
RAPT: A Program Transformation System based

on Term Rewriting

Yuki Chiba, Takahito Aoto, and Yoshihito Toyama

Research Institute of Electrical Communication, Tohoku University, Japan
{chiba, aoto, toyama}@nue.riec.tohoku.ac.jp

Abstract. Chiba et al. (2005) proposed a framework of program trans-
formation by template and automated verification of its correctness based
on term rewriting. This paper describes a design and implementation
of RAPT which implements this framework. RAPT transforms a term
rewriting system according to a specified program transformation tem-
plate. Presupposing the program transformation template is developed,
the correctness of the transformation is automatically verified so that
the transformation keeps the relationship between initial ground terms
and their normal forms.

1 Introduction

Chiba et al. [1] proposed a framework of program transformation by template
and automated verification of its correctness based on term rewriting. In their
framework, programs and program schemas are given by term rewriting systems
(TRS, for short) and TRS patterns. A program transformation template consists
of input and output TRS patterns and a hypothesis which is a set of equations
the input TRS has to satisfy to guarantee the correctness of transformation. To
automate the program transformation, they introduced a notion of term pattern
matching problem and presented a sound and complete algorithm that solves
this problem.

We say a program transformation is correct when the input and output pro-
grams of the transformation are equivalent. To formalize the equality of pro-
grams, they have defined the equivalence of two TRSs by that of relationships
between ground terms and constructor ground terms. They introduced a notion
of developed templates and a simple method to construct such templates without
explicit use of induction. They then showed that in any program transformation
by developed templates the correctness of the transformation is guaranteed if (1)
the instantiation of hypothesis are inductive consequences of the input TRS, and
(2) the input and the output TRSs satisfy some properties such as confluence
and sufficient completeness.

This paper describes a design and implementation of RAPT (Rewriting-based
Automated Program Transformation system) which implements this framework.
RAPT transforms a TRS according to a specified program transformation tem-
plate. Based on the rewriting induction proposed by Reddy [8], RAPT auto-
matically verifies whether the input TRS satisfies the hypothesis of the trans-
formation template. It also verifies conditions imposed to the input TRS and
generated TRS by utilizing standard techniques in term rewriting. Thus, pre-
supposing the program transformation template is developed, the correctness of
the transformation is automatically verified so that the transformation keeps the
relationship between initial ground terms and their normal forms.

The rest of the paper is organized as follows. In the next section, we give
some motivating examples of program transformation by templates based on
term rewriting. In Section 3, we explain some backgrounds needed to understand
what RAPT performs. In Section 4, we describe an overview of RAPT and phases
of RAPT. For each of these phases, we explain the algorithm and heuristics
employed in Section 5. In Section 6, we present a way to polish transformation
templates. We conclude our work in Section 7.

2 Transformation by templates

In this section, we describe a framework of program transformation by template
based on term rewriting through some motivating examples.

Example 1. A program that computes the summation of a list is specified by
the following TRS Rsum, in which the natural numbers 0, 1, 2, . . . are expressed
as 0, s(0), s(s(0)),

Rsum

sum([]) → 0

sum(x : y) → +(x, sum(y))
+(0, x) → x
+(s(x), y) → s(+(x, y))

This Rsum computes the summation of a list using a recursive call. For instance,
sum(1 : (2 : (3 : (4 : (5 : [])))

∗
→Rsum

+(1, +(2, +(3, +(4, +(5, sum([]))))
∗
→Rsum

15.
Using the well-known transformation from the recursive form to the iterative

(tail-recursive) form, the following different TRS R′
sum

for the list summation
program is obtained:

R′
sum

sum(x) → sum1(x, 0)
sum1([], x) → x
sum1(x : y, z)→ sum1(y, +(z, x))
+(0, x) → x
+(s(x), y) → s(+(x, y))

R′
sum

computes the summation of a list more efficiently without the recursion.
The equality of the two programs is shown using the associativity of the function
+ and the property +(0, n) = +(n, 0).

Example 2. Let us consider another example of program transformation. A pro-
gram that computes the concatenation of a list of lists is specified by the following
TRS Rcat.

