instantiated by ground terms. Since there are infinitely many instantiations
of each rewrite rule, Rτ

nf has infinitely many numbers of rewrite rules.
In the rest of this section, we assume that τ is a sort assignment consistent

with R and that Rτ is quasi-linear. We also abbreviate →Rτ and →Rτ

nf
by →

and →
nf

, respectively. The next lemma is used to show Lemma 4.5.
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Lemma 4.4. Suppose s
∗
→im t and let Uτ = Rules(s

∗
→im t). Then s

∗
→Uτ

nf
t.

Lemma 4.5. Let l → r ∈ Rτ and Uτ = {l → r}nl . Then, →l→r ⊆
∗
→Uτ

nf
◦

→{l→r}nf
◦

∗
←Uτ

nf
on T(F ∪ CV)

τ .

A corollary of the previous lemma is the following sufficient criterion of con-
fluence of Rτ in terms of Rτ

nf , on which our analysis will be based.

Lemma 4.6. A quasi-linear TRS Rτ is confluent on T(F ∪ CV)
τ if so is its

linearization Rτ
nf .

Proof. The claim easily follows from →
nf

⊆ → ⊆
∗
↔
nf

, which holds by Lemma 4.5

and the definition of Rτ
nf . ⊓⊔

The next lemma is used to analyze overlap peaks of Rτ
nf by those of Rτ .

Lemma 4.7. Let v1 ←l1θ̂1→r1θ̂1
◦ →

l2θ̂2→r2θ̂2
v2 be a critical peak of Rτ

nf . Then
there exist a critical peak u1 ←l1→r1 ◦ →l2→r2 u2 of Rτ and a substitution θ
such that uiθ = vi ( i = 1, 2).

We note the converse of Lemma 4.7 does not hold in general.
Let L stand for the set of labels and ≻ be a well-founded partial order on L.

Definition 4.8 (labelling on Rτ
nf ). Let lab : Rτ → L. We extend2 lab to a

function Rτ
nf → L by lab(lθ̂ → rθ̂) = lab(l → r). Furthermore, we label the

rewrite steps s→
lθ̂→rθ̂

t of Rτ
nf by lab(lθ̂ → rθ̂).

In the following, we assume some lab : Rτ → L is fixed. Let ℓ (literally)
stands for α or α ∨ β (α, β ∈ L). For any Uτ ⊆ Rτ , we write Uτ ≺ ℓ (Uτ

nf ≺ ℓ)
if lab(l → r) ≺ ℓ for all l → r ∈ Uτ (l → r ∈ Uτ

nf , respectively). Note Uτ ≺ ℓ iff
Uτ
nf ≺ ℓ for any Uτ ⊆ Rτ . Let Rulesnl(γ) = (Rules(γ))nl for any conversion γ.
The next technical lemma, to be used in our key lemma (Lemma 4.11), is an

immediate consequence of Lemma 4.5.

Lemma 4.9. Let γ : s
∗
↔gℓ s

′ =
→β t be a conversion on T(F∪CV)

τ . If Rulesnl(γ) ≺

ℓ then s
∗
↔
nf

gℓ ŝ
=
→
nf

β t̂
∗
←
nf

gℓ t on T(F ∪ CV)
τ . Furthermore, s′ = t implies ŝ = t̂.

Definition 4.10 (linearized-decreasingness). Any critical peak v1 ←α ◦ →β

v2 of Rτ is said to be linearized-decreasing w.r.t. lab : Rτ → L and ≻ if there
exists a conversion

v1
∗
↔gα ◦

=
→β u1

∗
↔gα∨β u2

=
←α ◦

∗
↔gβ v2

on T(F ,V)τ such that the following conditions (i)–(iii) are satisfied (Figure 3):

2 Thus, strictly speaking, lθ̂ → rθ̂ should be considered as 〈l → r, θ̂〉, to distinguish
common instances of different rewrite rules.
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ǫ
v2

v1

α

β

∗ gβ

∗

gα

=

β

= α

∗

gα∨β

Rulesnl ≺ α

Rulesnl ≺ α∨β

Rulesnl ≺ β

Fig. 3. linearized-decreasing critical peak

(i) Rulesnl(v1
∗
↔gα ◦

=
→β u1)) ≺ α,

(ii) Rulesnl(u1
∗
↔gα∨β u2) ≺ α ∨ β, and

(iii) Rulesnl(u2
=
←α ◦

∗
↔gβ v2) ≺ β.

