YES *** Computating Strongly Quasi-Reducible Parts *** TRS: [ +(0,0) -> 0, +(s(?x),?y) -> s(+(?x,?y)), +(?x,s(?y)) -> s(+(?y,?x)), s(s(?x)) -> ?x ] Constructors: {0,s} Defined function symbols: {+} Constructor subsystem: [ s(s(?x)) -> ?x ] Rule part & Conj Part: [ s(s(?x)) -> ?x, +(0,0) -> 0, +(s(?x),?y) -> s(+(?x,?y)), +(?x,s(?y)) -> s(+(?y,?x)) ] [ ] *** Ground Confluence Check by Rewriting Induction *** Sort: {Nat} Signature: [ + : Nat,Nat -> Nat, s : Nat -> Nat, 0 : Nat ] Rule Part: [ s(s(?x)) -> ?x, +(0,0) -> 0, +(s(?x),?y) -> s(+(?x,?y)), +(?x,s(?y)) -> s(+(?y,?x)) ] Conjecture Part: [ ] Precedence (by weight): {(+,3),(0,1),(s,0)} Rule part is not confluent. Check ground confluence of Rule part (R0) by basic RI. Rules: [ s(s(?x)) -> ?x, +(0,0) -> 0, +(s(?x),?y) -> s(+(?x,?y)), +(?x,s(?y)) -> s(+(?y,?x)) ] Conjectures: [ +(?x_1,?y_2) = +(?y_2,?x_1), +(?x_2,?x) = +(?x,?x_2) ] STEP 0 ES: [ +(?x_1,?y_2) = +(?y_2,?x_1), +(?x_2,?x) = +(?x,?x_2) ] HS: [ ] ES0: [ +(?x_1,?y_2) = +(?y_2,?x_1), +(?x_2,?x) = +(?x,?x_2) ] HS0: [ ] ES1: [ +(?x_1,?y_2) = +(?y_2,?x_1), +(?x_2,?x) = +(?x,?x_2) ] HS1: [ ] Expand +(?x_1,?y_2) = +(?y_2,?x_1) [ 0 = +(0,0), s(+(?x_3,?y_3)) = +(?y_3,s(?x_3)), s(+(?y_4,?x_4)) = +(s(?y_4),?x_4) ] ES2: [ 0 = +(0,0), s(+(?x_3,?y_3)) = +(?y_3,s(?x_3)), s(+(?y_4,?x_4)) = +(s(?y_4),?x_4), +(?x_2,?x) = +(?x,?x_2) ] HS2: [ +(?x_1,?y_2) -> +(?y_2,?x_1) ] STEP 1 ES: [ 0 = +(0,0), s(+(?x_3,?y_3)) = +(?y_3,s(?x_3)), s(+(?y_4,?x_4)) = +(s(?y_4),?x_4), +(?x_2,?x) = +(?x,?x_2) ] HS: [ +(?x_1,?y_2) -> +(?y_2,?x_1) ] ES0: [ 0 = 0, s(+(?x_3,?y_3)) = s(+(?x_3,?y_3)), s(+(?y_4,?x_4)) = s(+(?y_4,?x_4)), +(?x_2,?x) = +(?x,?x_2) ] HS0: [ +(?x_1,?y_2) -> +(?y_2,?x_1) ] ES1: [ ] HS1: [ +(?x_1,?y_2) -> +(?y_2,?x_1) ] R0 is ground confluent. Conjucture part is empty. examples/additions/plus9.trs: Success(GCR) (14 msec.)