Rcat

cat([]) → []
cat(x : y) → app(x, cat(y))
app([], x) → x
app(x : y, z)→ x : app(y, z)

For example, we have cat([[1, 2], [3], [4, 5]])
∗
→Rcat

[1, 2, 3, 4, 5]. Similarly to the
Example 1, the transformation from the recursive form to the iterative form
gives a more efficient TRS R′

cat
as follows.

R′
cat

cat(x) → cat1(x, [])
cat1([], x) → x
cat1(x : y, z)→ cat1(y, app(z, x))
app([], x) → x
app(x : y, z) → x : app(y, z)

2

Note that the associativity of the function app and the property app([], as) =
app(as, []) hold. Thus the equality of the two programs is shown similarly.

Example 3. One easily observes that these two transformations in the previous
examples can be generalized to a more abstract “transformation template”: the
TRS pattern P

P

f(a) → b

f(c(u, v)) → g(e(u), f(v))
g(b, u) → u
g(d(u, v), w)→ d(u, g(v, w))

is transformed to the TRS pattern P ′

P ′

f(u) → f1(u, b)
f1(a, u) → u
f1(c(u, v), w)→ f1(v, g(w, e(u)))
g(b, u) → u
g(d(u, v), w) → d(u, g(v, w))

All the function symbols f, a, b, g, . . . occurring in the TRS patterns P and P ′

are pattern variables. If we match the TRS pattern P to a concrete TRS R
with an instantiation for these pattern variables, we obtain a more efficient TRS
R′ by applying this instantiation to the pattern P ′. The equality of R and
R′ is guaranteed when the instantiation satisfies the following equations, called
hypothesis :

H

{

g(b, u) ≈ g(u, b)
g(g(u, v), w) ≈ g(u, g(v, w))

3 Backgrounds

In this section, we recall some notions and results of [1] needed to understand
what RAPT performs. The framework in [1] is based on unsorted TRSs. But as
commented and discussed in Section 6 of [1], the framework is easily adapted to
many-sorted TRSs; we rather should deal with many-sorted TRSs to discuss the
correctness of transformation that models realistic programs.

3.1 Many-sorted TRS and its equivalence

Intuitively, a program transformation from one program to another is correct if
these programs compute the same result for any input data. So, to discuss the
correctness of TRS transformations, we need a notion of equivalence of TRSs.
In this subsection, we introduce a notion of equivalence of TRSs that suits to
model the correctness of program transformation. Before that, let us introduce
some basic notions of many-sorted TRSs and fix some notations.

Let S be a set of sorts. Let F , V be sets of many-sorted functions and
variables over S . The set T (F , V)τ of many-sorted terms of τ is defined like
this: (1) If a variable x has a sort τ then x ∈ T (F , V)τ . (2) If a function symbol
f has a sort τ1 × · · · × τn → τ and t1, . . . , tn are many-sorted terms of sorts
τ1, . . . , τn, respectively, then f(t1, . . . , tn) ∈ T (F , V)τ . The set T (F , V) of all
well-sorted terms is given by T (F , V) =

⋃

τ∈S
T (F , V)τ . The set of variables

occurring in t is denoted by V (t). T (F) stands for the set of ground terms i.e.
terms t satisfying V (t) = ∅. The many-sorted term rewriting system (many-
sorted TRS, for short) is a set of many-sorted rewrite rules l → r, where l, r are

3

terms of the same sort satisfying l /∈ V and V (r) ⊆ V (l). For a set of function
symbols G ⊆ F , we say a many-sorted TRS R is over G when any function
symbol of R is included in G .

A substitution is a mapping from V to T (F , V) that preserves sort. A sub-
stitution is uniquely extended to the endomorphism on T (F , V). The rewrite
relation →R of a many-sorted term rewriting system R is the smallest relation
on T (F , V) satisfying (1) l→R r for all l → r ∈ R, (2) s→R t implies θ(s)→R

θ(t) for any substitution θ, and (3) s →R t implies f(u1, . . . , s, . . . , un) →R

f(u1, . . . , t, . . . , un) for any f ∈ F and u1, . . . , un ∈ T (F , V). The reflexive

transitive closure of→R is denoted by
∗
→R. A many-sorted term t is in a normal

form of R when there exists no term s such that t→R s.
We assume that the set F of function symbols is divided into disjoint two

sets: the set Fd of defined function symbols and the set Fc of constructor sym-
bols. Terms in T (Fc, V) are called constructor terms. A many-sorted TRS is a
constructor system when for any l → r ∈ R, l = f(l1, . . . , ln) for some defined
function symbol f ∈ Fd and constructor terms l1, . . . , ln. Later, we will limit
our target of TRS transformation to constructor systems.

