YES *** Computating Strongly Quasi-Reducible Parts *** TRS: [ +(0,0) -> 0, +(s(?x),?y) -> s(+(?x,?y)), +(?x,s(?y)) -> s(+(?y,?x)) ] Constructors: {0,s} Defined function symbols: {+} Constructor subsystem: [ ] Rule part & Conj Part: [ +(0,0) -> 0, +(s(?x),?y) -> s(+(?x,?y)), +(?x,s(?y)) -> s(+(?y,?x)) ] [ ] *** Ground Confluence Check by Rewriting Induction *** Sort: {Nat} Signature: [ + : Nat,Nat -> Nat, s : Nat -> Nat, 0 : Nat ] Rule Part: [ +(0,0) -> 0, +(s(?x),?y) -> s(+(?x,?y)), +(?x,s(?y)) -> s(+(?y,?x)) ] Conjecture Part: [ ] Precedence (by weight): {(+,3),(0,1),(s,0)} Rule part is not confluent. Check ground confluence of Rule part (R0) by basic RI. Rules: [ +(0,0) -> 0, +(s(?x),?y) -> s(+(?x,?y)), +(?x,s(?y)) -> s(+(?y,?x)) ] Conjectures: [ s(s(+(?x,?y_1))) = s(s(+(?y_1,?x))) ] STEP 0 ES: [ s(s(+(?x,?y_1))) = s(s(+(?y_1,?x))) ] HS: [ ] ES0: [ s(s(+(?x,?y_1))) = s(s(+(?y_1,?x))) ] HS0: [ ] ES1: [ s(s(+(?x,?y_1))) = s(s(+(?y_1,?x))) ] HS1: [ ] Expand s(s(+(?x,?y_1))) = s(s(+(?y_1,?x))) [ s(s(0)) = s(s(+(0,0))), s(s(s(+(?x_2,?y_2)))) = s(s(+(?y_2,s(?x_2)))), s(s(s(+(?y_3,?x_3)))) = s(s(+(s(?y_3),?x_3))) ] ES2: [ s(s(0)) = s(s(+(0,0))), s(s(s(+(?x_2,?y_2)))) = s(s(+(?y_2,s(?x_2)))), s(s(s(+(?y_3,?x_3)))) = s(s(+(s(?y_3),?x_3))) ] HS2: [ s(s(+(?x,?y_1))) -> s(s(+(?y_1,?x))) ] STEP 1 ES: [ s(s(0)) = s(s(+(0,0))), s(s(s(+(?x_2,?y_2)))) = s(s(+(?y_2,s(?x_2)))), s(s(s(+(?y_3,?x_3)))) = s(s(+(s(?y_3),?x_3))) ] HS: [ s(s(+(?x,?y_1))) -> s(s(+(?y_1,?x))) ] ES0: [ s(s(0)) = s(s(0)), s(s(s(+(?x_2,?y_2)))) = s(s(s(+(?x_2,?y_2)))), s(s(s(+(?y_3,?x_3)))) = s(s(s(+(?y_3,?x_3)))) ] HS0: [ s(s(+(?x,?y_1))) -> s(s(+(?y_1,?x))) ] ES1: [ ] HS1: [ s(s(+(?x,?y_1))) -> s(s(+(?y_1,?x))) ] R0 is ground confluent. Conjucture part is empty. examples/additions/plus1.trs: Success(GCR) (8 msec.)