A many-sorted TRS Rτ is said to be linearized-decreasing (w.r.t. lab and ≻) if
so are all critical peaks of Rτ .

Lemma 4.11. Let Rτ be a quasi-linear and linearized-decreasing TRS. Let w1 ←α

◦ →β w2 be a critical peak of Rτ
nf and w1θ, w2θ ∈ T(F ∪ CV)

τ . Then, w1θ
∗
↔
nf

gα

◦
=
→
nf

β ◦
∗
↔
nf

gα∨β ◦
=
←
nf

α ◦
∗
↔
nf

gβ w2θ on T(F ∪ CV)
τ .

Proof. Let w1 ←l1θ̂1→r1θ̂1
◦ →

l2θ̂2→r2θ̂2
w2. Then, by Lemma 4.7, there exists

critical peak v1 ←l1→r1 ◦ →l2→r2 v2 such that w1 = v1θ
′ and w2 = v2θ

′ for some
θ′. Then, by the definition of labelling of rewrite steps of Rτ

nf , we have v1 ←α

◦ →β v2. Thus, by assumption, there exists a conversion v1
∗
↔gα ◦

=
→β u1

∗
↔gα∨β

u2
=
←α ◦

∗
↔gβ v2 on T(F ,V)τ satisfying conditions (i)–(iii) of Definition 4.10.

Now, apply the substitution θ ◦ θ′ to this conversion to obtain

w1θ = v1θ
′θ

∗
↔gα ◦

=
→β u1θ

′θ
∗
↔gα∨β u2θ

′θ
=
←α ◦

∗
↔gβ v2θ

′θ = w2θ.

Here, w.l.o.g. one can extend θ with x 7→ cx so that this conversion is on T(F ∪
CV)

τ . Furthermore, conditions (i)–(iii) of Definition 4.10 imply

(i′) Rulesnl(v1θ
′θ

∗
↔gα ◦

=
→β u1θ

′θ) ≺ α,

(ii′) Rulesnl(u1θ
′θ

∗
↔gα∨β u2θ

′θ) ≺ α ∨ β, and

(iii′) Rulesnl(u2θ
′θ

=
←α ◦

∗
↔gβ v2θ

′θ) ≺ β.

Then, by Lemma 4.9, v1θ
′θ

∗
↔
nf

gα ◦
=
→
nf

β ◦
∗
←
nf

gα u1θ
′θ

∗
↔
nf

gα∨β u2θ
′θ

∗
→
nf

gβ ◦
=
←
nf

α

◦
∗
↔
nf

gβ v2θ
′θ on T(F ∪ CV)

τ . As ←
nf

gα,→
nf

gβ ⊆ ↔
nf

gα∨β , the claim follows. ⊓⊔

Lemma 4.12. Let Rτ be a quasi-linear and linearized-decreasing TRS. Then
→
nf

on T(F ∪ CV)
τ is locally decreasing.
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Proof. The claim follows easily for disjoint peaks. The case for variable peaks
follows also easily, as Rτ

nf is linear. The case for trivial overlap peaks are obvious.
The case for non-trivial overlap peaks follows from Lemma 4.11. ⊓⊔

Theorem 4.13 (confluence of quasi-linear TRSs). If Rτ is quasi-linear
and linearized-decreasing then R is confluent.