Example 4. Let us consider R in Example 1. We set S = { Nat, List }, Fd =

{sumList→Nat, +Nat×Nat→Nat}, Fc = {0Nat, sNat→Nat, []List, :Nat×List→List}.
Then R is a many-sorted constructor system.

Definition 1 (equivalence of many-sorted TRSs). Let G be a set of func-
tion symbols such that Fc ⊆ G ⊆ F . Two many-sorted TRSs R and R′ are said
to be equivalent for G (denoted as R 'G R′) if for any ground term s ∈ T (G)

and ground constructor term t ∈ T (Fc), s
∗
→R t iff s

∗
→R′ t holds.

In a program transformation from R to R′, one can not generally expect
s

∗
→R t iff s

∗
→R′ t for all ground terms s ∈ T (F) and ground constructor term

t ∈ T (Fc); for, one TRS may use some subfunctions that the other may not
have. This is why the equivalence of TRSs is defined with respect to a set G

of function symbols. Intuitively, functions in G are those originally requested to
compute by the TRSs in comparison.

Example 5. Let us consider R and R′ in Example 1. Then sum1([], s(0)) →R′

s(0) ∈ T (Fc), but sum1([], s(0)) is in a normal form of R, because R has no
rewrite rules for sum1. Thus R 6'G R′ for any G containing sum1. Rather, one
should consider the equivalence of these TRSs by setting G = {sum, +, :, [], s, 0};
indeed, in that case one can prove R 'G R′.

3.2 TRS transformation

We now briefly describe how TRS transformation by template is formalized in
our framework. We refer to [1] for all omitted definitions.

Let P be a set of pattern variables (disjoint from F and V) where each
pattern variable p ∈ P has its arity. A pattern is an unsorted term in T (F ∪
P , V) (for f ∈ F , the arity is inherited from the sort specification). A TRS
pattern P is a set of rewriting rules over patterns. A hypothesis H is a set of
equations over patterns. A transformation template (or just template) is a triple
〈P ,P ′,H〉 of two TRS patterns P , P ′ and a hypothesis H.

To achieve the program transformation by templates, we need a mechanism
to specify how a template is applied to a concrete many-sorted TRS. For this
we use a notion of term homomorphism, a variation of tree homomorphism [2].

4

Definition 2 ([1]). Let 〈P ,P ′,H〉 be a template. A TRS R is transformed into
R′ by 〈P ,P ′,H〉 if there exists a term homomorphism ϕ such that R = ϕ(P)
and R′ = ϕ(P ′).

This definition is adapted to many-sorted TRS in the obvious way.
A matching algorithm to find all (most general) term homomorphisms ϕ

satisfying R = ϕ(P) from a given TRS R and a TRS pattern P is presented
in [1]. This algorithm is used to transform a many-sorted TRS R based on a
template 〈P ,P ′,H〉: for an input of a TRSR and a template 〈P ,P ′,H〉, compute
a term homomorphism ϕ from R and P satisfying R = ϕ(P) and then output
the instantiation R′ = ϕ(P ′) (Figure 1).

R P

template

R′ P ′

ϕ

matching

ϕ

instantiation

Fig. 1. TRS transformation

The hypothesis H is needed to discuss the correctness of the transformation.

Example 6. Let R, R′ be the TRSs in Example 1, and 〈P ,P ′,H〉 the template
given in Example 3. Then the following term homomorphism ϕ is used to trans-
form R into R′.

ϕ =

f 7→ sum(�1), b 7→ 0,
g 7→ +(�1, �2), c 7→ �1:�2,
f1 7→ sum1(�1, �2), d 7→ s(�2),
a 7→ [], e 7→ �1

Thus the TRS R is transformed into R′ by 〈P ,P ′,H〉.

3.3 Correctness of transformation

The correctness of a TRS transformation is formalized using the notion of equiv-
alence of TRSs.

Definition 3. Let G and G ′ be sets of function symbols such that Fc ⊆ G , G ′

⊆ F . Let R be a many-sorted TRS over G and R′ a many-sorted TRS over G ′.
A transformation from R to R′ is correct if R 'G∩G ′ R′.

