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Abstract. Chiba et al. (2005) proposed a framework of program trans-
formation by template based on term rewriting in which correctness
of the transformation is verified automatically. This paper describes
RAPT (Rewriting-based Automated Program Transformation system)
which implements this framework.

1 Introduction

Chiba et al. [4] proposed a framework of program transformation by template
based on term rewriting in which correctness of the transformation is verified
automatically. In their framework, programs and program schemas are given by
term rewriting systems (TRS, for short) and TRS patterns. A program trans-
formation template consists of input and output TRS patterns and a hypothesis
which is a set of equations the input TRS has to satisfy to guarantee the cor-
rectness of transformation.

This paper describes RAPT (Rewriting-based Automated Program Transfor-
mation system) which implements this framework. RAPT transforms a many-
sorted TRS according to a specified program transformation template. Based
on the rewriting induction proposed by Reddy [14], RAPT automatically verifies
whether the input TRS satisfies the hypothesis of the transformation template.
It also verifies conditions imposed to the input TRS and generated TRS by
utilizing standard techniques in term rewriting. Thus, presupposing the program
transformation template is developed [4], the correctness of the transformation is
automatically verified so that the transformation keeps the relationship between
initial ground terms and their normal forms.

2 Transformation by templates

Let P be a set of (arity-fixed) pattern variables (disjoint from the set F of
function symbols and the set V of variables). A pattern is a term with pattern
variables. A TRS pattern P is a set of rewriting rules over patterns. A hypoth-

esis H is a set of equations over patterns. A transformation template (or just
template) is a triple 〈P ,P ′,H〉 of two TRS patterns P , P ′ and a hypothesis H.



The following template 〈P ,P ′,H〉 describes a well-known transformation
from the recursive form to the iterative (tail-recursive) form:

P















f(a) → b

f(c(u, v)) → g(e(u), f(v))
g(b, u) → u

g(d(u, v), w) → d(u, g(v, w))

P ′























f(u) → f1(u, b)
f1(a, u) → u

f1(c(u, v), w) → f1(v, g(w, e(u)))
g(b, u) → u

g(d(u, v), w) → d(u, g(v, w))

H

{

g(b, u) ≈ g(u, b)
g(g(u, v), w) ≈ g(u, g(v, w))

Here, the symbols f, a, b, g, . . . are pattern variables.
To achieve the program transformation by templates, we need a mechanism

to specify how a template is applied to a concrete TRS. For this we use a notion
of term homomorphism [4]. If we match the TRS pattern P to a concrete TRS
R with a term homomorphism ϕ, we obtain a generated TRS R′ by applying
ϕ to the TRS pattern P ′ (Figure 1). A matching algorithm to find all (most
general) term homomorphisms ϕ satisfying R = ϕ(P) from a given TRS R and
a TRS pattern P is presented in [4].

R P

template

R′ P ′

ϕ

matching

ϕ

instantiation

Fig. 1. TRS transformation

Definition 1 ([4]). Let 〈P ,P ′,H〉 be a template. A TRS R is transformed into
R′ by 〈P ,P ′,H〉 if there exists a term homomorphism ϕ such that R = ϕ(P)
and R′ = ϕ(P ′).

The following TRS Rsum computes the summation of a list using a recursive
call.

Rsum















sum([ ]) → 0

sum(x : y) → +(x, sum(y))
+(0, x) → x

+(s(x), y) → s(+(x, y))
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The following term homomorphism ϕ is used to transform the TRS Rsum.

ϕ =















f 7→ sum(�1), b 7→ 0,

g 7→ +(�1, �2), c 7→ �1:�2,

f1 7→ sum1(�1, �2), d 7→ s(�2),
a 7→ [ ], e 7→ �1















Applying ϕ to P ′, we get the following output TRS R′

sum.

R′

sum























sum(x) → sum1(x, 0)
sum1([ ], x) → x

sum1(x : y, z) → sum1(y, +(z, x))
+(0, x) → x

+(s(x), y) → s(+(x, y))

R′

sum computes the summation of a list more efficiently without the recursion.