Proof. Use Lemmas 4.6 and 4.12 and Propositions 2.1 and 2.2. ⊓⊔

Example 4.14. Let

R =

{

(r1) f(x, y)→ f(g(x), g(x)) (r2) f(g(x), x)→ f(x, g(x))
(r3) g(x) → h(x) (r4) h(g(x)) → g(g(x))

}

We consider S = L = N and the standard relation> on N. Take a sort assignment
τ = {f : 0× 0→ 1, g : 0→ 0, h : 0→ 0} consistent with R. We have Snl(R

τ ) =
{0} and Rτ

nl = {(r3), (r4)} is innermost normalizing. Thus Rτ is quasi-linear.
We have

CP(R) =















(cp1) f(h(x), x)←(r3) f(g(x), x)→(r2) f(x, g(x))
(cp2) h(h(x))←(r3) h(g(x))→(r4) g(g(x))
(cp3) f(x, g(x))←(r2) f(g(x), x)→(r1) f(g(g(x)), g(g(x)))
(cp3′) f(g(g(x)), g(g(x)))←(r1) f(g(x), x)→(r2) f(x, g(x))















.

Take lab = {(r1) 7→ 2, (r2) 7→ 3, (r3) 7→ 0, (r4) 7→ 1} : R → N.

– (cp1) We have γ1 : f(h(x), x) →(r1) f(g(h(x)), g(h(x))) ←(r1) f(h(x), g(x)) =
γ2 : f(h(x), g(x)) ←(r3) f(g(x), g(x)) ←(r1) f(x, g(x)), and Rulesnl(γ1) =
{(r3), (r4)} ≺ 0 ∨ 3 and Rulesnl(γ2) = {(r3), (r4)} ≺ 3. Thus the critical
peak is linearized-decreasing.

– (cp2) We have γ : h(h(x))←(r3) g(h(x))←(r3) g(g(x)), and Rulesnl(γ) = ∅.
Thus the critical peak is linearized-decreasing.

– (cp3) We have γ : f(x, g(x)) →(r1) f(g(x), g(x)) →(r1) f(g(g(x)), g(g(x)))
Since Rulesnl(γ) = {(r3), (r4)} ≺ 2, the critical peak is linearized-decreasing.
The case (cp3′) follows similarly.

Hence, by Theorem 4.13, it follows that R is confluent.

We now remark that Theorems 3.9 and 4.13 are incomparable. First, R in
Example 4.14 is not strongly quasi-linear, as Rτ

nl is not terminating. Thus, The-
orem 3.9 is not subsumed by Theorem 4.13. In the next example, we show that
Theorem 4.13 is not subsumed by Theorem 3.9.

Example 4.15. Let us consider R in Example 3.10. First note that {(r1)}nl =
{(r2)}nl = {(r3)}nl = {(r3), (r4), (r5)}. We consider conversions for the critical
peak (cp2): v1 = f(x, h(b)) ←(r4) f(x, k(a, a)) →(r2) f(h(a), h(a)) = v2. It is easy

to see x
∗
↔ t implies x = t for any t. From this, it follows that the conversion

has the form v1
∗
↔ w1 →(r2) w2

∗
↔ v2. We now consider decreasing conversion

v1
∗
↔glab(r4) ◦

=
→lab(r2) u1

∗
↔glab(r4)∨lab(r2) u2

=
←lab(r4) u3

∗
↔glab(r2) v2 and

distinguish cases by in which part of this conversion the rewrite step w1 →(r2) w2

is involved.
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– Case w1 → w2 is in v1
∗
↔glab(r4) ◦

=
→lab(r2) u1. Then by (r4) ∈ {(r2)}nl, one

requires lab(r4) ≺ lab(r4), which is impossible.

– Case w1 → w2 is in u1
∗
↔glab(r4)∨lab(r2) u2. Then one needs lab(r2) ≺

lab(r4) ∨ lab(r2) and lab(r4) ≺ lab(r4) ∨ lab(r2). This is again impossible.
– Case w1 → w2 is in u2

=
←lab(r4) u3. This is impossible because of the direction

of the rewrite steps does not coincide.
– Case w1 → w2 is in u3

∗
↔glab(r2) v2. Then one needs lab(r2) ≺ lab(r2),

which is impossible.