We say 〈P ,P ′,H〉 is developed if there exists an equivalent transformation
[1] P ⇒ P ′ under H. The following is a sufficient condition to guarantee the
correctness of the transformation from R to R′ by a template 〈P ,P ′,H〉 through
a term homomorphism ϕ (Theorem 2 of [1]):

– R is a left-linear confluent constructor system,
– 〈P ,P ′,H〉 is a developed template,
– ϕ is a CS-homomorphism,
– equations in ϕ(H) are inductive consequences of R for G , and

5

– R is sufficiently complete for G ,

– R′ is sufficiently complete for G ′.

We note that many-sorted TRSs that model functional programs are usu-
ally left-linear constructor systems. We refer to [1] the notion of the developed
template and how they are developed manually. RAPT assumes templates are
developed beforehand and will be given as an input. All other conditions are
verified by RAPT automatically. We note that not all conditions are decidable,
and some are solved recursively by imposing a limitation and some are checked
via (theoretically-proved) sufficient conditions. Since the basis of the correctness
proof of [1] is the inductionless induction, confluence and sufficient completeness
play essential roles to establish the result above.

4 Design of RAPT

RAPT transforms a many-sorted term rewriting system according to a specified
program transformation template. Inputs of RAPT is a many-sorted TRS and a
transformation template. The input TRS is specified by the following sections:

1. FUNCTIONS section which is a list of function symbols with sort declaration,

2. RULES section which is a list of rewrite rules over many-sorted terms.

The transformation template 〈P ,P ′,H〉 is specified by the following sections:

1. INPUT section which is a list of rewrite rules of P over patterns,

2. OUTPUT section which is a list of rewrite rules of P ′ over patterns,

3. HYPOTHESIS section which is a list of equations of H over patterns.

Figure 2 shows the many-sorted TRS Rsum in Example 1 and the template 〈P ,
P ′, H〉 in Example 3 prepared as an input to RAPT: rules and sort declarations
are separated by ”;”; pattern variables are preceded by ”?”; and to distinguish
variables from constants, the latter are followed by ”()” .

The first design choice of the system is to employ the rewriting induction
[8] for inductive proving method which is used to verify whether the input TRS
satisfies the hypothesis of transformation template. The second choice of the sys-
tem is to restrict the input and output TRSs to be compatible with a reduction
ordering. The termination of the input/output TRS is not a theoretical require-
ment. But to make the rewriting induction to work, we need a reduction ordering
compatible with the input TRS. Also, once termination had been proved, there
are effective procedures to prove confluence and sufficient completeness (for left-
linear TRSs). Thus, by this choice, we can keep the design of the whole system
very simple.

The TRS transformation and the verification of its correctness are conducted
in RAPT by the following 6 phases:

1. Validation of Input TRS,

2. Precedence Detection,

3. Proving Confluence and Sufficient Completeness,

4. TRS Pattern Matching,

5. Verification of Hypothesis,

6. Validation of the Output TRS.

6

FUNCTIONS

sum: List -> Nat;

cons: Nat * List -> List;

nil: List;

+: Nat * Nat -> Nat;

s: Nat -> Nat;

0: Nat

RULES

sum(nil()) -> 0();

sum(cons(x,ys)) -> +(x,sum(ys));

+(0(), x) -> x;

+(s(x),y) -> s(+(x,y))

INPUT

?f(?a()) -> ?b();

?f(?c(u,v)) -> ?g(?e(u),?f(v));

?g(?b(),u) -> u;

?g(?d(u,v),w) -> ?d(u,?g(v,w))

OUTPUT

?f(u) -> ?f1(u,?b());

?f1(?a(),u) -> u;

?f1(?c(u,v),w) -> ?f1(v,?g(w,?e(u)));

?g(?b(),u) -> u;

?g(?d(u,v),w) -> ?d(u,?g(v,w))

HYPOTHESIS

?g(?b(),u) = ?g(u,?b());

?g(?g(u,v),w) = ?g(u,?g(v,w))

Fig. 2. Specification of input TRS and transformation template

In Figure 3, we describe dependencies between each phases. Solid arrows repre-
sent data flow and dotted arrows represent where informations obtained in each
phase are used. If these 6 phases are successfully passed then RAPT produces
output TRSs. The correctness of the transformation is guaranteed in the sense
of Definition 3, provided that the template is developed. The following is the
output of RAPT for the input of Figure 2:

++

Output TRS(s)

++

{ [sum(u) -> f1(u, 0()),

f1(nil(), u) -> u,

f1(cons(u, v), w) -> f1(v, +(w, u)),

+(0(), u) -> u,

+(s(v), w) -> s(+(v, w))]}

Note that, there may be more than one valid transformations; in that case,
RAPT produces all valid output TRSs.

