YES (ignored inputs)COMMENT translated from Cops 199 *** Computating Strongly Quasi-Reducible Parts *** TRS: [ +(0,?x) -> ?x, +(+(?x,?y),?z) -> +(?x,+(?y,?z)), +(?x,?y) -> +(?y,?x) ] Constructors: {0} Defined function symbols: {+} Constructor subsystem: [ ] Rule part & Conj Part: [ +(0,?x) -> ?x ] [ +(+(?x,?y),?z) -> +(?x,+(?y,?z)), +(?x,?y) -> +(?y,?x) ] *** Ground Confluence Check by Rewriting Induction *** Sort: {Elem} Signature: [ + : Elem,Elem -> Elem, 0 : Elem ] Rule Part: [ +(0,?x) -> ?x ] Conjecture Part: [ +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,?y) = +(?y,?x) ] Precedence (by weight): {(+,0),(0,1)} Rule part is confluent. R0 is ground confluent. Check conj part consists of inductive theorems of R0. Rules: [ +(0,?x) -> ?x ] Conjectures: [ +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,?y) = +(?y,?x) ] STEP 0 ES: [ +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,?y) = +(?y,?x) ] HS: [ ] ES0: [ +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,?y) = +(?y,?x) ] HS0: [ ] ES1: [ +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,?y) = +(?y,?x) ] HS1: [ ] Expand +(?x,?y) = +(?y,?x) [ ?x_1 = +(?x_1,0) ] ES2: [ ?x_1 = +(?x_1,0), +(+(?x,?y),?z) = +(?x,+(?y,?z)) ] HS2: [ +(?x,?y) -> +(?y,?x) ] STEP 1 ES: [ ?x_1 = +(?x_1,0), +(+(?x,?y),?z) = +(?x,+(?y,?z)) ] HS: [ +(?x,?y) -> +(?y,?x) ] ES0: [ ?x_1 = +(?x_1,0), +(+(?x,?y),?z) = +(?x,+(?y,?z)) ] HS0: [ +(?x,?y) -> +(?y,?x) ] ES1: [ ?x_1 = +(?x_1,0), +(+(?x,?y),?z) = +(?x,+(?y,?z)) ] HS1: [ +(?x,?y) -> +(?y,?x) ] Expand +(?x_1,0) = ?x_1 [ 0 = 0 ] ES2: [ 0 = 0, +(+(?x,?y),?z) = +(?x,+(?y,?z)) ] HS2: [ +(?x_1,0) -> ?x_1, +(?x,?y) -> +(?y,?x) ] STEP 2 ES: [ 0 = 0, +(+(?x,?y),?z) = +(?x,+(?y,?z)) ] HS: [ +(?x_1,0) -> ?x_1, +(?x,?y) -> +(?y,?x) ] ES0: [ 0 = 0, +(+(?x,?y),?z) = +(?x,+(?y,?z)) ] HS0: [ +(?x_1,0) -> ?x_1, +(?x,?y) -> +(?y,?x) ] ES1: [ +(+(?x,?y),?z) = +(?x,+(?y,?z)) ] HS1: [ +(?x_1,0) -> ?x_1, +(?x,?y) -> +(?y,?x) ] Expand +(+(?x,?y),?z) = +(?x,+(?y,?z)) [ +(?x_1,?z) = +(0,+(?x_1,?z)) ] ES2: [ +(?x_1,?z) = +(0,+(?x_1,?z)) ] HS2: [ +(+(?x,?y),?z) -> +(?x,+(?y,?z)), +(?x_1,0) -> ?x_1, +(?x,?y) -> +(?y,?x) ] STEP 3 ES: [ +(?x_1,?z) = +(0,+(?x_1,?z)) ] HS: [ +(+(?x,?y),?z) -> +(?x,+(?y,?z)), +(?x_1,0) -> ?x_1, +(?x,?y) -> +(?y,?x) ] ES0: [ +(?x_1,?z) = +(?x_1,?z) ] HS0: [ +(+(?x,?y),?z) -> +(?x,+(?y,?z)), +(?x_1,0) -> ?x_1, +(?x,?y) -> +(?y,?x) ] ES1: [ ] HS1: [ +(+(?x,?y),?z) -> +(?x,+(?y,?z)), +(?x_1,0) -> ?x_1, +(?x,?y) -> +(?y,?x) ] Conj part consisits of inductive theorems of R0. examples/fromCops/cr/199.trs: Success(GCR) (5 msec.)