YES *** Computating Strongly Quasi-Reducible Parts *** TRS: [ +(0,?y) -> ?y, +(s(?x),?y) -> s(+(?x,?y)), +(?x,+(?y,?z)) -> +(+(?x,?y),?z) ] Constructors: {0,s} Defined function symbols: {+} Constructor subsystem: [ ] Rule part & Conj Part: [ +(0,?y) -> ?y, +(s(?x),?y) -> s(+(?x,?y)) ] [ +(?x,+(?y,?z)) -> +(+(?x,?y),?z) ] *** Ground Confluence Check by Rewriting Induction *** Sort: {Nat} Signature: [ + : Nat,Nat -> Nat, s : Nat -> Nat, 0 : Nat ] Rule Part: [ +(0,?y) -> ?y, +(s(?x),?y) -> s(+(?x,?y)) ] Conjecture Part: [ +(?x,+(?y,?z)) = +(+(?x,?y),?z) ] Precedence (by weight): {(+,3),(0,2),(s,0)} Rule part is confluent. R0 is ground confluent. Check conj part consists of inductive theorems of R0. Rules: [ +(0,?y) -> ?y, +(s(?x),?y) -> s(+(?x,?y)) ] Conjectures: [ +(?x,+(?y,?z)) = +(+(?x,?y),?z) ] STEP 0 ES: [ +(?x,+(?y,?z)) = +(+(?x,?y),?z) ] HS: [ ] ES0: [ +(?x,+(?y,?z)) = +(+(?x,?y),?z) ] HS0: [ ] ES1: [ +(?x,+(?y,?z)) = +(+(?x,?y),?z) ] HS1: [ ] Expand +(?x,+(?y,?z)) = +(+(?x,?y),?z) [ +(?x,?y_1) = +(+(?x,0),?y_1), +(?x,s(+(?x_2,?y_2))) = +(+(?x,s(?x_2)),?y_2) ] ES2: [ +(?x,?y_1) = +(+(?x,0),?y_1), +(?x,s(+(?x_2,?y_2))) = +(+(?x,s(?x_2)),?y_2) ] HS2: [ +(?x,+(?y,?z)) -> +(+(?x,?y),?z) ] STEP 1 ES: [ +(?x,?y_1) = +(+(?x,0),?y_1), +(?x,s(+(?x_2,?y_2))) = +(+(?x,s(?x_2)),?y_2) ] HS: [ +(?x,+(?y,?z)) -> +(+(?x,?y),?z) ] ES0: [ +(?x,?y_1) = +(+(?x,0),?y_1), +(?x,s(+(?x_2,?y_2))) = +(+(?x,s(?x_2)),?y_2) ] HS0: [ +(?x,+(?y,?z)) -> +(+(?x,?y),?z) ] ES1: [ +(?x,?y_1) = +(+(?x,0),?y_1), +(?x,s(+(?x_2,?y_2))) = +(+(?x,s(?x_2)),?y_2) ] HS1: [ +(?x,+(?y,?z)) -> +(+(?x,?y),?z) ] Expand +(+(?x,0),?y_1) = +(?x,?y_1) [ +(0,?y_1) = +(0,?y_1), +(s(+(?x_3,0)),?y_1) = +(s(?x_3),?y_1) ] ES2: [ ?y_1 = +(0,?y_1), s(+(+(?x_3,0),?y_1)) = +(s(?x_3),?y_1), +(?x,s(+(?x_2,?y_2))) = +(+(?x,s(?x_2)),?y_2) ] HS2: [ +(+(?x,0),?y_1) -> +(?x,?y_1), +(?x,+(?y,?z)) -> +(+(?x,?y),?z) ] STEP 2 ES: [ ?y_1 = +(0,?y_1), s(+(+(?x_3,0),?y_1)) = +(s(?x_3),?y_1), +(?x,s(+(?x_2,?y_2))) = +(+(?x,s(?x_2)),?y_2) ] HS: [ +(+(?x,0),?y_1) -> +(?x,?y_1), +(?x,+(?y,?z)) -> +(+(?x,?y),?z) ] ES0: [ ?y_1 = ?y_1, s(+(?x_3,?y_1)) = s(+(?x_3,?y_1)), +(?x,s(+(?x_2,?y_2))) = +(+(?x,s(?x_2)),?y_2) ] HS0: [ +(+(?x,0),?y_1) -> +(?x,?y_1), +(?x,+(?y,?z)) -> +(+(?x,?y),?z) ] ES1: [ +(?x,s(+(?x_2,?y_2))) = +(+(?x,s(?x_2)),?y_2) ] HS1: [ +(+(?x,0),?y_1) -> +(?x,?y_1), +(?x,+(?y,?z)) -> +(+(?x,?y),?z) ] Expand +(?x,s(+(?x_2,?y_2))) = +(+(?x,s(?x_2)),?y_2) [ s(+(?x_2,?y_2)) = +(+(0,s(?x_2)),?y_2), s(+(?x_4,s(+(?x_2,?y_2)))) = +(+(s(?x_4),s(?x_2)),?y_2) ] ES2: [ s(+(?x_2,?y_2)) = +(+(0,s(?x_2)),?y_2), s(+(?x_4,s(+(?x_2,?y_2)))) = +(+(s(?x_4),s(?x_2)),?y_2) ] HS2: [ +(?x,s(+(?x_2,?y_2))) -> +(+(?x,s(?x_2)),?y_2), +(+(?x,0),?y_1) -> +(?x,?y_1), +(?x,+(?y,?z)) -> +(+(?x,?y),?z) ] STEP 3 ES: [ s(+(?x_2,?y_2)) = +(+(0,s(?x_2)),?y_2), s(+(?x_4,s(+(?x_2,?y_2)))) = +(+(s(?x_4),s(?x_2)),?y_2) ] HS: [ +(?x,s(+(?x_2,?y_2))) -> +(+(?x,s(?x_2)),?y_2), +(+(?x,0),?y_1) -> +(?x,?y_1), +(?x,+(?y,?z)) -> +(+(?x,?y),?z) ] ES0: [ s(+(?x_2,?y_2)) = s(+(?x_2,?y_2)), s(+(?x_4,s(+(?x_2,?y_2)))) = s(+(+(?x_4,s(?x_2)),?y_2)) ] HS0: [ +(?x,s(+(?x_2,?y_2))) -> +(+(?x,s(?x_2)),?y_2), +(+(?x,0),?y_1) -> +(?x,?y_1), +(?x,+(?y,?z)) -> +(+(?x,?y),?z) ] ES1: [ ] HS1: [ +(?x,s(+(?x_2,?y_2))) -> +(+(?x,s(?x_2)),?y_2), +(+(?x,0),?y_1) -> +(?x,?y_1), +(?x,+(?y,?z)) -> +(+(?x,?y),?z) ] Conj part consisits of inductive theorems of R0. examples/additions/plus6.trs: Success(GCR) (13 msec.)