5 Inside of RAPT

In this section, we explain inside of the each phase of RAPT.

5.1 Validation of input TRS

In this phase, RAPT checks whether the input TRS is left-linear and well-typed,
and from rewrite rules divides function symbols into defined function symbols
and constructor symbols and checks whether the input TRS is a constructor
system. The latter information will be used in Phases 3 and 4.

7

R

P ′P

Validation of
Input TRS

Precedence
Detection

TRS Pattern
Matching

Instantiation

R′

Proving Confluence and
Sufficient Completeness 5

Verification of HypothesisH 5

Validation of Output TRSSort

Output
Fig. 3. Overview of RAPT

5.2 Precedence detection

In this phase, RAPT checks the input TRS is terminating by the lexicographic
path ordering (LPO) [6] and (if it is the case) detects a precedence. We need
not only to verify termination of the TRS but to find a reduction order used to
prove inductive properties of the TRS. Although there may be a choice between
which reduction orders to use, currently only the reduction order by the LPO is
supported. The suitable precedence (if there exists one) for the LPO is computed
based on the LPO constraint solving algorithm described in [4].

**

Phase 2 (Precedence Detection)

**

++ SN Check..........

The set of precedences is

[{(cons > +), (cons > s), (cons > sum), (+ > s), (nil > 0)},
{(sum > +), (sum > s), (+ > s), (nil > 0)},
{(cons > +), (cons > s), (cons > sum), (+ > s), (cons > 0),

(sum > 0)},
{(sum > +), (sum > s), (+ > s), (sum > 0)}]
O.K.

******** Phase 2 End ********

5.3 Proving confluence and sufficient completeness

In this phase, RAPT proves whether the input TRS is confluent and sufficiently
complete.This makes use of the information of constructor symbols detected at
Phase 1 and the fact that the input TRS is left-linear and terminating verified
at Phases 1 and 2, respectively. For confluence, since termination of the TRS is
guaranteed, it remains to check whether all critical pairs are joinable. For suffi-
cient completeness, again since termination of the TRS is guaranteed, it suffices
to check the quasi-reducibility of the TRS. We check the quasi-reducibility based

8

on the (many-sorted extension of) complement algorithm introduced in [7, 11]
that computes the complement C(θ) of a substitution θ.

**

Phase 3 (Proving Confluence and Sufficient Completeness)

**

++ CR Check..........

The set of critical pairs

is { }
(* omitted *)

++ SC Check..........

++

Checking whether T = { sum(y) }
is covered by S = { sum(cons(x, ys)), sum(nil()) }
++

Unifiable terms of T and S are

sum(y) and sum(cons(x, ys))

M.g.u. is

[y := cons(x, ys)] (* = θ *)

Checking

{ sum(y) }
Complement substitutions of

[y := cons(x, ys)]

are

{ [y := nil()] } (* = C(θ) *)
(* omitted *)

O.K.

******** Phase 3 End ********

5.4 TRS pattern matching

In this phase, RAPT finds a combination of rewrite rules to apply the transfor-
mation and the term homomorphism which instantiates the input pattern TRS
to these rewrite rules. Using information of function symbols detected in Phase
1, RAPT also checks this term homomorphism is a CS-homomorphism.

This phase is based on the matching algorithm Match described in [1]. First,
we reduce the matching problem of TRS and TRS pattern to matching problem
of a set of pairs of term and pattern. In RAPT, pattern matching of rewrite
rules are carried out in order, and use the information of matching solutions to
limit next rewrite rules to perform the pattern match. Since solving the patten
matching of main function usually gives information which subfunctions are used
in sequel, this heuristics seems to perform the TRS matching relatively well.

**

Phase 4 (TRS Pattern Matching)

**

++ TRS Match..........

