YES *** Computating Strongly Quasi-Reducible Parts *** TRS: [ +(0,?y) -> ?y, +(s(?x),?y) -> s(+(?y,?x)), +(?x,?y) -> +(?y,?x), +(+(?x,?x),?x) -> +(?x,+(?x,?x)) ] Constructors: {0,s} Defined function symbols: {+} Constructor subsystem: [ ] Rule part & Conj Part: [ +(0,?y) -> ?y, +(s(?x),?y) -> s(+(?y,?x)) ] [ +(?x,?y) -> +(?y,?x), +(+(?x,?x),?x) -> +(?x,+(?x,?x)) ] *** Ground Confluence Check by Rewriting Induction *** Sort: {Nat} Signature: [ + : Nat,Nat -> Nat, s : Nat -> Nat, 0 : Nat ] Rule Part: [ +(0,?y) -> ?y, +(s(?x),?y) -> s(+(?y,?x)) ] Conjecture Part: [ +(?x,?y) = +(?y,?x), +(+(?x,?x),?x) = +(?x,+(?x,?x)) ] Precedence (by weight): {(+,3),(0,2),(s,0)} Rule part is confluent. R0 is ground confluent. Check conj part consists of inductive theorems of R0. Rules: [ +(0,?y) -> ?y, +(s(?x),?y) -> s(+(?y,?x)) ] Conjectures: [ +(?x,?y) = +(?y,?x), +(+(?x,?x),?x) = +(?x,+(?x,?x)) ] STEP 0 ES: [ +(?x,?y) = +(?y,?x), +(+(?x,?x),?x) = +(?x,+(?x,?x)) ] HS: [ ] ES0: [ +(?x,?y) = +(?y,?x), +(+(?x,?x),?x) = +(?x,+(?x,?x)) ] HS0: [ ] ES1: [ +(?x,?y) = +(?y,?x), +(+(?x,?x),?x) = +(?x,+(?x,?x)) ] HS1: [ ] Expand +(?x,?y) = +(?y,?x) [ ?y_1 = +(?y_1,0), s(+(?y_2,?x_2)) = +(?y_2,s(?x_2)) ] ES2: [ ?y_1 = +(?y_1,0), s(+(?y_2,?x_2)) = +(?y_2,s(?x_2)), +(+(?x,?x),?x) = +(?x,+(?x,?x)) ] HS2: [ +(?x,?y) -> +(?y,?x) ] STEP 1 ES: [ ?y_1 = +(?y_1,0), s(+(?y_2,?x_2)) = +(?y_2,s(?x_2)), +(+(?x,?x),?x) = +(?x,+(?x,?x)) ] HS: [ +(?x,?y) -> +(?y,?x) ] ES0: [ ?y_1 = +(?y_1,0), s(+(?y_2,?x_2)) = +(?y_2,s(?x_2)), +(+(?x,?x),?x) = +(?x,+(?x,?x)) ] HS0: [ +(?x,?y) -> +(?y,?x) ] ES1: [ ?y_1 = +(?y_1,0), s(+(?y_2,?x_2)) = +(?y_2,s(?x_2)) ] HS1: [ +(?x,?y) -> +(?y,?x) ] Expand +(?y_1,0) = ?y_1 [ 0 = 0, s(+(0,?x_2)) = s(?x_2) ] ES2: [ 0 = 0, s(?x_2) = s(?x_2), s(+(?y_2,?x_2)) = +(?y_2,s(?x_2)) ] HS2: [ +(?y_1,0) -> ?y_1, +(?x,?y) -> +(?y,?x) ] STEP 2 ES: [ 0 = 0, s(?x_2) = s(?x_2), s(+(?y_2,?x_2)) = +(?y_2,s(?x_2)) ] HS: [ +(?y_1,0) -> ?y_1, +(?x,?y) -> +(?y,?x) ] ES0: [ 0 = 0, s(?x_2) = s(?x_2), s(+(?y_2,?x_2)) = +(?y_2,s(?x_2)) ] HS0: [ +(?y_1,0) -> ?y_1, +(?x,?y) -> +(?y,?x) ] ES1: [ s(+(?y_2,?x_2)) = +(?y_2,s(?x_2)) ] HS1: [ +(?y_1,0) -> ?y_1, +(?x,?y) -> +(?y,?x) ] Expand +(?y_2,s(?x_2)) = s(+(?y_2,?x_2)) [ s(?x) = s(+(0,?x)), s(+(s(?x),?x_2)) = s(+(s(?x_2),?x)) ] ES2: [ s(?x) = s(+(0,?x)), s(s(+(?x_2,?x))) = s(+(s(?x_2),?x)) ] HS2: [ +(?y_2,s(?x_2)) -> s(+(?y_2,?x_2)), +(?y_1,0) -> ?y_1, +(?x,?y) -> +(?y,?x) ] STEP 3 ES: [ s(?x) = s(+(0,?x)), s(s(+(?x_2,?x))) = s(+(s(?x_2),?x)) ] HS: [ +(?y_2,s(?x_2)) -> s(+(?y_2,?x_2)), +(?y_1,0) -> ?y_1, +(?x,?y) -> +(?y,?x) ] ES0: [ s(?x) = s(?x), s(s(+(?x_2,?x))) = s(s(+(?x,?x_2))) ] HS0: [ +(?y_2,s(?x_2)) -> s(+(?y_2,?x_2)), +(?y_1,0) -> ?y_1, +(?x,?y) -> +(?y,?x) ] ES1: [ ] HS1: [ +(?y_2,s(?x_2)) -> s(+(?y_2,?x_2)), +(?y_1,0) -> ?y_1, +(?x,?y) -> +(?y,?x) ] Conj part consisits of inductive theorems of R0. examples/additions/plus13.trs: Success(GCR) (8 msec.)