YES (ignored inputs)COMMENT translated from Cops 152 *** Computating Strongly Quasi-Reducible Parts *** TRS: [ +(?x,0) -> ?x, +(?x,s(?y)) -> s(+(?x,?y)), +(?x,p(?y)) -> p(+(?x,?y)), +(0,?y) -> ?y, +(s(?x),?y) -> s(+(?x,?y)), +(p(?x),?y) -> p(+(?x,?y)), s(p(?x)) -> ?x, p(s(?x)) -> ?x, -(0) -> 0, -(s(?x)) -> p(-(?x)), -(p(?x)) -> s(-(?x)), +(+(?x,?y),?z) -> +(?x,+(?y,?z)), +(?x,+(?y,?z)) -> +(+(?x,?y),?z), -(+(?x,?y)) -> +(-(?x),-(?y)) ] Constructors: {0,p,s} Defined function symbols: {+,-} Constructor subsystem: [ s(p(?x)) -> ?x, p(s(?x)) -> ?x ] Rule part & Conj Part: [ s(p(?x)) -> ?x, p(s(?x)) -> ?x, +(0,?y) -> ?y, +(s(?x),?y) -> s(+(?x,?y)), +(p(?x),?y) -> p(+(?x,?y)), -(0) -> 0, -(s(?x)) -> p(-(?x)), -(p(?x)) -> s(-(?x)) ] [ +(?x,0) -> ?x, +(?x,s(?y)) -> s(+(?x,?y)), +(?x,p(?y)) -> p(+(?x,?y)), +(+(?x,?y),?z) -> +(?x,+(?y,?z)), +(?x,+(?y,?z)) -> +(+(?x,?y),?z), -(+(?x,?y)) -> +(-(?x),-(?y)) ] Rule part & Conj Part: [ s(p(?x)) -> ?x, p(s(?x)) -> ?x, +(?x,0) -> ?x, +(?x,s(?y)) -> s(+(?x,?y)), +(?x,p(?y)) -> p(+(?x,?y)), -(0) -> 0, -(s(?x)) -> p(-(?x)), -(p(?x)) -> s(-(?x)) ] [ +(0,?y) -> ?y, +(s(?x),?y) -> s(+(?x,?y)), +(p(?x),?y) -> p(+(?x,?y)), +(+(?x,?y),?z) -> +(?x,+(?y,?z)), +(?x,+(?y,?z)) -> +(+(?x,?y),?z), -(+(?x,?y)) -> +(-(?x),-(?y)) ] *** Ground Confluence Check by Rewriting Induction *** Sort: {Int} Signature: [ + : Int,Int -> Int, - : Int -> Int, 0 : Int, p : Int -> Int, s : Int -> Int ] Rule Part: [ s(p(?x)) -> ?x, p(s(?x)) -> ?x, +(0,?y) -> ?y, +(s(?x),?y) -> s(+(?x,?y)), +(p(?x),?y) -> p(+(?x,?y)), -(0) -> 0, -(s(?x)) -> p(-(?x)), -(p(?x)) -> s(-(?x)) ] Conjecture Part: [ +(?x,0) = ?x, +(?x,s(?y)) = s(+(?x,?y)), +(?x,p(?y)) = p(+(?x,?y)), +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,+(?y,?z)) = +(+(?x,?y),?z), -(+(?x,?y)) = +(-(?x),-(?y)) ] Precedence (by weight): {(+,6),(-,5),(0,0),(p,2),(s,4)} Rule part is confluent. R0 is ground confluent. Check conj part consists of inductive theorems of R0. Rules: [ s(p(?x)) -> ?x, p(s(?x)) -> ?x, +(0,?y) -> ?y, +(s(?x),?y) -> s(+(?x,?y)), +(p(?x),?y) -> p(+(?x,?y)), -(0) -> 0, -(s(?x)) -> p(-(?x)), -(p(?x)) -> s(-(?x)) ] Conjectures: [ +(?x,0) = ?x, +(?x,s(?y)) = s(+(?x,?y)), +(?x,p(?y)) = p(+(?x,?y)), +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,+(?y,?z)) = +(+(?x,?y),?z), -(+(?x,?y)) = +(-(?x),-(?y)) ] STEP 0 ES: [ +(?x,0) = ?x, +(?x,s(?y)) = s(+(?x,?y)), +(?x,p(?y)) = p(+(?x,?y)), +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,+(?y,?z)) = +(+(?x,?y),?z), -(+(?x,?y)) = +(-(?x),-(?y)) ] HS: [ ] ES0: [ +(?x,0) = ?x, +(?x,s(?y)) = s(+(?x,?y)), +(?x,p(?y)) = p(+(?x,?y)), +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,+(?y,?z)) = +(+(?x,?y),?z), -(+(?x,?y)) = +(-(?x),-(?y)) ] HS0: [ ] ES1: [ +(?x,0) = ?x, +(?x,s(?y)) = s(+(?x,?y)), +(?x,p(?y)) = p(+(?x,?y)), +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,+(?y,?z)) = +(+(?x,?y),?z), -(+(?x,?y)) = +(-(?x),-(?y)) ] HS1: [ ] Expand +(?x,0) = ?x [ 0 = 0, s(+(?x_4,0)) = s(?x_4), p(+(?x_5,0)) = p(?x_5) ] ES2: [ 0 = 0, s(+(?x_4,0)) = s(?x_4), p(+(?x_5,0)) = p(?x_5), -(+(?x,?y)) = +(-(?x),-(?y)), +(?x,+(?y,?z)) = +(+(?x,?y),?z), +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,p(?y)) = p(+(?x,?y)), +(?x,s(?y)) = s(+(?x,?y)) ] HS2: [ +(?x,0) -> ?x ] STEP 1 ES: [ 0 = 0, s(+(?x_4,0)) = s(?x_4), p(+(?x_5,0)) = p(?x_5), -(+(?x,?y)) = +(-(?x),-(?y)), +(?x,+(?y,?z)) = +(+(?x,?y),?z), +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,p(?y)) = p(+(?x,?y)), +(?x,s(?y)) = s(+(?x,?y)) ] HS: [ +(?x,0) -> ?x ] ES0: [ 0 = 0, s(?x_4) = s(?x_4), p(?x_5) = p(?x_5), -(+(?x,?y)) = +(-(?x),-(?y)), +(?x,+(?y,?z)) = +(+(?x,?y),?z), +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,p(?y)) = p(+(?x,?y)), +(?x,s(?y)) = s(+(?x,?y)) ] HS0: [ +(?x,0) -> ?x ] ES1: [ -(+(?x,?y)) = +(-(?x),-(?y)), +(?x,+(?y,?z)) = +(+(?x,?y),?z), +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,p(?y)) = p(+(?x,?y)), +(?x,s(?y)) = s(+(?x,?y)) ] HS1: [ +(?x,0) -> ?x ] Expand +(?x,p(?y)) = p(+(?x,?y)) [ p(?y) = p(+(0,?y)), s(+(?x_4,p(?y))) = p(+(s(?x_4),?y)), p(+(?x_5,p(?y))) = p(+(p(?x_5),?y)) ] ES2: [ p(?y) = p(+(0,?y)), s(+(?x_4,p(?y))) = p(+(s(?x_4),?y)), p(+(?x_5,p(?y))) = p(+(p(?x_5),?y)), +(?x,s(?y)) = s(+(?x,?y)), -(+(?x,?y)) = +(-(?x),-(?y)), +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,+(?y,?z)) = +(+(?x,?y),?z) ] HS2: [ +(?x,p(?y)) -> p(+(?x,?y)), +(?x,0) -> ?x ] STEP 2 ES: [ p(?y) = p(+(0,?y)), s(+(?x_4,p(?y))) = p(+(s(?x_4),?y)), p(+(?x_5,p(?y))) = p(+(p(?x_5),?y)), +(?x,s(?y)) = s(+(?x,?y)), -(+(?x,?y)) = +(-(?x),-(?y)), +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,+(?y,?z)) = +(+(?x,?y),?z) ] HS: [ +(?x,p(?y)) -> p(+(?x,?y)), +(?x,0) -> ?x ] ES0: [ p(?y) = p(?y), +(?x_4,?y) = +(?x_4,?y), p(p(+(?x_5,?y))) = p(p(+(?x_5,?y))), +(?x,s(?y)) = s(+(?x,?y)), -(+(?x,?y)) = +(-(?x),-(?y)), +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,+(?y,?z)) = +(+(?x,?y),?z) ] HS0: [ +(?x,p(?y)) -> p(+(?x,?y)), +(?x,0) -> ?x ] ES1: [ +(?x,s(?y)) = s(+(?x,?y)), -(+(?x,?y)) = +(-(?x),-(?y)), +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,+(?y,?z)) = +(+(?x,?y),?z) ] HS1: [ +(?x,p(?y)) -> p(+(?x,?y)), +(?x,0) -> ?x ] Expand +(?x,s(?y)) = s(+(?x,?y)) [ s(?y) = s(+(0,?y)), s(+(?x_4,s(?y))) = s(+(s(?x_4),?y)), p(+(?x_5,s(?y))) = s(+(p(?x_5),?y)) ] ES2: [ s(?y) = s(+(0,?y)), s(+(?x_4,s(?y))) = s(+(s(?x_4),?y)), p(+(?x_5,s(?y))) = s(+(p(?x_5),?y)), +(?x,+(?y,?z)) = +(+(?x,?y),?z), +(+(?x,?y),?z) = +(?x,+(?y,?z)), -(+(?x,?y)) = +(-(?x),-(?y)) ] HS2: [ +(?x,s(?y)) -> s(+(?x,?y)), +(?x,p(?y)) -> p(+(?x,?y)), +(?x,0) -> ?x ] STEP 3 ES: [ s(?y) = s(+(0,?y)), s(+(?x_4,s(?y))) = s(+(s(?x_4),?y)), p(+(?x_5,s(?y))) = s(+(p(?x_5),?y)), +(?x,+(?y,?z)) = +(+(?x,?y),?z), +(+(?x,?y),?z) = +(?x,+(?y,?z)), -(+(?x,?y)) = +(-(?x),-(?y)) ] HS: [ +(?x,s(?y)) -> s(+(?x,?y)), +(?x,p(?y)) -> p(+(?x,?y)), +(?x,0) -> ?x ] ES0: [ s(?y) = s(?y), s(s(+(?x_4,?y))) = s(s(+(?x_4,?y))), +(?x_5,?y) = +(?x_5,?y), +(?x,+(?y,?z)) = +(+(?x,?y),?z), +(+(?x,?y),?z) = +(?x,+(?y,?z)), -(+(?x,?y)) = +(-(?x),-(?y)) ] HS0: [ +(?x,s(?y)) -> s(+(?x,?y)), +(?x,p(?y)) -> p(+(?x,?y)), +(?x,0) -> ?x ] ES1: [ +(?x,+(?y,?z)) = +(+(?x,?y),?z), +(+(?x,?y),?z) = +(?x,+(?y,?z)), -(+(?x,?y)) = +(-(?x),-(?y)) ] HS1: [ +(?x,s(?y)) -> s(+(?x,?y)), +(?x,p(?y)) -> p(+(?x,?y)), +(?x,0) -> ?x ] Expand +(-(?x),-(?y)) = -(+(?x,?y)) [ +(0,-(?y)) = -(+(0,?y)), +(p(-(?x_6)),-(?y)) = -(+(s(?x_6),?y)), +(s(-(?x_7)),-(?y)) = -(+(p(?x_7),?y)) ] ES2: [ -(?y) = -(+(0,?y)), p(+(-(?x_6),-(?y))) = -(+(s(?x_6),?y)), s(+(-(?x_7),-(?y))) = -(+(p(?x_7),?y)), +(?x,+(?y,?z)) = +(+(?x,?y),?z), +(+(?x,?y),?z) = +(?x,+(?y,?z)) ] HS2: [ +(-(?x),-(?y)) -> -(+(?x,?y)), +(?x,s(?y)) -> s(+(?x,?y)), +(?x,p(?y)) -> p(+(?x,?y)), +(?x,0) -> ?x ] STEP 4 ES: [ -(?y) = -(+(0,?y)), p(+(-(?x_6),-(?y))) = -(+(s(?x_6),?y)), s(+(-(?x_7),-(?y))) = -(+(p(?x_7),?y)), +(?x,+(?y,?z)) = +(+(?x,?y),?z), +(+(?x,?y),?z) = +(?x,+(?y,?z)) ] HS: [ +(-(?x),-(?y)) -> -(+(?x,?y)), +(?x,s(?y)) -> s(+(?x,?y)), +(?x,p(?y)) -> p(+(?x,?y)), +(?x,0) -> ?x ] ES0: [ -(?y) = -(?y), p(-(+(?x_6,?y))) = p(-(+(?x_6,?y))), s(-(+(?x_7,?y))) = s(-(+(?x_7,?y))), +(?x,+(?y,?z)) = +(+(?x,?y),?z), +(+(?x,?y),?z) = +(?x,+(?y,?z)) ] HS0: [ +(-(?x),-(?y)) -> -(+(?x,?y)), +(?x,s(?y)) -> s(+(?x,?y)), +(?x,p(?y)) -> p(+(?x,?y)), +(?x,0) -> ?x ] ES1: [ +(?x,+(?y,?z)) = +(+(?x,?y),?z), +(+(?x,?y),?z) = +(?x,+(?y,?z)) ] HS1: [ +(-(?x),-(?y)) -> -(+(?x,?y)), +(?x,s(?y)) -> s(+(?x,?y)), +(?x,p(?y)) -> p(+(?x,?y)), +(?x,0) -> ?x ] Expand +(?x,+(?y,?z)) = +(+(?x,?y),?z) [ +(?x,?y_3) = +(+(?x,0),?y_3), +(?x,s(+(?x_4,?y_4))) = +(+(?x,s(?x_4)),?y_4), +(?x,p(+(?x_5,?y_5))) = +(+(?x,p(?x_5)),?y_5) ] ES2: [ +(?x,?y_3) = +(+(?x,0),?y_3), s(+(?x,+(?x_4,?y_4))) = +(+(?x,s(?x_4)),?y_4), p(+(?x,+(?x_5,?y_5))) = +(+(?x,p(?x_5)),?y_5), +(+(?x,?y),?z) = +(?x,+(?y,?z)) ] HS2: [ +(?x,+(?y,?z)) -> +(+(?x,?y),?z), +(-(?x),-(?y)) -> -(+(?x,?y)), +(?x,s(?y)) -> s(+(?x,?y)), +(?x,p(?y)) -> p(+(?x,?y)), +(?x,0) -> ?x ] STEP 5 ES: [ +(?x,?y_3) = +(+(?x,0),?y_3), s(+(?x,+(?x_4,?y_4))) = +(+(?x,s(?x_4)),?y_4), p(+(?x,+(?x_5,?y_5))) = +(+(?x,p(?x_5)),?y_5), +(+(?x,?y),?z) = +(?x,+(?y,?z)) ] HS: [ +(?x,+(?y,?z)) -> +(+(?x,?y),?z), +(-(?x),-(?y)) -> -(+(?x,?y)), +(?x,s(?y)) -> s(+(?x,?y)), +(?x,p(?y)) -> p(+(?x,?y)), +(?x,0) -> ?x ] ES0: [ +(?x,?y_3) = +(?x,?y_3), s(+(?x,+(?x_4,?y_4))) = s(+(+(?x,?x_4),?y_4)), p(+(?x,+(?x_5,?y_5))) = p(+(+(?x,?x_5),?y_5)), +(+(?x,?y),?z) = +(?x,+(?y,?z)) ] HS0: [ +(?x,+(?y,?z)) -> +(+(?x,?y),?z), +(-(?x),-(?y)) -> -(+(?x,?y)), +(?x,s(?y)) -> s(+(?x,?y)), +(?x,p(?y)) -> p(+(?x,?y)), +(?x,0) -> ?x ] ES1: [ ] HS1: [ +(?x,+(?y,?z)) -> +(+(?x,?y),?z), +(-(?x),-(?y)) -> -(+(?x,?y)), +(?x,s(?y)) -> s(+(?x,?y)), +(?x,p(?y)) -> p(+(?x,?y)), +(?x,0) -> ?x ] Conj part consisits of inductive theorems of R0. examples/fromCops/cr/152.trs: Success(GCR) (16 msec.)