(* non-deterministic choice 1 *)

Matching

f(c(u, v)) -> g(u, f(v))

and

sum(cons(x, ys)) -> +(x, sum(ys))

9

Solutions are

{g := +([] 1, [] 2),

c := cons([] 1, [] 2),

f := sum([] 1)}
Matching

sum(a()) -> b() (* the partial instantiation of f(a()) -> b() *)

and

sum(nil()) -> 0()

Solutions are

{b := 0,

a := nil}
(* non-deterministic choice 2 *)

Matching

f(c(u, v)) -> g(u, f(v))

and

sum(nil()) -> 0()

Solutions are

(no solutions)

(* non-deterministic choice 1-1 *)

Matching

+(0(), u) -> u (* the instantiation of g(b(),u) -> u *)

and

+(0(), x) -> x

Solutions are

{ } (* one identity term homomorphism *)

Matching

+(d(u, v), w) -> d(u, +(v, w))

(* the partial instantiation of g(d(u,v),w) -> d(u,g(v,w)) *)

and

+(s(x), y) -> s(+(x, y))

Solutions are

{ d := s([] 2)}
(* non-deterministic choice 1-2 *)

Matching

+(0(), u) -> u (* the instantiation of g(b(),u) -> u *)

and

+(s(x), y) -> s(+(x, y))

Solutions are

(no solutions)

O.K.

The set of solutions are

{
([], (* unused part of TRS *)

{d := s([] 2), (* CS-homomorphism *)

b := 0,

a := nil,

g := +([] 1, [] 2),

c := cons([] 1, [] 2),

f := sum([] 1)})
}
******** Phase 4 End ********

5.5 Inductive theorem proving

In this phase, RAPT checks whether the input TRS satisfies the hypothesis of
the template. This is done by (1) instantiating the hypothesis through the term

10

homomorphism found at Phase 4 and (2) proving they are inductive conse-
quences of the input TRS, using rewriting induction. The latter uses LPO with
the precedence detected at Phase 2.

The algorithm of the rewriting induction (which consists of inference rules
Simplify, Delete, Expand) is due to [8]. Because the quasi-reducibility of the
input TRS have been shown already, >-cover set of substitutions [8] is obtained
just by selecting a subterm that is unifiable with the left-hand side of some
rewrite rules.

We have used a standard heuristics to choose which inference rules to apply.
That is, we first apply Simplify as many as possible, then apply Delete to delete
all trivial equations, and then apply Expand once, and repeat this process. In
Expand, a subterm to expand is selected via the outermost leftmost strategy.

Procedure of the rewriting induction (1) stops with success, (2) stops with
failure, or (3) diverges. In RAPT, we made a bound on the number of application
of Expand to detect the divergence.

**

Phase 5 (Verification of Hypothesis)

**

++ Hypothesis Check..........

++

+ Inductive Theorem Proving by Rewriting Induction +

++

(* omitted *)
Start 2 round

=============

(simplify) hs:

[+(u, 0()) -> u] (* induction hypothesis *)

(simplify) old es:

[+(+(u, v), w) = +(u, +(v, w)),

0() = 0(),

s(+(x, 0())) = s(x)]

(simplify) new es: (* lemmas to prove are simplified *)

[+(+(u, v), w) = +(u, +(v, w)),

0() = 0(),

s(x) = s(x)]

+++++

(delete) new es: (* delete trivial equations *)

[+(+(u, v), w) = +(u, +(v, w))]

+++++

(expand) e = e’: +(+(u, v), w) = +(u, +(v, w))

(expand) E U E’: (* new lemmas to prove *)

[+(x, w) = +(0(), +(x, w)),

+(s(+(x, y)), w) = +(s(x), +(y, w))]

(expand) new H: (* induction hypothesis added *)

[+(+(u, v), w) -> +(u, +(v, w)),

+(u, 0()) -> u]

(* omitted *)
SUCCESS in 3 round

******** Phase 5 End ********

5.6 Validation of output TRS

In this phase, RAPT checks whether the output TRS is (1) terminating, (2)
left-linear, (3) type consistent, and (4) sufficiently complete. In (3), because the

11

pattern TRS P ′ for the output may contain a pattern variable not occurring in
the pattern TRS P for the input, types may be unknown for some of function
symbols in R′. Therefore, we need to infer the type information together with
the type consistency check. (4) is proved based on the fact the output TRS is
terminating which is verified at (1) using LPO.

