YES (ignored inputs)COMMENT translated from Cops 153 *** Computating Strongly Quasi-Reducible Parts *** TRS: [ or(?x,T) -> T, or(?x,F) -> ?x, or(or(?x,?y),?z) -> or(?x,or(?y,?z)), or(?x,?y) -> or(?y,?x) ] Constructors: {F,T} Defined function symbols: {or} Constructor subsystem: [ ] Rule part & Conj Part: [ or(?x,T) -> T, or(?x,F) -> ?x ] [ or(or(?x,?y),?z) -> or(?x,or(?y,?z)), or(?x,?y) -> or(?y,?x) ] *** Ground Confluence Check by Rewriting Induction *** Sort: {Bool} Signature: [ F : Bool, T : Bool, or : Bool,Bool -> Bool ] Rule Part: [ or(?x,T) -> T, or(?x,F) -> ?x ] Conjecture Part: [ or(or(?x,?y),?z) = or(?x,or(?y,?z)), or(?x,?y) = or(?y,?x) ] Precedence (by weight): {(F,2),(T,0),(or,1)} Rule part is confluent. R0 is ground confluent. Check conj part consists of inductive theorems of R0. Rules: [ or(?x,T) -> T, or(?x,F) -> ?x ] Conjectures: [ or(or(?x,?y),?z) = or(?x,or(?y,?z)), or(?x,?y) = or(?y,?x) ] STEP 0 ES: [ or(or(?x,?y),?z) = or(?x,or(?y,?z)), or(?x,?y) = or(?y,?x) ] HS: [ ] ES0: [ or(or(?x,?y),?z) = or(?x,or(?y,?z)), or(?x,?y) = or(?y,?x) ] HS0: [ ] ES1: [ or(or(?x,?y),?z) = or(?x,or(?y,?z)), or(?x,?y) = or(?y,?x) ] HS1: [ ] Expand or(?x,?y) = or(?y,?x) [ T = or(T,?x_1), ?x_2 = or(F,?x_2) ] ES2: [ T = or(T,?x_1), ?x_2 = or(F,?x_2), or(or(?x,?y),?z) = or(?x,or(?y,?z)) ] HS2: [ or(?x,?y) -> or(?y,?x) ] STEP 1 ES: [ T = or(T,?x_1), ?x_2 = or(F,?x_2), or(or(?x,?y),?z) = or(?x,or(?y,?z)) ] HS: [ or(?x,?y) -> or(?y,?x) ] ES0: [ T = or(T,?x_1), ?x_2 = or(F,?x_2), or(or(?x,?y),?z) = or(?x,or(?y,?z)) ] HS0: [ or(?x,?y) -> or(?y,?x) ] ES1: [ T = or(T,?x_1), ?x_2 = or(F,?x_2), or(or(?x,?y),?z) = or(?x,or(?y,?z)) ] HS1: [ or(?x,?y) -> or(?y,?x) ] Expand or(T,?x_1) = T [ T = T, T = T ] ES2: [ T = T, T = T, or(or(?x,?y),?z) = or(?x,or(?y,?z)), ?x_2 = or(F,?x_2) ] HS2: [ or(T,?x_1) -> T, or(?x,?y) -> or(?y,?x) ] STEP 2 ES: [ T = T, T = T, or(or(?x,?y),?z) = or(?x,or(?y,?z)), ?x_2 = or(F,?x_2) ] HS: [ or(T,?x_1) -> T, or(?x,?y) -> or(?y,?x) ] ES0: [ T = T, T = T, or(or(?x,?y),?z) = or(?x,or(?y,?z)), ?x_2 = or(F,?x_2) ] HS0: [ or(T,?x_1) -> T, or(?x,?y) -> or(?y,?x) ] ES1: [ or(or(?x,?y),?z) = or(?x,or(?y,?z)), ?x_2 = or(F,?x_2) ] HS1: [ or(T,?x_1) -> T, or(?x,?y) -> or(?y,?x) ] Expand or(F,?x_2) = ?x_2 [ T = T, F = F ] ES2: [ T = T, F = F, or(or(?x,?y),?z) = or(?x,or(?y,?z)) ] HS2: [ or(F,?x_2) -> ?x_2, or(T,?x_1) -> T, or(?x,?y) -> or(?y,?x) ] STEP 3 ES: [ T = T, F = F, or(or(?x,?y),?z) = or(?x,or(?y,?z)) ] HS: [ or(F,?x_2) -> ?x_2, or(T,?x_1) -> T, or(?x,?y) -> or(?y,?x) ] ES0: [ T = T, F = F, or(or(?x,?y),?z) = or(?x,or(?y,?z)) ] HS0: [ or(F,?x_2) -> ?x_2, or(T,?x_1) -> T, or(?x,?y) -> or(?y,?x) ] ES1: [ or(or(?x,?y),?z) = or(?x,or(?y,?z)) ] HS1: [ or(F,?x_2) -> ?x_2, or(T,?x_1) -> T, or(?x,?y) -> or(?y,?x) ] Expand or(or(?x,?y),?z) = or(?x,or(?y,?z)) [ or(T,?z) = or(?x_1,or(T,?z)), or(?x_2,?z) = or(?x_2,or(F,?z)) ] ES2: [ T = or(?x_1,or(T,?z)), or(?x_2,?z) = or(?x_2,or(F,?z)) ] HS2: [ or(or(?x,?y),?z) -> or(?x,or(?y,?z)), or(F,?x_2) -> ?x_2, or(T,?x_1) -> T, or(?x,?y) -> or(?y,?x) ] STEP 4 ES: [ T = or(?x_1,or(T,?z)), or(?x_2,?z) = or(?x_2,or(F,?z)) ] HS: [ or(or(?x,?y),?z) -> or(?x,or(?y,?z)), or(F,?x_2) -> ?x_2, or(T,?x_1) -> T, or(?x,?y) -> or(?y,?x) ] ES0: [ T = T, or(?x_2,?z) = or(?x_2,?z) ] HS0: [ or(or(?x,?y),?z) -> or(?x,or(?y,?z)), or(F,?x_2) -> ?x_2, or(T,?x_1) -> T, or(?x,?y) -> or(?y,?x) ] ES1: [ ] HS1: [ or(or(?x,?y),?z) -> or(?x,or(?y,?z)), or(F,?x_2) -> ?x_2, or(T,?x_1) -> T, or(?x,?y) -> or(?y,?x) ] Conj part consisits of inductive theorems of R0. examples/fromCops/cr/153.trs: Success(GCR) (7 msec.)