Thus, the critical peak (cp2) is not linearized-decreasing.

Relations between Theorem 4.13 and Theorem 3.9 for some particular classes
of TRSs follow. For non-overlapping TRSs, Theorem 4.13 is strictly subsumed by
Theorem 3.9. For linear TRSs, Theorem 4.13 and Theorem 3.9 (and the original
rule-labelling) are equivalent.

Finally, we note that one can generally include linear rules to Rτ
nl in Theo-

rem 3.9, and then Knuth-Bendix’s criterion is obtained from Theorem 3.9. This
is, however, not surprising as it is known that Knuth-Bendix’s criterion can be
given by decreasing diagrams with the source-labelling (Example 12 of [12]).

5 Implementation, Experiments and Related Work

The confluence criteria of the paper have been implemented in the confluence
prover ACP [3]. We straightforwardly adapt techniques for automating decreasing
diagrams based on rule-labelling [1, 8]. We use SML/NJ [13] for the implemen-
tation language and the constraint solver Yices [5] to check the satisfiability of
constraints encoding existence of a labelling function satisfying our criteria.

Some heuristics and approximation employed in our implementation follow.
To construct many-sorted TRS Rτ from an unsorted TRS R, it suffices to com-
pute sort assignment τ consistent with R. In practice, its enough to choose
such a sort assignment that maximally distinct sorts, in order to maximize the
applicability of the criteria. This can be done by first assigning fresh sorts for
each sort declarations of function symbols and for variables, and then solving
the constraint on these sorts that arises from the requirement that lhs and rhs
of each rewrite rule are well-sorted terms having the same sort. To check the
quasi-linearity of TRSs, one has to check innermost normalization of TRSs. To
the best of our knowledge, no works concentrated on proving innermost nor-
malization are known; thus, the check is approximated by checking innermost
termination. To check decreasing diagram criteria, one has to find, for each criti-
cal peak v1 ← u→ v2, some conversions v1

∗
↔ v2 that are used as the candidates

for v1
∗
↔gα ◦

=
→β u1

∗
↔gα∨β u2

=
←α ◦

∗
↔gβ v2. For this, our implementation

uses sets of conversions v1
<4
→R↔ ◦

<4
←R↔ v2 as the sets of candidates, where

R↔ = R ∪ {r → l | l → r ∈ R, r /∈ V,V(l) ⊆ V(r)} [8] and s
<4
→ t means s

∗
→ t

in less than four rewrite steps. Then applicability of the criterion for all possible
choice of u1, u2 in these sequences is encoded in a constraint [1].
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Table 1. Experiments with the state-of-art confluence provers

ACP CSI Saigawa Thm. 3.9 Thm. 4.13 Thm. 3.9&4.13

Example 3.10 × × × X × X

Example 4.14 × × × × X X

9 examples from [14] 8 1 1 9 9 9
11 new examples 0 0 0 9 10 11

In [14], a critical pair criterion for quasi-left-linear TRSs have been given.
The main differences between quasi-left-linear TRSs and quasi-linear TRSs are
that (1) the former considers only non-linear variables on lhs of the rewrite rules
while the latter considers non-linear variables on lhs or rhs of the rewrite rules,
and (2) in the the former, Rτ

nf is obtained by instantiating all variables of non-
left-linear sorts, while in the latter Rτ

nf is obtained by instantiating non-linear
variables. We have adapted decreasing diagrams with rule-labelling for proving
confluence of Rτ

nf but in [14] critical pair criteria for left-linear TRSs (e.g. [9,
15]) are applied.