6 A guide for constructing transformation templates

In our framework, transformation templates should be developed manually. (Note
that only developed templates guarantee the the correctness of transformations.)
Among developed templates for the similar transformations, some template may
transform more programs than another. Clearly, it is better to use more general
templates to reduce the computing time for finding appropriate templates, es-
pecially when many template candidates are prepared. Below we describe how a
more general template can be developed from a template for the similar trans-
formations.

Let’s look back examples in Section 2. We have constructed the template
〈P ,P ′,H〉 by generalizing similar program transformations for Rsum and Rcat .
In these transformations, both Rsum and R′

sum
contain rewrite rules for +, and

both Rcat and R′
cat

contains rewrite rules for app. Naturally, the TRS patterns
P and P ′ contain the same rules; let Pcom be the common part of P and P ′.
Since these unchanged rules are not necessary to describe transformations, it
may seem that Pcom can be removed from templates. Moreover, by removing
Pcom from P and P ′, some more TRS transformations become possible:

Example 7. The following TRS Rrev specifies a program which computes the
reverse of input lists:

Rrev

rev([]) → []
rev(x : xs) → app(rev(xs), x : [])
app([], ys) → ys
app(x : xs, ys)→ x : app(xs, ys)

The TRS pattern P does not match Rrev even though the TRS pattern P \
Pcom matches the first two rules of Rrev . Hence, the template 〈P1,P ′

1
,H〉 =

〈P\Pcom ,P ′\Pcom ,H〉 can be used to transform Rrev into the following R′
rev

:

R′
rev

rev(xs) → rev1(xs, [])
rev1([], ys) → ys
rev1(x : xs, ys)→ rev1(xs, x : ys)
app([], ys) → ys
app(x : xs, ys) → x : app(xs, ys)

However, remind that templates have to be developed to guarantee the cor-
rectness of the transformation. In fact, the template 〈P\Pcom ,P ′\Pcom ,H〉 is
not developed and it may produce incorrect transformations. The situation is
that rules of Pcom are required to show that the template 〈P ,P ′,H〉 is developed.

12

How can we develop suitable transformation templates for Rrev? In fact, this
can be done by moving the common part Pcom into hypothesis like this:

P̃

{

f(a) → b

f(c(u, v))→ g(e(u), f(v))

P̃ ′

f(u) → f1(u, b)
f1(a, u) → u
f1(c(u, v), w)→ f1(v, g(w, e(u)))

H̃

g(u, b) ≈ u
g(b, u) ≈ u
g(g(u, v), w) ≈ g(u, g(v, w))

Then we can easily show that there exists an equivalent transformation [1]
from P to P ′ underH (See appendix). Thus, the template 〈P̃ , P̃ ′, H̃〉 is developed
so that the correctness of transformations by 〈P̃ , P̃ ′, H̃〉 is guaranteed.

Using the template 〈P̃ , P̃ ′, H̃〉, Rsum and Rcat are transformed into R′
sum

and R′
cat

, respectively. The TRS Rrev is transformed into the following R′′
rev

:

R′′
rev

rev(xs) → rev1(xs, [])
rev1([], ys) → ys
rev1(x : xs, ys)→ rev1(xs, app(x : [], ys))
app([], ys) → ys
app(x : xs, ys) → x : app(xs, ys)

Here, the right-hand side of the third rule of R′′
rev

is not a normal form. By
normalizing such terms, one obtain the desired R′

rev
.

7 Conclusion

This paper describes the system RAPT, which implements the program trans-
formation based on term rewriting introduced in [1]. RAPT transforms a term
rewriting system according to a specified program transformation template and
automatically verifies correctness of the transformation. We have described the
design of RAPT and explain algorithms and heuristics employed in each phase
of RAPT. We also presented a way to polish transformation templates.

Through our experiences, the computation time of RAPT is less than 100
msec in small examples as presented in this paper. The source code of RAPT

consists of about 5,000 lines and is written in the Standard ML of New Jersey
[10], which is an implementation of the strongly typed functional programming
language ML. We are now testing other kinds of program transformation by
templates such as fusion, tupling, etc. on RAPT.

