YES (ignored inputs)COMMENT translated from Cops 127 *** Computating Strongly Quasi-Reducible Parts *** TRS: [ not(T) -> F, not(F) -> T, or(?x,T) -> T, or(?x,F) -> ?x, or(?x,?y) -> or(?y,?x), or(or(?x,?y),?z) -> or(?x,or(?y,?z)), and(?x,T) -> ?x, and(?x,F) -> F, and(?x,?y) -> and(?y,?x), and(and(?x,?y),?z) -> and(?x,and(?y,?z)), imply(?x,?y) -> or(not(?x),?y) ] Constructors: {F,T} Defined function symbols: {or,and,not,imply} Constructor subsystem: [ ] Rule part & Conj Part: [ not(T) -> F, not(F) -> T, or(?x,T) -> T, or(?x,F) -> ?x, and(?x,T) -> ?x, and(?x,F) -> F, imply(?x,?y) -> or(not(?x),?y) ] [ or(or(?x,?y),?z) -> or(?x,or(?y,?z)), and(and(?x,?y),?z) -> and(?x,and(?y,?z)), or(?x,?y) -> or(?y,?x), and(?x,?y) -> and(?y,?x) ] *** Ground Confluence Check by Rewriting Induction *** Sort: {Bool} Signature: [ F : Bool, T : Bool, or : Bool,Bool -> Bool, and : Bool,Bool -> Bool, not : Bool -> Bool, imply : Bool,Bool -> Bool ] Rule Part: [ not(T) -> F, not(F) -> T, or(?x,T) -> T, or(?x,F) -> ?x, and(?x,T) -> ?x, and(?x,F) -> F, imply(?x,?y) -> or(not(?x),?y) ] Conjecture Part: [ or(or(?x,?y),?z) = or(?x,or(?y,?z)), and(and(?x,?y),?z) = and(?x,and(?y,?z)), or(?x,?y) = or(?y,?x), and(?x,?y) = and(?y,?x) ] Precedence (by weight): {(F,3),(T,2),(or,5),(and,0),(not,4),(imply,6)} Rule part is confluent. R0 is ground confluent. Check conj part consists of inductive theorems of R0. Rules: [ not(T) -> F, not(F) -> T, or(?x,T) -> T, or(?x,F) -> ?x, and(?x,T) -> ?x, and(?x,F) -> F, imply(?x,?y) -> or(not(?x),?y) ] Conjectures: [ or(or(?x,?y),?z) = or(?x,or(?y,?z)), and(and(?x,?y),?z) = and(?x,and(?y,?z)), or(?x,?y) = or(?y,?x), and(?x,?y) = and(?y,?x) ] STEP 0 ES: [ or(or(?x,?y),?z) = or(?x,or(?y,?z)), and(and(?x,?y),?z) = and(?x,and(?y,?z)), or(?x,?y) = or(?y,?x), and(?x,?y) = and(?y,?x) ] HS: [ ] ES0: [ or(or(?x,?y),?z) = or(?x,or(?y,?z)), and(and(?x,?y),?z) = and(?x,and(?y,?z)), or(?x,?y) = or(?y,?x), and(?x,?y) = and(?y,?x) ] HS0: [ ] ES1: [ or(or(?x,?y),?z) = or(?x,or(?y,?z)), and(and(?x,?y),?z) = and(?x,and(?y,?z)), or(?x,?y) = or(?y,?x), and(?x,?y) = and(?y,?x) ] HS1: [ ] Expand or(?x,?y) = or(?y,?x) [ T = or(T,?x_1), ?x_2 = or(F,?x_2) ] ES2: [ T = or(T,?x_1), ?x_2 = or(F,?x_2), and(?x,?y) = and(?y,?x), or(or(?x,?y),?z) = or(?x,or(?y,?z)), and(and(?x,?y),?z) = and(?x,and(?y,?z)) ] HS2: [ or(?x,?y) -> or(?y,?x) ] STEP 1 ES: [ T = or(T,?x_1), ?x_2 = or(F,?x_2), and(?x,?y) = and(?y,?x), or(or(?x,?y),?z) = or(?x,or(?y,?z)), and(and(?x,?y),?z) = and(?x,and(?y,?z)) ] HS: [ or(?x,?y) -> or(?y,?x) ] ES0: [ T = or(T,?x_1), ?x_2 = or(F,?x_2), and(?x,?y) = and(?y,?x), or(or(?x,?y),?z) = or(?x,or(?y,?z)), and(and(?x,?y),?z) = and(?x,and(?y,?z)) ] HS0: [ or(?x,?y) -> or(?y,?x) ] ES1: [ T = or(T,?x_1), ?x_2 = or(F,?x_2), and(?x,?y) = and(?y,?x), or(or(?x,?y),?z) = or(?x,or(?y,?z)), and(and(?x,?y),?z) = and(?x,and(?y,?z)) ] HS1: [ or(?x,?y) -> or(?y,?x) ] Expand or(T,?x_1) = T [ T = T, T = T ] ES2: [ T = T, T = T, and(and(?x,?y),?z) = and(?x,and(?y,?z)), or(or(?x,?y),?z) = or(?x,or(?y,?z)), and(?x,?y) = and(?y,?x), ?x_2 = or(F,?x_2) ] HS2: [ or(T,?x_1) -> T, or(?x,?y) -> or(?y,?x) ] STEP 2 ES: [ T = T, T = T, and(and(?x,?y),?z) = and(?x,and(?y,?z)), or(or(?x,?y),?z) = or(?x,or(?y,?z)), and(?x,?y) = and(?y,?x), ?x_2 = or(F,?x_2) ] HS: [ or(T,?x_1) -> T, or(?x,?y) -> or(?y,?x) ] ES0: [ T = T, T = T, and(and(?x,?y),?z) = and(?x,and(?y,?z)), or(or(?x,?y),?z) = or(?x,or(?y,?z)), and(?x,?y) = and(?y,?x), ?x_2 = or(F,?x_2) ] HS0: [ or(T,?x_1) -> T, or(?x,?y) -> or(?y,?x) ] ES1: [ and(and(?x,?y),?z) = and(?x,and(?y,?z)), or(or(?x,?y),?z) = or(?x,or(?y,?z)), and(?x,?y) = and(?y,?x), ?x_2 = or(F,?x_2) ] HS1: [ or(T,?x_1) -> T, or(?x,?y) -> or(?y,?x) ] Expand or(F,?x_2) = ?x_2 [ T = T, F = F ] ES2: [ T = T, F = F, and(?x,?y) = and(?y,?x), and(and(?x,?y),?z) = and(?x,and(?y,?z)), or(or(?x,?y),?z) = or(?x,or(?y,?z)) ] HS2: [ or(F,?x_2) -> ?x_2, or(T,?x_1) -> T, or(?x,?y) -> or(?y,?x) ] STEP 3 ES: [ T = T, F = F, and(?x,?y) = and(?y,?x), and(and(?x,?y),?z) = and(?x,and(?y,?z)), or(or(?x,?y),?z) = or(?x,or(?y,?z)) ] HS: [ or(F,?x_2) -> ?x_2, or(T,?x_1) -> T, or(?x,?y) -> or(?y,?x) ] ES0: [ T = T, F = F, and(?x,?y) = and(?y,?x), and(and(?x,?y),?z) = and(?x,and(?y,?z)), or(or(?x,?y),?z) = or(?x,or(?y,?z)) ] HS0: [ or(F,?x_2) -> ?x_2, or(T,?x_1) -> T, or(?x,?y) -> or(?y,?x) ] ES1: [ and(?x,?y) = and(?y,?x), and(and(?x,?y),?z) = and(?x,and(?y,?z)), or(or(?x,?y),?z) = or(?x,or(?y,?z)) ] HS1: [ or(F,?x_2) -> ?x_2, or(T,?x_1) -> T, or(?x,?y) -> or(?y,?x) ] Expand and(?x,?y) = and(?y,?x) [ ?x_3 = and(T,?x_3), F = and(F,?x_4) ] ES2: [ ?x_3 = and(T,?x_3), F = and(F,?x_4), or(or(?x,?y),?z) = or(?x,or(?y,?z)), and(and(?x,?y),?z) = and(?x,and(?y,?z)) ] HS2: [ and(?x,?y) -> and(?y,?x), or(F,?x_2) -> ?x_2, or(T,?x_1) -> T, or(?x,?y) -> or(?y,?x) ] STEP 4 ES: [ ?x_3 = and(T,?x_3), F = and(F,?x_4), or(or(?x,?y),?z) = or(?x,or(?y,?z)), and(and(?x,?y),?z) = and(?x,and(?y,?z)) ] HS: [ and(?x,?y) -> and(?y,?x), or(F,?x_2) -> ?x_2, or(T,?x_1) -> T, or(?x,?y) -> or(?y,?x) ] ES0: [ ?x_3 = and(T,?x_3), F = and(F,?x_4), or(or(?x,?y),?z) = or(?x,or(?y,?z)), and(and(?x,?y),?z) = and(?x,and(?y,?z)) ] HS0: [ and(?x,?y) -> and(?y,?x), or(F,?x_2) -> ?x_2, or(T,?x_1) -> T, or(?x,?y) -> or(?y,?x) ] ES1: [ ?x_3 = and(T,?x_3), F = and(F,?x_4), or(or(?x,?y),?z) = or(?x,or(?y,?z)), and(and(?x,?y),?z) = and(?x,and(?y,?z)) ] HS1: [ and(?x,?y) -> and(?y,?x), or(F,?x_2) -> ?x_2, or(T,?x_1) -> T, or(?x,?y) -> or(?y,?x) ] Expand and(T,?x_3) = ?x_3 [ T = T, F = F ] ES2: [ T = T, F = F, and(and(?x,?y),?z) = and(?x,and(?y,?z)), or(or(?x,?y),?z) = or(?x,or(?y,?z)), F = and(F,?x_4) ] HS2: [ and(T,?x_3) -> ?x_3, and(?x,?y) -> and(?y,?x), or(F,?x_2) -> ?x_2, or(T,?x_1) -> T, or(?x,?y) -> or(?y,?x) ] STEP 5 ES: [ T = T, F = F, and(and(?x,?y),?z) = and(?x,and(?y,?z)), or(or(?x,?y),?z) = or(?x,or(?y,?z)), F = and(F,?x_4) ] HS: [ and(T,?x_3) -> ?x_3, and(?x,?y) -> and(?y,?x), or(F,?x_2) -> ?x_2, or(T,?x_1) -> T, or(?x,?y) -> or(?y,?x) ] ES0: [ T = T, F = F, and(and(?x,?y),?z) = and(?x,and(?y,?z)), or(or(?x,?y),?z) = or(?x,or(?y,?z)), F = and(F,?x_4) ] HS0: [ and(T,?x_3) -> ?x_3, and(?x,?y) -> and(?y,?x), or(F,?x_2) -> ?x_2, or(T,?x_1) -> T, or(?x,?y) -> or(?y,?x) ] ES1: [ and(and(?x,?y),?z) = and(?x,and(?y,?z)), or(or(?x,?y),?z) = or(?x,or(?y,?z)), F = and(F,?x_4) ] HS1: [ and(T,?x_3) -> ?x_3, and(?x,?y) -> and(?y,?x), or(F,?x_2) -> ?x_2, or(T,?x_1) -> T, or(?x,?y) -> or(?y,?x) ] Expand and(F,?x_4) = F [ F = F, F = F ] ES2: [ F = F, F = F, and(and(?x,?y),?z) = and(?x,and(?y,?z)), or(or(?x,?y),?z) = or(?x,or(?y,?z)) ] HS2: [ and(F,?x_4) -> F, and(T,?x_3) -> ?x_3, and(?x,?y) -> and(?y,?x), or(F,?x_2) -> ?x_2, or(T,?x_1) -> T, or(?x,?y) -> or(?y,?x) ] STEP 6 ES: [ F = F, F = F, and(and(?x,?y),?z) = and(?x,and(?y,?z)), or(or(?x,?y),?z) = or(?x,or(?y,?z)) ] HS: [ and(F,?x_4) -> F, and(T,?x_3) -> ?x_3, and(?x,?y) -> and(?y,?x), or(F,?x_2) -> ?x_2, or(T,?x_1) -> T, or(?x,?y) -> or(?y,?x) ] ES0: [ F = F, F = F, and(and(?x,?y),?z) = and(?x,and(?y,?z)), or(or(?x,?y),?z) = or(?x,or(?y,?z)) ] HS0: [ and(F,?x_4) -> F, and(T,?x_3) -> ?x_3, and(?x,?y) -> and(?y,?x), or(F,?x_2) -> ?x_2, or(T,?x_1) -> T, or(?x,?y) -> or(?y,?x) ] ES1: [ and(and(?x,?y),?z) = and(?x,and(?y,?z)), or(or(?x,?y),?z) = or(?x,or(?y,?z)) ] HS1: [ and(F,?x_4) -> F, and(T,?x_3) -> ?x_3, and(?x,?y) -> and(?y,?x), or(F,?x_2) -> ?x_2, or(T,?x_1) -> T, or(?x,?y) -> or(?y,?x) ] Expand