YES *** Computating Strongly Quasi-Reducible Parts *** TRS: [ +(?x,0) -> ?x, +(?x,s(?y)) -> s(+(?x,?y)), -(0,?x) -> 0, -(?x,0) -> ?x, -(s(?x),s(?y)) -> -(?x,?y) ] Constructors: {0,s} Defined function symbols: {+,-} Constructor subsystem: [ ] Rule part & Conj Part: [ +(?x,0) -> ?x, +(?x,s(?y)) -> s(+(?x,?y)), -(0,?x) -> 0, -(?x,0) -> ?x, -(s(?x),s(?y)) -> -(?x,?y) ] [ ] *** Ground Confluence Check by Rewriting Induction *** Sort: {Nat} Signature: [ + : Nat,Nat -> Nat, - : Nat,Nat -> Nat, s : Nat -> Nat, 0 : Nat ] Rule Part: [ +(?x,0) -> ?x, +(?x,s(?y)) -> s(+(?x,?y)), -(0,?x) -> 0, -(?x,0) -> ?x, -(s(?x),s(?y)) -> -(?x,?y) ] Conjecture Part: [ ] Precedence (by weight): {(+,3),(-,1),(0,2),(s,0)} Rule part is confluent. R0 is ground confluent. Conjucture part is empty. examples/additions/minus1.trs: Success(GCR) (17 msec.)