Another implementation of program transformation by template is MAG sys-
tem which is based on lambda calculus [3, 9]. In MAG system, the correctness of
transformation is based on Huet and Lang’s framework [5]. A difference between
MAG and RAPT lies on the approach to the verification of hypothesis. In MAG
system, users are usually need to verify the hypothesis by explicit induction.
In contrast to that, RAPT proves the hypothesis automatically without help of
users. To our knowledge, program transformation systems based on template in
the literature rarely corporate with automated theorem proving techniques in
the verification of hypothesis. RAPT shows an interesting corporation of program
transformation techniques and automated theorem proving techniques.

13

Acknowledgments

Thanks are due to anonymous referees for useful comments and advices. This
work was partially supported by a grant from Japan Society for the Promotion of
Science, No. 14580357 and grants from Ministry of Education, Culture, Sports,
Science and Technology, Nos. 16016202 and 17700002.

References

1. Y. Chiba, T. Aoto, and Y. Toyama. Program transformation by templates based on
term rewriting. In Proceedings of the 7th ACM-SIGPLAN International Conference
on Principles and Practice of Declarative Programming (PPDP 2005), pages 59–69.
ACM Press, 2005.

2. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Ti-
son, and M. Tommasi. Tree Automata Techniques and Applications. 1997.
http://www.grappa.univ-lille3.fr/tata.

3. O. de Moor and G. Sittampalam. Higher-order matching for program transforma-
tion. Theoretical Computer Science, 269:135–162, 2001.

4. N. Hirokawa and A. Middeldorp. Tsukuba termination tool. In Proceedings of the
14th International Conference on Rewriting Techniques and Applications, volume
2706 of LNCS, pages 311–320. Springer-Verlag, 2003.

5. G. Huet and B. Lang. Proving and applying program transformations expressed
with second order patterns. Acta Informatica, 11:31–55, 1978.

6. S. Kamin and J.-J. Lévy. Two generalizations of the recursive path ordering.
Unpublished manuscript, University of Illinois, 1980.

7. A. Lazrek, P. Lescanne, and J. J. Thiel. Tools for proving inductive equalities,
relative completeness, and ω-completeness. Information and Computation, 84:47–
70, 1990.

8. U. S. Reddy. Term rewriting induction. In Proceedings of the 10th International
Conference on Automated Deduction, volume 449 of LNAI, pages 162–177, 1990.

9. G. Sittampalam. Higher-Order Matching for Program Transformation. PhD thesis,
Magdalen College, 2001.

10. Standard ML of New Jersey. http://www.smlnj.org/.
11. J. J. Thiel. Stop loosing sleep over incomplete data type specifications. In Pro-

ceedings of the 11th Annual ACM Symposium on Principles of Programming Lan-
guages, pages 76–82, 1984.

14

A Example of equivalent transformation

Let 〈P̃ , P̃ ′, H̃〉 be the template appears in Section 6. We demonstrate how to
develop the template 〈P̃ , P̃ ′, H̃〉.

1. Let P0 = P .
2. Let

P1 = P0 ∪ {f1(u, v)→ g(v, f(u))}

Here, f1 is a fresh function symbol. Then, P0 ⇒ P1 by the Introduction rule.
3. Let P2 = P1 ∪ {f(u)→ f1(u, b)}. Because

f(u) ↔
H̃

g(b, f(u))

←P1
f1(u, b),

we have P1 ⇒ P2 by the Addition rule.
4. Let P3 = P2 ∪ {f1(a, u)→ u}. Because

f1(a, u)→P2
g(u, f(a))

→P2
g(u, b)

↔
H̃

u,

we have P2 ⇒ P3 by the Addition rule.
5. Let P4 = P3 ∪ {f1(c(u, v), w) → f1(v, g(w, u))}. Because

f1(c(u, v), w)→P3
g(w, f(c(u, v)))

→P3
g(w, g(u, f(v)))

↔
H̃

g(g(w, u), f(v))
←P3

f1(v, g(w, u)),

we have P3 ⇒ P4 by the Addition rule.
6. Finally, applying the Elimination rules three times to P4, we obtain P̃ ′.

Thus, the template 〈P̃ , P̃ ′, H̃〉 is developed so that the correctness of transfor-
mations by 〈P̃ , P̃ ′, H̃〉 is guaranteed.

15

