YES *** Computating Strongly Quasi-Reducible Parts *** TRS: [ +(0,?y) -> ?y, +(s(?x),?y) -> s(+(?x,?y)), +(?x,+(?y,?z)) -> +(+(?z,?y),?x), s(s(?x)) -> ?x ] Constructors: {0,s} Defined function symbols: {+} Constructor subsystem: [ s(s(?x)) -> ?x ] Rule part & Conj Part: [ s(s(?x)) -> ?x, +(0,?y) -> ?y, +(s(?x),?y) -> s(+(?x,?y)) ] [ +(?x,+(?y,?z)) -> +(+(?z,?y),?x) ] *** Ground Confluence Check by Rewriting Induction *** Sort: {Nat} Signature: [ + : Nat,Nat -> Nat, s : Nat -> Nat, 0 : Nat ] Rule Part: [ s(s(?x)) -> ?x, +(0,?y) -> ?y, +(s(?x),?y) -> s(+(?x,?y)) ] Conjecture Part: [ +(?x,+(?y,?z)) = +(+(?z,?y),?x) ] Precedence (by weight): {(+,3),(0,2),(s,0)} Rule part is confluent. R0 is ground confluent. Check conj part consists of inductive theorems of R0. Rules: [ s(s(?x)) -> ?x, +(0,?y) -> ?y, +(s(?x),?y) -> s(+(?x,?y)) ] Conjectures: [ +(?x,+(?y,?z)) = +(+(?z,?y),?x) ] STEP 0 ES: [ +(?x,+(?y,?z)) = +(+(?z,?y),?x) ] HS: [ ] ES0: [ +(?x,+(?y,?z)) = +(+(?z,?y),?x) ] HS0: [ ] ES1: [ +(?x,+(?y,?z)) = +(+(?z,?y),?x) ] HS1: [ ] Expand +(?x,+(?y,?z)) = +(+(?z,?y),?x) [ +(?x,?y_2) = +(+(?y_2,0),?x), +(?x,s(+(?x_3,?y_3))) = +(+(?y_3,s(?x_3)),?x) ] ES2: [ +(?x,?y_2) = +(+(?y_2,0),?x), +(?x,s(+(?x_3,?y_3))) = +(+(?y_3,s(?x_3)),?x) ] HS2: [ +(?x,+(?y,?z)) -> +(+(?z,?y),?x) ] STEP 1 ES: [ +(?x,?y_2) = +(+(?y_2,0),?x), +(?x,s(+(?x_3,?y_3))) = +(+(?y_3,s(?x_3)),?x) ] HS: [ +(?x,+(?y,?z)) -> +(+(?z,?y),?x) ] ES0: [ +(?x,?y_2) = +(+(?y_2,0),?x), +(?x,s(+(?x_3,?y_3))) = +(+(?y_3,s(?x_3)),?x) ] HS0: [ +(?x,+(?y,?z)) -> +(+(?z,?y),?x) ] ES1: [ +(?x,?y_2) = +(+(?y_2,0),?x), +(?x,s(+(?x_3,?y_3))) = +(+(?y_3,s(?x_3)),?x) ] HS1: [ +(?x,+(?y,?z)) -> +(+(?z,?y),?x) ] Expand +(+(?y_2,0),?x) = +(?x,?y_2) [ +(0,?x) = +(?x,0), +(s(+(?x_5,0)),?x) = +(?x,s(?x_5)) ] ES2: [ ?x = +(?x,0), s(+(+(?x_5,0),?x)) = +(?x,s(?x_5)), +(?x,s(+(?x_3,?y_3))) = +(+(?y_3,s(?x_3)),?x) ] HS2: [ +(+(?y_2,0),?x) -> +(?x,?y_2), +(?x,+(?y,?z)) -> +(+(?z,?y),?x) ] STEP 2 ES: [ ?x = +(?x,0), s(+(+(?x_5,0),?x)) = +(?x,s(?x_5)), +(?x,s(+(?x_3,?y_3))) = +(+(?y_3,s(?x_3)),?x) ] HS: [ +(+(?y_2,0),?x) -> +(?x,?y_2), +(?x,+(?y,?z)) -> +(+(?z,?y),?x) ] ES0: [ ?x = +(?x,0), s(+(?x,?x_5)) = +(?x,s(?x_5)), +(?x,s(+(?x_3,?y_3))) = +(+(?y_3,s(?x_3)),?x) ] HS0: [ +(+(?y_2,0),?x) -> +(?x,?y_2), +(?x,+(?y,?z)) -> +(+(?z,?y),?x) ] ES1: [ ?x = +(?x,0), s(+(?x,?x_5)) = +(?x,s(?x_5)), +(?x,s(+(?x_3,?y_3))) = +(+(?y_3,s(?x_3)),?x) ] HS1: [ +(+(?y_2,0),?x) -> +(?x,?y_2), +(?x,+(?y,?z)) -> +(+(?z,?y),?x) ] Expand +(?x,0) = ?x [ 0 = 0, s(+(?x_3,0)) = s(?x_3) ] ES2: [ 0 = 0, s(+(?x_3,0)) = s(?x_3), +(?x,s(+(?x_3,?y_3))) = +(+(?y_3,s(?x_3)),?x), s(+(?x,?x_5)) = +(?x,s(?x_5)) ] HS2: [ +(?x,0) -> ?x, +(+(?y_2,0),?x) -> +(?x,?y_2), +(?x,+(?y,?z)) -> +(+(?z,?y),?x) ] STEP 3 ES: [ 0 = 0, s(+(?x_3,0)) = s(?x_3), +(?x,s(+(?x_3,?y_3))) = +(+(?y_3,s(?x_3)),?x), s(+(?x,?x_5)) = +(?x,s(?x_5)) ] HS: [ +(?x,0) -> ?x, +(+(?y_2,0),?x) -> +(?x,?y_2), +(?x,+(?y,?z)) -> +(+(?z,?y),?x) ] ES0: [ 0 = 0, s(?x_3) = s(?x_3), +(?x,s(+(?x_3,?y_3))) = +(+(?y_3,s(?x_3)),?x), s(+(?x,?x_5)) = +(?x,s(?x_5)) ] HS0: [ +(?x,0) -> ?x, +(+(?y_2,0),?x) -> +(?x,?y_2), +(?x,+(?y,?z)) -> +(+(?z,?y),?x) ] ES1: [ +(?x,s(+(?x_3,?y_3))) = +(+(?y_3,s(?x_3)),?x), s(+(?x,?x_5)) = +(?x,s(?x_5)) ] HS1: [ +(?x,0) -> ?x, +(+(?y_2,0),?x) -> +(?x,?y_2), +(?x,+(?y,?z)) -> +(+(?z,?y),?x) ] Expand +(?x,s(?x_5)) = s(+(?x,?x_5)) [ s(?x_5) = s(+(0,?x_5)), s(+(?x_8,s(?x_5))) = s(+(s(?x_8),?x_5)) ] ES2: [ s(?x_5) = s(+(0,?x_5)), s(+(?x_8,s(?x_5))) = s(+(s(?x_8),?x_5)), +(?x,s(+(?x_3,?y_3))) = +(+(?y_3,s(?x_3)),?x) ] HS2: [ +(?x,s(?x_5)) -> s(+(?x,?x_5)), +(?x,0) -> ?x, +(+(?y_2,0),?x) -> +(?x,?y_2), +(?x,+(?y,?z)) -> +(+(?z,?y),?x) ] STEP 4 ES: [ s(?x_5) = s(+(0,?x_5)), s(+(?x_8,s(?x_5))) = s(+(s(?x_8),?x_5)), +(?x,s(+(?x_3,?y_3))) = +(+(?y_3,s(?x_3)),?x) ] HS: [ +(?x,s(?x_5)) -> s(+(?x,?x_5)), +(?x,0) -> ?x, +(+(?y_2,0),?x) -> +(?x,?y_2), +(?x,+(?y,?z)) -> +(+(?z,?y),?x) ] ES0: [ s(?x_5) = s(?x_5), +(?x_8,?x_5) = +(?x_8,?x_5), s(+(?x,+(?x_3,?y_3))) = s(+(+(?y_3,?x_3),?x)) ] HS0: [ +(?x,s(?x_5)) -> s(+(?x,?x_5)), +(?x,0) -> ?x, +(+(?y_2,0),?x) -> +(?x,?y_2), +(?x,+(?y,?z)) -> +(+(?z,?y),?x) ] ES1: [ ] HS1: [ +(?x,s(?x_5)) -> s(+(?x,?x_5)), +(?x,0) -> ?x, +(+(?y_2,0),?x) -> +(?x,?y_2), +(?x,+(?y,?z)) -> +(+(?z,?y),?x) ] Conj part consisits of inductive theorems of R0. examples/additions/plus12.trs: Success(GCR) (9 msec.)