YES (ignored inputs)COMMENT translated from Cops 4 *** Computating Strongly Quasi-Reducible Parts *** TRS: [ or(true,true) -> true, or(?x,?y) -> or(?y,?x) ] Constructors: {true} Defined function symbols: {or} Constructor subsystem: [ ] Rule part & Conj Part: [ or(true,true) -> true ] [ or(?x,?y) -> or(?y,?x) ] *** Ground Confluence Check by Rewriting Induction *** Sort: {Bool} Signature: [ or : Bool,Bool -> Bool, true : Bool ] Rule Part: [ or(true,true) -> true ] Conjecture Part: [ or(?x,?y) = or(?y,?x) ] Precedence (by weight): {(or,0),(true,1)} Rule part is confluent. R0 is ground confluent. Check conj part consists of inductive theorems of R0. Rules: [ or(true,true) -> true ] Conjectures: [ or(?x,?y) = or(?y,?x) ] STEP 0 ES: [ or(?x,?y) = or(?y,?x) ] HS: [ ] ES0: [ or(?x,?y) = or(?y,?x) ] HS0: [ ] ES1: [ or(?x,?y) = or(?y,?x) ] HS1: [ ] Expand or(?x,?y) = or(?y,?x) [ true = or(true,true) ] ES2: [ true = or(true,true) ] HS2: [ or(?x,?y) -> or(?y,?x) ] STEP 1 ES: [ true = or(true,true) ] HS: [ or(?x,?y) -> or(?y,?x) ] ES0: [ true = true ] HS0: [ or(?x,?y) -> or(?y,?x) ] ES1: [ ] HS1: [ or(?x,?y) -> or(?y,?x) ] Conj part consisits of inductive theorems of R0. examples/fromCops/cr/4.trs: Success(GCR) (8 msec.)