We now report on experiments for the collection of 9 examples from [14],
and 11 new examples constructed in the course of experiments, including Exam-
ples 3.10 and 4.14. These are all non-left-linear and non-terminating TRSs. Tests
are performed on a PC with one 2.50GHz CPU and 4G memory; the timeout is
set to 60 seconds. For comparison with the state-of-art confluence provers, ACP
(ver. 0.41) [3], CSI (ver. 0.4.1) [18] and Saigawa (ver. 1.5) [7] are used. The sum-
mary of experiments is shown in Table 1. For examples, X denotes success and
× denotes failure. Examples 3.10 and 4.14 are solved by none of the state-of-art
confluence provers. For the collections, the number of successes is shown. ACP
implements the technique given in [14], and thus can solve all examples but the
last one which has been left open for automated confluence proving in [14]. Both
of our new criteria prove this last example from [14]. All provers fail at solving
all our new examples. Hence, in particular, the technique of [14] is not effective
for all of our new examples. The difference of Thm. 3.9 and Thm. 4.13 appears
on only few examples. In particular, Example 3.10 is only solved by the criterion
of Thm. 3.9, and Example 4.14 is only solved by the criterion of Thm. 4.13.

Next we discuss other related work. In [1, 12, 19], the rule-labelling is extended
to (non-linear) left-linear TRSs, where the one in latest [19] subsumes those in
the others. This technique essentially depends on the path information to the
duplicating variables in the rewrite rules to ensure the decreasingness of variable
peaks. In [10], a criterion for proving confluence of non-left-linear TRSs using
relative termination has been developed, whose correctness is proved based on
the decreasing diagrams with source-labelling. This criterion essentially requires
termination of R1 relative to R2 to show the confluence of R = R1∪R2. Several
other confluence criteria applicable for non-left-linear TRSs have been developed
in [6, 17]; these criteria require some restrictions on the form of rewrite rules. All
of these criteria are incomparable with the techniques developed in the present
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Table 2. Experiments of confluence criteria for non-left-linear non-terminating TRSs

Criterion (or tool) 42 Cops 10 Cops

Thm. 3.9 13 1
Thm. 4.13 12 1

Criterion for quasi-left-linear TRSs [14] (in ACP) 9 0
Criterion for weight-decreasing TRSs [6] (in ACP) 13 0
Criterion for simple-right-linear TRSs [17] (in ACP) 1 0
Saigawa (including [10]) 12 0

paper is witnessed in Table 1, as (the automatizable parts of) these techniques
have been involved in some of the confluence provers ACP, CSI and Saigawa.

Next we compare strength of confluence criteria for non-terminating non-left-
linear TRSs experimentally. For this, we use two collections of non-terminating
non-left-linear problems from Cops (Confluence Problems) database: (i) the col-
lection of 42 problems from CoCo 2013 that are not solved as ‘non confluent’
by any tool, and (ii) the collection of 10 problems from CoCo 2013 that are not
solved by any tool. The criterion of [10] is approximated by Saigawa (Saigawa
does not facilitate to choose a single technique employed). For other criteria,
ACP is adapted to single out each criterion. In Table 2, the numbers of successes
for each criterion are shown. We observe that the problems in CoCo 2013 do not
differentiate strength of most of techniques very much. We note the current im-
plementation of the technique of [17] in ACP is not very elaborated. The problem
that is not solved in any provers in CoCo 2013 but solved by our new criteria is
the last example from [14] mentioned before.

The collection of new examples and details of the experiments are available on
the webpage http://www.nue.riec.tohoku.ac.jp/tools/acp/experiments/

rtatlca14/all.html.
In this paper, sort constraint is used to limit instantiations of non-linear

variables of rewrite rules. Imposing such limitation more abstractly leads to
the framework of membership conditional rewriting systems and a confluence
criterion for such systems [16].

6 Conclusion

We have presented two criteria for confluence of TRSs R based on decreasing
diagrams with rule-labelling and persistency: (1) Rτ is strongly quasi-linear and
hierarchically decreasing, and (2) Rτ is quasi-linear and linearized-decreasing.
We have also shown that these criteria are incomparable. These criteria are par-
ticularly useful for proving non-linear TRSs confluent, including non-terminating
non-left-linear TRSs for which only few confluence criteria have been known. Our
criteria have been implemented in the confluence prover ACP. We have shown
that our criteria are successfully used in confluence provers for proving confluence
of TRSs for which none of the state-of-art confluence provers succeed.
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