3 Design of RAPT

We assume that the set F of function symbols is divided into disjoint two sets:
the set Fd of defined function symbols and the set Fc of constructor symbols.
The following is a sufficient condition to guarantee the correctness of the trans-
formation from a TRS R on G to a TRS R′ on G ′ by a template 〈P ,P ′,H〉
through a term homomorphism ϕ (Theorem 2 of [4]):

– R is a left-linear confluent constructor system,
– 〈P ,P ′,H〉 is a developed template,
– ϕ is a CS-homomorphism,
– equations in ϕ(H) are inductive consequences of R for G ,
– R is sufficiently complete for G , and
– R′ is sufficiently complete for G ′,

where Fc ⊆ G , G ′ ⊆ F .
A key property of our framework is sufficient completeness, which has to be

satisfied by input and output TRSs [4]. Sufficient completeness is checked in
RAPT by the decidable necessary and sufficient condition for terminating TRSs
[9, 11], and thus currently the target of program transformation by RAPT is
limited to terminating TRSs. A simple procedure to check confluence is also
available for terminating TRSs [1].

RAPT uses rewriting induction [14], in which termination plays an essential
role, to verify that the instantiated hypotheses of transformation template are
inductive consequences of the input TRS. Since RAPT handles only terminating
TRSs, rewriting induction is integrated keeping the whole system simple. Other
inductive proving methods [2, 5] also can be possibly incorporated.

For the termination checking, RAPT detects a possible compatible precedence
for the lexicographic path ordering (LPO) [1]. The obtained reduction ordering
is used as a basis of rewriting induction. Other methods to verify termination of
TRSs [1] may well be incorporated.
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4 Implementation

4.1 Specification of input TRS and transformation template

FUNCTIONS

sum: List -> Nat;

cons: Nat * List -> List;

nil: List;

+: Nat * Nat -> Nat;

s: Nat -> Nat;

0: Nat

RULES

sum(nil()) -> 0();

sum(cons(x,ys)) -> +(x,sum(ys));

+(0(), x) -> x;

+(s(x),y) -> s(+(x,y))

INPUT

?f(?a()) -> ?b();

?f(?c(u,v)) -> ?g(?e(u),?f(v));

?g(?b(),u) -> u;

?g(?d(u,v),w) -> ?d(u,?g(v,w))

OUTPUT

?f(u) -> ?f1(u,?b());

?f1(?a(),u) -> u;

?f1(?c(u,v),w) -> ?f1(v,?g(w,?e(u)));

?g(?b(),u) -> u;

?g(?d(u,v),w) -> ?d(u,?g(v,w))

HYPOTHESIS

?g(?b(),u) = ?g(u,?b());

?g(?g(u,v),w) = ?g(u,?g(v,w))

Fig. 2. Specification of input TRS and transformation template

Inputs of RAPT are a many-sorted TRS and a transformation template. The
input TRS is specified by the following sections.

1. FUNCTIONS: function symbols with sort declaration.
2. RULES: rewrite rules over many-sorted terms.

The transformation template 〈P ,P ′,H〉 is specified by the following sections.

1. INPUT: rewrite rules of P over patterns,
2. OUTPUT: rewrite rules of P ′ over patterns,
3. HYPOTHESIS: equations of H over patterns.

Figure 2 shows the many-sorted TRS Rsum and the template 〈P , P ′, H〉 which
appear in Section 2 prepared as an input to RAPT: rules, equations and sort
declarations are separated by ”;”; pattern variables are preceded by ”?”; and to
distinguish variables from constants, the latter are followed by ”()” .

4.2 Implementation details

RAPT is implemented using SML/NJ. The source code of RAPT consists of about
5,000 lines.
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The TRS transformation and the verification of its correctness are conducted
in RAPT in 6 phases. In Figure 3, we describe these phases and dependencies
among each phases. Solid arrows represent data flow and dotted arrows explain
how information obtained in each phase is used.

R

P ′P

Validation of
Input TRS

Precedence
Detection

TRS Pattern
Matching

Instantiation

R′

Proving Confluence and
Sufficient Completeness 5

Verification of HypothesisH 5

Validation of Output TRSSort

Output
Fig. 3. Overview of RAPT

If these 6 phases are successfully passed then RAPT produces output TRSs.
The correctness of the transformation is guaranteed, provided the transformation
template is developed. RAPT can also report summaries of program transforma-
tion in a readable format (Figure 4).

We now explain operations of each phases briefly.

1. Validation of input TRS In this phase, RAPT checks whether the input
TRS is left-linear and well-typed, and from rewrite rules divides function symbols
into defined function symbols and constructor symbols and checks whether the
input TRS is a constructor system. The information of function symbols will be
used in Phases 3 and 4.

2. Precedence detection In this phase, RAPT checks the input TRS is termi-
nating by LPO and (if it is the case) detects a precedence. The suitable prece-
dence (if there exists one) for LPO is computed based on the LPO constraint
solving algorithm described in [7].

