YES (ignored inputs)COMMENT translated from Cops 171 *** Computating Strongly Quasi-Reducible Parts *** TRS: [ +(0,?y) -> ?y, +(?x,0) -> ?x, +(s(?x),?y) -> s(+(?x,?y)), +(?x,s(?y)) -> +(s(?y),?x), +(?x,+(?y,?z)) -> +(+(?x,?y),?z), +(?x,?y) -> +(?y,?x), dbl(?x) -> +(?x,?x), dbl(+(?x,?y)) -> +(dbl(?x),dbl(?y)) ] Constructors: {0,s} Defined function symbols: {+,dbl} Constructor subsystem: [ ] Rule part & Conj Part: [ +(?x,0) -> ?x, +(?x,s(?y)) -> +(s(?y),?x), dbl(?x) -> +(?x,?x) ] [ +(0,?y) -> ?y, +(s(?x),?y) -> s(+(?x,?y)), +(?x,+(?y,?z)) -> +(+(?x,?y),?z), dbl(+(?x,?y)) -> +(dbl(?x),dbl(?y)), +(?x,?y) -> +(?y,?x) ] Rule part & Conj Part: [ +(0,?y) -> ?y, +(s(?x),?y) -> s(+(?x,?y)), dbl(?x) -> +(?x,?x) ] [ +(?x,0) -> ?x, +(?x,s(?y)) -> +(s(?y),?x), +(?x,+(?y,?z)) -> +(+(?x,?y),?z), dbl(+(?x,?y)) -> +(dbl(?x),dbl(?y)), +(?x,?y) -> +(?y,?x) ] *** Ground Confluence Check by Rewriting Induction *** Sort: {Nat} Signature: [ + : Nat,Nat -> Nat, 0 : Nat, s : Nat -> Nat, dbl : Nat -> Nat ] Rule Part: [ +(?x,0) -> ?x, +(?x,s(?y)) -> +(s(?y),?x), dbl(?x) -> +(?x,?x) ] Conjecture Part: [ +(0,?y) = ?y, +(s(?x),?y) = s(+(?x,?y)), +(?x,+(?y,?z)) = +(+(?x,?y),?z), dbl(+(?x,?y)) = +(dbl(?x),dbl(?y)), +(?x,?y) = +(?y,?x) ] Termination proof failed. *** Ground Confluence Check by Rewriting Induction *** Sort: {Nat} Signature: [ + : Nat,Nat -> Nat, 0 : Nat, s : Nat -> Nat, dbl : Nat -> Nat ] Rule Part: [ +(0,?y) -> ?y, +(s(?x),?y) -> s(+(?x,?y)), dbl(?x) -> +(?x,?x) ] Conjecture Part: [ +(?x,0) = ?x, +(?x,s(?y)) = +(s(?y),?x), +(?x,+(?y,?z)) = +(+(?x,?y),?z), dbl(+(?x,?y)) = +(dbl(?x),dbl(?y)), +(?x,?y) = +(?y,?x) ] Precedence (by weight): {(+,1),(0,3),(s,0),(dbl,2)} Rule part is confluent. R0 is ground confluent. Check conj part consists of inductive theorems of R0. Rules: [ +(0,?y) -> ?y, +(s(?x),?y) -> s(+(?x,?y)), dbl(?x) -> +(?x,?x) ] Conjectures: [ +(?x,0) = ?x, +(?x,s(?y)) = +(s(?y),?x), +(?x,+(?y,?z)) = +(+(?x,?y),?z), dbl(+(?x,?y)) = +(dbl(?x),dbl(?y)), +(?x,?y) = +(?y,?x) ] STEP 0 ES: [ +(?x,0) = ?x, +(?x,s(?y)) = +(s(?y),?x), +(?x,+(?y,?z)) = +(+(?x,?y),?z), dbl(+(?x,?y)) = +(dbl(?x),dbl(?y)), +(?x,?y) = +(?y,?x) ] HS: [ ] ES0: [ +(?x,0) = ?x, +(?x,s(?y)) = s(+(?y,?x)), +(?x,+(?y,?z)) = +(+(?x,?y),?z), +(+(?x,?y),+(?x,?y)) = +(+(?x,?x),+(?y,?y)), +(?x,?y) = +(?y,?x) ] HS0: [ ] ES1: [ +(?x,0) = ?x, +(?x,s(?y)) = s(+(?y,?x)), +(?x,+(?y,?z)) = +(+(?x,?y),?z), +(+(?x,?y),+(?x,?y)) = +(+(?x,?x),+(?y,?y)), +(?x,?y) = +(?y,?x) ] HS1: [ ] Expand +(?x,0) = ?x [ 0 = 0, s(+(?x_2,0)) = s(?x_2) ] ES2: [ 0 = 0, s(+(?x_2,0)) = s(?x_2), +(?x,?y) = +(?y,?x), +(+(?x,?y),+(?x,?y)) = +(+(?x,?x),+(?y,?y)), +(?x,+(?y,?z)) = +(+(?x,?y),?z), +(?x,s(?y)) = s(+(?y,?x)) ] HS2: [ +(?x,0) -> ?x ] STEP 1 ES: [ 0 = 0, s(+(?x_2,0)) = s(?x_2), +(?x,?y) = +(?y,?x), +(+(?x,?y),+(?x,?y)) = +(+(?x,?x),+(?y,?y)), +(?x,+(?y,?z)) = +(+(?x,?y),?z), +(?x,s(?y)) = s(+(?y,?x)) ] HS: [ +(?x,0) -> ?x ] ES0: [ 0 = 0, s(?x_2) = s(?x_2), +(?x,?y) = +(?y,?x), +(+(?x,?y),+(?x,?y)) = +(+(?x,?x),+(?y,?y)), +(?x,+(?y,?z)) = +(+(?x,?y),?z), +(?x,s(?y)) = s(+(?y,?x)) ] HS0: [ +(?x,0) -> ?x ] ES1: [ +(?x,?y) = +(?y,?x), +(+(?x,?y),+(?x,?y)) = +(+(?x,?x),+(?y,?y)), +(?x,+(?y,?z)) = +(+(?x,?y),?z), +(?x,s(?y)) = s(+(?y,?x)) ] HS1: [ +(?x,0) -> ?x ] Expand +(?x,?y) = +(?y,?x) [ ?y_1 = +(?y_1,0), s(+(?x_2,?y_2)) = +(?y_2,s(?x_2)) ] ES2: [ ?y_1 = +(?y_1,0), s(+(?x_2,?y_2)) = +(?y_2,s(?x_2)), +(?x,s(?y)) = s(+(?y,?x)), +(?x,+(?y,?z)) = +(+(?x,?y),?z), +(+(?x,?y),+(?x,?y)) = +(+(?x,?x),+(?y,?y)) ] HS2: [ +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] STEP 2 ES: [ ?y_1 = +(?y_1,0), s(+(?x_2,?y_2)) = +(?y_2,s(?x_2)), +(?x,s(?y)) = s(+(?y,?x)), +(?x,+(?y,?z)) = +(+(?x,?y),?z), +(+(?x,?y),+(?x,?y)) = +(+(?x,?x),+(?y,?y)) ] HS: [ +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] ES0: [ ?y_1 = ?y_1, s(+(?x_2,?y_2)) = +(?y_2,s(?x_2)), +(?x,s(?y)) = s(+(?y,?x)), +(?x,+(?y,?z)) = +(+(?x,?y),?z), +(+(?x,?y),+(?x,?y)) = +(+(?x,?x),+(?y,?y)) ] HS0: [ +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] ES1: [ s(+(?x_2,?y_2)) = +(?y_2,s(?x_2)), +(?x,s(?y)) = s(+(?y,?x)), +(?x,+(?y,?z)) = +(+(?x,?y),?z), +(+(?x,?y),+(?x,?y)) = +(+(?x,?x),+(?y,?y)) ] HS1: [ +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] Expand +(?y_2,s(?x_2)) = s(+(?x_2,?y_2)) [ s(?x) = s(+(?x,0)), s(+(?x_2,s(?x))) = s(+(?x,s(?x_2))) ] ES2: [ s(?x) = s(+(?x,0)), s(+(?x_2,s(?x))) = s(+(?x,s(?x_2))), +(+(?x,?y),+(?x,?y)) = +(+(?x,?x),+(?y,?y)), +(?x,+(?y,?z)) = +(+(?x,?y),?z), +(?x,s(?y)) = s(+(?y,?x)) ] HS2: [ +(?y_2,s(?x_2)) -> s(+(?x_2,?y_2)), +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] STEP 3 ES: [ s(?x) = s(+(?x,0)), s(+(?x_2,s(?x))) = s(+(?x,s(?x_2))), +(+(?x,?y),+(?x,?y)) = +(+(?x,?x),+(?y,?y)), +(?x,+(?y,?z)) = +(+(?x,?y),?z), +(?x,s(?y)) = s(+(?y,?x)) ] HS: [ +(?y_2,s(?x_2)) -> s(+(?x_2,?y_2)), +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] ES0: [ s(?x) = s(?x), s(s(+(?x,?x_2))) = s(s(+(?x_2,?x))), +(+(?x,?y),+(?x,?y)) = +(+(?x,?x),+(?y,?y)), +(?x,+(?y,?z)) = +(+(?x,?y),?z), s(+(?y,?x)) = s(+(?y,?x)) ] HS0: [ +(?y_2,s(?x_2)) -> s(+(?x_2,?y_2)), +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] ES1: [ +(+(?x,?y),+(?x,?y)) = +(+(?x,?x),+(?y,?y)), +(?x,+(?y,?z)) = +(+(?x,?y),?z) ] HS1: [ +(?y_2,s(?x_2)) -> s(+(?x_2,?y_2)), +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] Expand +(?x,+(?y,?z)) = +(+(?x,?y),?z) [ +(?x,?y_1) = +(+(?x,0),?y_1), +(?x,s(+(?x_2,?y_2))) = +(+(?x,s(?x_2)),?y_2) ] ES2: [ +(?x,?y_1) = +(+(?x,0),?y_1), s(+(+(?x_2,?y_2),?x)) = +(+(?x,s(?x_2)),?y_2), +(+(?x,?y),+(?x,?y)) = +(+(?x,?x),+(?y,?y)) ] HS2: [ +(?x,+(?y,?z)) -> +(+(?x,?y),?z), +(?y_2,s(?x_2)) -> s(+(?x_2,?y_2)), +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] STEP 4 ES: [ +(?x,?y_1) = +(+(?x,0),?y_1), s(+(+(?x_2,?y_2),?x)) = +(+(?x,s(?x_2)),?y_2), +(+(?x,?y),+(?x,?y)) = +(+(?x,?x),+(?y,?y)) ] HS: [ +(?x,+(?y,?z)) -> +(+(?x,?y),?z), +(?y_2,s(?x_2)) -> s(+(?x_2,?y_2)), +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] ES0: [ +(?x,?y_1) = +(?x,?y_1), s(+(+(?x_2,?y_2),?x)) = s(+(+(?x_2,?x),?y_2)), +(+(?x,?y),+(?x,?y)) = +(+(?x,?x),+(?y,?y)) ] HS0: [ +(?x,+(?y,?z)) -> +(+(?x,?y),?z), +(?y_2,s(?x_2)) -> s(+(?x_2,?y_2)), +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] ES1: [ s(+(+(?x_2,?y_2),?x)) = s(+(+(?x_2,?x),?y_2)), +(+(?x,?y),+(?x,?y)) = +(+(?x,?x),+(?y,?y)) ] HS1: [ +(?x,+(?y,?z)) -> +(+(?x,?y),?z), +(?y_2,s(?x_2)) -> s(+(?x_2,?y_2)), +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] Expand s(+(+(?x_2,?y_2),?x)) = s(+(+(?x_2,?x),?y_2)) [ s(+(?y_3,?x)) = s(+(+(0,?x),?y_3)), s(+(s(+(?x_4,?y_4)),?x)) = s(+(+(s(?x_4),?x),?y_4)) ] ES2: [ s(+(?y_3,?x)) = s(+(+(0,?x),?y_3)), s(s(+(+(?x_4,?y_4),?x))) = s(+(+(s(?x_4),?x),?y_4)), +(+(?x,?y),+(?x,?y)) = +(+(?x,?x),+(?y,?y)) ] HS2: [ s(+(+(?x_2,?y_2),?x)) -> s(+(+(?x_2,?x),?y_2)), +(?x,+(?y,?z)) -> +(+(?x,?y),?z), +(?y_2,s(?x_2)) -> s(+(?x_2,?y_2)), +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] STEP 5 ES: [ s(+(?y_3,?x)) = s(+(+(0,?x),?y_3)), s(s(+(+(?x_4,?y_4),?x))) = s(+(+(s(?x_4),?x),?y_4)), +(+(?x,?y),+(?x,?y)) = +(+(?x,?x),+(?y,?y)) ] HS: [ s(+(+(?x_2,?y_2),?x)) -> s(+(+(?x_2,?x),?y_2)), +(?x,+(?y,?z)) -> +(+(?x,?y),?z), +(?y_2,s(?x_2)) -> s(+(?x_2,?y_2)), +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] ES0: [ s(+(?y_3,?x)) = s(+(?x,?y_3)), s(s(+(+(?x_4,?y_4),?x))) = s(s(+(+(?x_4,?x),?y_4))), +(+(?x,?y),+(?x,?y)) = +(+(?x,?x),+(?y,?y)) ] HS0: [ s(+(+(?x_2,?y_2),?x)) -> s(+(+(?x_2,?x),?y_2)), +(?x,+(?y,?z)) -> +(+(?x,?y),?z), +(?y_2,s(?x_2)) -> s(+(?x_2,?y_2)), +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] ES1: [ +(+(?x,?y),+(?x,?y)) = +(+(?x,?x),+(?y,?y)) ] HS1: [ s(+(+(?x_2,?y_2),?x)) -> s(+(+(?x_2,?x),?y_2)), +(?x,+(?y,?z)) -> +(+(?x,?y),?z), +(?y_2,s(?x_2)) -> s(+(?x_2,?y_2)), +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] Expand +(+(?x,?y),+(?x,?y)) = +(+(?x,?x),+(?y,?y)) [ +(?y_1,+(0,?y_1)) = +(+(0,0),+(?y_1,?y_1)), +(s(+(?x_2,?y_2)),+(s(?x_2),?y_2)) = +(+(s(?x_2),s(?x_2)),+(?y_2,?y_2)) ] ES2: [ +(?y_1,?y_1) = +(+(0,0),+(?y_1,?y_1)), s(s(+(+(?x_2,?y_2),+(?x_2,?y_2)))) = +(+(s(?x_2),s(?x_2)),+(?y_2,?y_2)) ] HS2: [ +(+(?x,?y),+(?x,?y)) -> +(+(?x,?x),+(?y,?y)), s(+(+(?x_2,?y_2),?x)) -> s(+(+(?x_2,?x),?y_2)), +(?x,+(?y,?z)) -> +(+(?x,?y),?z), +(?y_2,s(?x_2)) -> s(+(?x_2,?y_2)), +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] STEP 6 ES: [ +(?y_1,?y_1) = +(+(0,0),+(?y_1,?y_1)), s(s(+(+(?x_2,?y_2),+(?x_2,?y_2)))) = +(+(s(?x_2),s(?x_2)),+(?y_2,?y_2)) ] HS: [ +(+(?x,?y),+(?x,?y)) -> +(+(?x,?x),+(?y,?y)), s(+(+(?x_2,?y_2),?x)) -> s(+(+(?x_2,?x),?y_2)), +(?x,+(?y,?z)) -> +(+(?x,?y),?z), +(?y_2,s(?x_2)) -> s(+(?x_2,?y_2)), +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] ES0: [ +(?y_1,?y_1) = +(?y_1,?y_1), s(s(+(+(?x_2,?y_2),+(?x_2,?y_2)))) = s(s(+(+(?x_2,?x_2),+(?y_2,?y_2)))) ] HS0: [ +(+(?x,?y),+(?x,?y)) -> +(+(?x,?x),+(?y,?y)), s(+(+(?x_2,?y_2),?x)) -> s(+(+(?x_2,?x),?y_2)), +(?x,+(?y,?z)) -> +(+(?x,?y),?z), +(?y_2,s(?x_2)) -> s(+(?x_2,?y_2)), +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] ES1: [ ] HS1: [ +(+(?x,?y),+(?x,?y)) -> +(+(?x,?x),+(?y,?y)), s(+(+(?x_2,?y_2),?x)) -> s(+(+(?x_2,?x),?y_2)), +(?x,+(?y,?z)) -> +(+(?x,?y),?z), +(?y_2,s(?x_2)) -> s(+(?x_2,?y_2)), +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] Conj part consisits of inductive theorems of R0. examples/fromCops/cr/171.trs: Success(GCR) (13 msec.)