and(and(?x,?y),?z) = and(?x,and(?y,?z)) [ and(?x_3,?z) = and(?x_3,and(T,?z)), and(F,?z) = and(?x_4,and(F,?z)) ] ES2: [ and(?x_3,?z) = and(?x_3,and(T,?z)), F = and(?x_4,and(F,?z)), or(or(?x,?y),?z) = or(?x,or(?y,?z)) ] HS2: [ and(and(?x,?y),?z) -> and(?x,and(?y,?z)), and(F,?x_4) -> F, and(T,?x_3) -> ?x_3, and(?x,?y) -> and(?y,?x), or(F,?x_2) -> ?x_2, or(T,?x_1) -> T, or(?x,?y) -> or(?y,?x) ] STEP 7 ES: [ and(?x_3,?z) = and(?x_3,and(T,?z)), F = and(?x_4,and(F,?z)), or(or(?x,?y),?z) = or(?x,or(?y,?z)) ] HS: [ and(and(?x,?y),?z) -> and(?x,and(?y,?z)), and(F,?x_4) -> F, and(T,?x_3) -> ?x_3, and(?x,?y) -> and(?y,?x), or(F,?x_2) -> ?x_2, or(T,?x_1) -> T, or(?x,?y) -> or(?y,?x) ] ES0: [ and(?x_3,?z) = and(?x_3,?z), F = F, or(or(?x,?y),?z) = or(?x,or(?y,?z)) ] HS0: [ and(and(?x,?y),?z) -> and(?x,and(?y,?z)), and(F,?x_4) -> F, and(T,?x_3) -> ?x_3, and(?x,?y) -> and(?y,?x), or(F,?x_2) -> ?x_2, or(T,?x_1) -> T, or(?x,?y) -> or(?y,?x) ] ES1: [ or(or(?x,?y),?z) = or(?x,or(?y,?z)) ] HS1: [ and(and(?x,?y),?z) -> and(?x,and(?y,?z)), and(F,?x_4) -> F, and(T,?x_3) -> ?x_3, and(?x,?y) -> and(?y,?x), or(F,?x_2) -> ?x_2, or(T,?x_1) -> T, or(?x,?y) -> or(?y,?x) ] Expand or(or(?x,?y),?z) = or(?x,or(?y,?z)) [ or(T,?z) = or(?x_1,or(T,?z)), or(?x_2,?z) = or(?x_2,or(F,?z)) ] ES2: [ T = or(?x_1,or(T,?z)), or(?x_2,?z) = or(?x_2,or(F,?z)) ] HS2: [ or(or(?x,?y),?z) -> or(?x,or(?y,?z)), and(and(?x,?y),?z) -> and(?x,and(?y,?z)), and(F,?x_4) -> F, and(T,?x_3) -> ?x_3, and(?x,?y) -> and(?y,?x), or(F,?x_2) -> ?x_2, or(T,?x_1) -> T, or(?x,?y) -> or(?y,?x) ] STEP 8 ES: [ T = or(?x_1,or(T,?z)), or(?x_2,?z) = or(?x_2,or(F,?z)) ] HS: [ or(or(?x,?y),?z) -> or(?x,or(?y,?z)), and(and(?x,?y),?z) -> and(?x,and(?y,?z)), and(F,?x_4) -> F, and(T,?x_3) -> ?x_3, and(?x,?y) -> and(?y,?x), or(F,?x_2) -> ?x_2, or(T,?x_1) -> T, or(?x,?y) -> or(?y,?x) ] ES0: [ T = T, or(?x_2,?z) = or(?x_2,?z) ] HS0: [ or(or(?x,?y),?z) -> or(?x,or(?y,?z)), and(and(?x,?y),?z) -> and(?x,and(?y,?z)), and(F,?x_4) -> F, and(T,?x_3) -> ?x_3, and(?x,?y) -> and(?y,?x), or(F,?x_2) -> ?x_2, or(T,?x_1) -> T, or(?x,?y) -> or(?y,?x) ] ES1: [ ] HS1: [ or(or(?x,?y),?z) -> or(?x,or(?y,?z)), and(and(?x,?y),?z) -> and(?x,and(?y,?z)), and(F,?x_4) -> F, and(T,?x_3) -> ?x_3, and(?x,?y) -> and(?y,?x), or(F,?x_2) -> ?x_2, or(T,?x_1) -> T, or(?x,?y) -> or(?y,?x) ] Conj part consisits of inductive theorems of R0. examples/fromCops/cr/127.trs: Success(GCR) (22 msec.)