3. Proving confluence and sufficient completeness In this phase, RAPT

proves whether the input TRS is confluent and sufficiently complete. This makes
use of the information of constructor symbols detected at Phase 1 and the fact
that the input TRS is left-linear and terminating verified at Phases 1 and 2,
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Summary of Program Transformation
reported by RAPT

February 21, 2006

Transformation Template:

P



f(a) → b

f(c(u, v)) → g(e(u, v), f(v))

P ′

8

<

:

f(u) → f1(u, b)
f1(a, u) → u

f1(c(u, v), w) → f1(v, g(w, e(u, v)))

H

8

<

:

g(b, u) ≈ u

g(u, b) ≈ u

g(g(u, v), w) ≈ g(u, g(v, w))

Input TRS:

R

8

>

>

<

>

>

:

rev(nil) → nil

rev(cons(x, ys)) → app(rev(ys), cons(x, nil))
app(nil, x) → x

app(cons(x, y), z) → cons(x, app(y, z))

Termination of R is checked by LPO with the precedence {rev > app, rev >

nil, rev > cons, app > cons}. The set of critical pairs of R is {}.

A solution of matching (CS-homomorphisms):

ϕ =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

b 7→ nil

a 7→ nil

e 7→ cons(�1, nil)
g 7→ app(�2, �1)
c 7→ cons(�1, �2)
f 7→ rev(�1)

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

The instantiation of hypothesis:

ϕ(H)

8

<

:

app(u, nil) ≈ u

app(nil, u) ≈ u

app(w, app(v, u)) ≈ app(app(w, v), u)

Output TRS:

R′

8

>

>

>

>

<

>

>

>

>

:

rev(u) → f1(u, nil)
f1(nil, u) → u

f1(cons(u, v), w) → f1(v, cons(u, w))
app(nil, x) → x

app(cons(x, y), z) → cons(x, app(y, z))

Fig. 4. Example of a program transformation report
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respectively. For confluence, it is checked whether all critical pairs are joinable.
For sufficient completeness, quasi-reducibility of the TRS is checked; this part
is based on the (many-sorted extension of) complement algorithm introduced in
[10] that computes the complement of a substitution.

Fig. 5. Snapshot of TRS pattern matching

4. TRS pattern matching In this phase, RAPT finds a combination of rewrite
rules to apply the transformation and the term homomorphism which instanti-
ates the input pattern TRS to these rewrite rules; the matching algorithm in [4]
is used in this part. Using information of function symbols detected in Phase 1, it
is also checked whether this term homomorphism is a CS-homomorphism. Pat-
tern matching of rewrite rules are carried out in order, and use the information
of matching solutions to limit next rewrite rules to perform the pattern match.
Since solving the patten matching of main function usually gives information
which subfunctions are used in sequel, this heuristics performs the TRS match-
ing relatively well. Visually, consider the case when P = {pi(x) → pi−1(x) | 1 ≤
i ≤ 9}∪{p0(x) → a} and R = {fi(x) → fi−1(x) | 1 ≤ i ≤ 9}∪{f0(x) → 0} where
the number of all possible combinations of rewrite rules becomes 10! = 3, 628, 800
while the number of matching performed becomes

∑10
i=0 i = 55.

5. Verification of hypothesis In this phase, RAPT checks whether the input
TRS satisfies the hypothesis part of the template. This is done by (1) instan-
tiating the hypotheses through the term homomorphism found at Phase 4 and
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(2) proving they are inductive consequences of the input TRS, using rewriting
induction. The latter uses LPO with the precedence detected at Phase 2.

6. Validation of output TRS In this phase, RAPT checks whether the output
TRS is (1) terminating, (2) left-linear, (3) type consistent, and (4) sufficiently
complete. In (3), because the pattern TRS P ′ for the output may contain a
pattern variable not occurring in the pattern TRS P for the input, types may
be unknown for some of function symbols in R′. Therefore, we need to infer the
type information together with the type consistency check. (4) is proved based
on the fact the output TRS is terminating which is verified at (1) using LPO.

Table 1. Experimental result

Template I TRSs Template II TRSs
8

<

:

f(a) → b
f(c(u, v)) → g(e(u), f(v))
g(b, u) → u

g(d(u, v), w) → d(u, g(v, w))

9

=

;

,

8

>

<

>

:

f(u) → f1(u, b)
f1(a, u) → u

f1(c(u, v), w) → f1(v, g(w, e(u)))
g(b, u) → u

g(d(u, v), w) → d(u, g(v, w))

9

>

=

>

;

,

n

g(b, u) ≈ g(u, b)
g(g(u, v), w) ≈ g(u, g(v, w))

o

3

8

<

:

f(a) → b
f(c(u, v)) → g(f(v), e(u))
g(b, u) → u

g(d(u, v), w) → d(u, g(v, w))

9

=

;

,

8

>

<

>

:

f(u) → f1(u, b)
f1(a, u) → u

f1(c(u, v), w) → f1(v, g(e(u), w))
g(b, u) → u

g(d(u, v), w) → d(u, g(v, w))

9

>

=

>

;

,

n

g(b, u) ≈ g(u, b)
g(g(u, v), w) ≈ g(u, g(v, w))

o

3

Template III TRSs Template IV TRSs

n

f(a) → b

f(c(u, v)) → g(e(u, v), f(v))

o

,

(

f(u) → f1(u, b)
f1(a, u) → u

f1(c(u, v), w) → f1(v, g(w, e(u, v)))

)

,

(

g(b, u) ≈ u

g(u, b) ≈ u

g(g(u, v), w) ≈ g(u, g(v, w))

)

11

8

>

<

>

:

f(x, y, z) → g(h(x, y), z)
g(a, y) → b(u)
g(c(x, y), z) → e(x, g(y, z))
h(a, y) → r(y)
h(c(x, y), z) → c(d(x), h(y, z))

9

>

=

>

;

,

8

>

>

>

<

>

>

>

:

f(a, y, z) → g(r(y), z)
f(c(x, y), z, w) → e(d(x), f(y, z, w))
g(a, y) → b(u)
g(c(x, y), z) → e(x, g(y, z))
h(a, y) → r(y)
h(c(x, y), z) → c(d(x), h(y, z))

9

>

>

>

=

>

>

>

;

,

{}

8

5 Experiments

We have checked operations of RAPT using several templates. Table 1 describes
some of transformation templates and numbers of TRSs succeeded in transfor-
mation by each template. Template I is the one which appears in Section 2. This
template represents a well-known transformation from recursive programs to it-
erative programs. A same kind of transformation is also described by Template
II. The main difference between Template I and II is the right-hand side of sec-
ond rule of input parts. In our experiments, there exist TRSs which cannot be
transformed by one of these templates but can be done by the other. Template
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III is the one which overcomes this difference; unchanged rewrite rules of input
and output TRS patterns are removed and rewrite rules which are necessary to
develop the template are pushed into the hypothesis. Template IV represents
another transformation known as fusion or deforestation [16]. RAPT performs
transformations of these examples in less than 100 msec.

6 Concluding remarks

Program transformation techniques have been widely investigated in various
fields [3, 12, 13, 16]. This paper describes the system RAPT, which implements
the program transformation based on term rewriting introduced in [4]. RAPT

transforms a term rewriting system according to a specified program transfor-
mation template and automatically verifies correctness of the transformation.
We have described the design and implementation of RAPT. An experimental
result for several templates has been shown.

Another framework of program transformation by templates is the one based
on lambda calculus [6, 8, 15]. MAG system [6, 15] is a program transformation
system based on this framework. MAG supports transformations which include
modification of expressions, matching with a help of hypothesis; its target also
includes higher-order programs. RAPT does not handle such refinements, and
cannot deal with most of transformations appearing in [15]. The advantage of
RAPT against MAG lies on the approach to the verification of hypothesis. Since
the correctness of transformation by MAG system is based on Huet and Lang’s
original framework [8], users are usually need to verify the hypothesis. In con-
trast, RAPT proves the hypothesis automatically without help of users.

Besides the limitation of the theoretical framework, several limitations are
imposed in the current implementation of RAPT:

– RAPT handles only terminating TRSs. In fact, termination of input and
output TRSs are not required in the theoretical framework on which RAPT

is based. The main reason to limit its target to terminating TRSs is to reduce
checking of sufficient completeness to that of quasi-reducibility, which can
be easily verified.

– RAPT allows only confluent TRSs for input. Theoretically, not confluence
but ground confluence is sufficient. Replacing confluence checking by ground
confluence checking might enlarge the scope of input programs.

– RAPT implements only a naive rewriting induction. Thus, incorporating
lemma discovery mechanism and other inductive theorem proving methods
may largely enhance the power of inductive theorem proving. Since verifi-
cation of the hypothesis of template is an important part of the correctness
verification, enhancing this part will increase the flexibility of the program
transformation.

Extending RAPT to make more flexible transformation possible remains as a
future work.
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