MAYBE (ignored inputs)COMMENT translated from Cops 60 *** Computating Strongly Quasi-Reducible Parts *** TRS: [ +(?x,+(?y,?z)) -> +(+(?x,?y),?z), +(+(?x,?y),?z) -> +(?x,+(?y,?z)), +(?x,?y) -> +(?y,?x), +(s(?x),?y) -> +(?x,s(?y)), +(?x,s(?y)) -> +(s(?x),?y), *(?x,s(?y)) -> +(?x,*(?x,?y)), *(s(?x),?y) -> +(*(?x,?y),?y), *(?x,?y) -> *(?y,?x), sq(?x) -> *(?x,?x), sq(s(?x)) -> +(*(?x,?x),s(+(?x,?x))) ] Constructors: {s} Defined function symbols: {*,+,sq} Constructor subsystem: [ ] Rule part & Conj Part: [ +(?x,s(?y)) -> +(s(?x),?y), *(s(?x),?y) -> +(*(?x,?y),?y), sq(s(?x)) -> +(*(?x,?x),s(+(?x,?x))) ] [ +(s(?x),?y) -> +(?x,s(?y)), *(?x,s(?y)) -> +(?x,*(?x,?y)), sq(?x) -> *(?x,?x), +(?x,+(?y,?z)) -> +(+(?x,?y),?z), +(+(?x,?y),?z) -> +(?x,+(?y,?z)), +(?x,?y) -> +(?y,?x), *(?x,?y) -> *(?y,?x) ] Rule part & Conj Part: [ +(?x,s(?y)) -> +(s(?x),?y), *(?x,s(?y)) -> +(?x,*(?x,?y)), sq(s(?x)) -> +(*(?x,?x),s(+(?x,?x))) ] [ +(s(?x),?y) -> +(?x,s(?y)), *(s(?x),?y) -> +(*(?x,?y),?y), sq(?x) -> *(?x,?x), +(?x,+(?y,?z)) -> +(+(?x,?y),?z), +(+(?x,?y),?z) -> +(?x,+(?y,?z)), +(?x,?y) -> +(?y,?x), *(?x,?y) -> *(?y,?x) ] Rule part & Conj Part: [ +(s(?x),?y) -> +(?x,s(?y)), *(s(?x),?y) -> +(*(?x,?y),?y), sq(s(?x)) -> +(*(?x,?x),s(+(?x,?x))) ] [ +(?x,s(?y)) -> +(s(?x),?y), *(?x,s(?y)) -> +(?x,*(?x,?y)), sq(?x) -> *(?x,?x), +(?x,+(?y,?z)) -> +(+(?x,?y),?z), +(+(?x,?y),?z) -> +(?x,+(?y,?z)), +(?x,?y) -> +(?y,?x), *(?x,?y) -> *(?y,?x) ] Rule part & Conj Part: [ +(s(?x),?y) -> +(?x,s(?y)), *(?x,s(?y)) -> +(?x,*(?x,?y)), sq(s(?x)) -> +(*(?x,?x),s(+(?x,?x))) ] [ +(?x,s(?y)) -> +(s(?x),?y), *(s(?x),?y) -> +(*(?x,?y),?y), sq(?x) -> *(?x,?x), +(?x,+(?y,?z)) -> +(+(?x,?y),?z), +(+(?x,?y),?z) -> +(?x,+(?y,?z)), +(?x,?y) -> +(?y,?x), *(?x,?y) -> *(?y,?x) ] Rule part & Conj Part: [ +(?x,s(?y)) -> +(s(?x),?y), *(s(?x),?y) -> +(*(?x,?y),?y), sq(?x) -> *(?x,?x) ] [ +(s(?x),?y) -> +(?x,s(?y)), *(?x,s(?y)) -> +(?x,*(?x,?y)), sq(s(?x)) -> +(*(?x,?x),s(+(?x,?x))), +(?x,+(?y,?z)) -> +(+(?x,?y),?z), +(+(?x,?y),?z) -> +(?x,+(?y,?z)), +(?x,?y) -> +(?y,?x), *(?x,?y) -> *(?y,?x) ] Rule part & Conj Part: [ +(?x,s(?y)) -> +(s(?x),?y), *(?x,s(?y)) -> +(?x,*(?x,?y)), sq(?x) -> *(?x,?x) ] [ +(s(?x),?y) -> +(?x,s(?y)), *(s(?x),?y) -> +(*(?x,?y),?y), sq(s(?x)) -> +(*(?x,?x),s(+(?x,?x))), +(?x,+(?y,?z)) -> +(+(?x,?y),?z), +(+(?x,?y),?z) -> +(?x,+(?y,?z)), +(?x,?y) -> +(?y,?x), *(?x,?y) -> *(?y,?x) ] Rule part & Conj Part: [ +(s(?x),?y) -> +(?x,s(?y)), *(s(?x),?y) -> +(*(?x,?y),?y), sq(?x) -> *(?x,?x) ] [ +(?x,s(?y)) -> +(s(?x),?y), *(?x,s(?y)) -> +(?x,*(?x,?y)), sq(s(?x)) -> +(*(?x,?x),s(+(?x,?x))), +(?x,+(?y,?z)) -> +(+(?x,?y),?z), +(+(?x,?y),?z) -> +(?x,+(?y,?z)), +(?x,?y) -> +(?y,?x), *(?x,?y) -> *(?y,?x) ] Rule part & Conj Part: [ +(s(?x),?y) -> +(?x,s(?y)), *(?x,s(?y)) -> +(?x,*(?x,?y)), sq(?x) -> *(?x,?x) ] [ +(?x,s(?y)) -> +(s(?x),?y), *(s(?x),?y) -> +(*(?x,?y),?y), sq(s(?x)) -> +(*(?x,?x),s(+(?x,?x))), +(?x,+(?y,?z)) -> +(+(?x,?y),?z), +(+(?x,?y),?z) -> +(?x,+(?y,?z)), +(?x,?y) -> +(?y,?x), *(?x,?y) -> *(?y,?x) ] *** Ground Confluence Check by Rewriting Induction *** Sort: {Nat} Signature: [ * : Nat,Nat -> Nat, + : Nat,Nat -> Nat, s : Nat -> Nat, sq : Nat -> Nat ] Rule Part: [ +(?x,s(?y)) -> +(s(?x),?y), *(s(?x),?y) -> +(*(?x,?y),?y), sq(s(?x)) -> +(*(?x,?x),s(+(?x,?x))) ] Conjecture Part: [ +(s(?x),?y) = +(?x,s(?y)), *(?x,s(?y)) = +(?x,*(?x,?y)), sq(?x) = *(?x,?x), +(?x,+(?y,?z)) = +(+(?x,?y),?z), +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,?y) = +(?y,?x), *(?x,?y) = *(?y,?x) ] Termination proof failed. *** Ground Confluence Check by Rewriting Induction *** Sort: {Nat} Signature: [ * : Nat,Nat -> Nat, + : Nat,Nat -> Nat, s : Nat -> Nat, sq : Nat -> Nat ] Rule Part: [ +(?x,s(?y)) -> +(s(?x),?y), *(?x,s(?y)) -> +(?x,*(?x,?y)), sq(s(?x)) -> +(*(?x,?x),s(+(?x,?x))) ] Conjecture Part: [ +(s(?x),?y) = +(?x,s(?y)), *(s(?x),?y) = +(*(?x,?y),?y), sq(?x) = *(?x,?x), +(?x,+(?y,?z)) = +(+(?x,?y),?z), +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,?y) = +(?y,?x), *(?x,?y) = *(?y,?x) ] Termination proof failed. *** Ground Confluence Check by Rewriting Induction *** Sort: {Nat} Signature: [ * : Nat,Nat -> Nat, + : Nat,Nat -> Nat, s : Nat -> Nat, sq : Nat -> Nat ] Rule Part: [ +(s(?x),?y) -> +(?x,s(?y)), *(s(?x),?y) -> +(*(?x,?y),?y), sq(s(?x)) -> +(*(?x,?x),s(+(?x,?x))) ] Conjecture Part: [ +(?x,s(?y)) = +(s(?x),?y), *(?x,s(?y)) = +(?x,*(?x,?y)), sq(?x) = *(?x,?x), +(?x,+(?y,?z)) = +(+(?x,?y),?z), +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,?y) = +(?y,?x), *(?x,?y) = *(?y,?x) ] Termination proof failed. *** Ground Confluence Check by Rewriting Induction *** Sort: {Nat} Signature: [ * : Nat,Nat -> Nat, + : Nat,Nat -> Nat, s : Nat -> Nat, sq : Nat -> Nat ] Rule Part: [ +(s(?x),?y) -> +(?x,s(?y)), *(?x,s(?y)) -> +(?x,*(?x,?y)), sq(s(?x)) -> +(*(?x,?x),s(+(?x,?x))) ] Conjecture Part: [ +(?x,s(?y)) = +(s(?x),?y), *(s(?x),?y) = +(*(?x,?y),?y), sq(?x) = *(?x,?x), +(?x,+(?y,?z)) = +(+(?x,?y),?z), +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,?y) = +(?y,?x), *(?x,?y) = *(?y,?x) ] Termination proof failed. *** Ground Confluence Check by Rewriting Induction *** Sort: {Nat} Signature: [ * : Nat,Nat -> Nat, + : Nat,Nat -> Nat, s : Nat -> Nat, sq : Nat -> Nat ] Rule Part: [ +(?x,s(?y)) -> +(s(?x),?y), *(s(?x),?y) -> +(*(?x,?y),?y), sq(?x) -> *(?x,?x) ] Conjecture Part: [ +(s(?x),?y) = +(?x,s(?y)), *(?x,s(?y)) = +(?x,*(?x,?y)), sq(s(?x)) = +(*(?x,?x),s(+(?x,?x))), +(?x,+(?y,?z)) = +(+(?x,?y),?z), +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,?y) = +(?y,?x), *(?x,?y) = *(?y,?x) ] Termination proof failed. *** Ground Confluence Check by Rewriting Induction *** Sort: {Nat} Signature: [ * : Nat,Nat -> Nat, + : Nat,Nat -> Nat, s : Nat -> Nat, sq : Nat -> Nat ] Rule Part: [ +(?x,s(?y)) -> +(s(?x),?y), *(?x,s(?y)) -> +(?x,*(?x,?y)), sq(?x) -> *(?x,?x) ] Conjecture Part: [ +(s(?x),?y) = +(?x,s(?y)), *(s(?x),?y) = +(*(?x,?y),?y), sq(s(?x)) = +(*(?x,?x),s(+(?x,?x))), +(?x,+(?y,?z)) = +(+(?x,?y),?z), +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,?y) = +(?y,?x), *(?x,?y) = *(?y,?x) ] Termination proof failed. *** Ground Confluence Check by Rewriting Induction *** Sort: {Nat} Signature: [ * : Nat,Nat -> Nat, + : Nat,Nat -> Nat, s : Nat -> Nat, sq : Nat -> Nat ] Rule Part: [ +(s(?x),?y) -> +(?x,s(?y)), *(s(?x),?y) -> +(*(?x,?y),?y), sq(?x) -> *(?x,?x) ] Conjecture Part: [ +(?x,s(?y)) = +(s(?x),?y), *(?x,s(?y)) = +(?x,*(?x,?y)), sq(s(?x)) = +(*(?x,?x),s(+(?x,?x))), +(?x,+(?y,?z)) = +(+(?x,?y),?z), +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,?y) = +(?y,?x), *(?x,?y) = *(?y,?x) ] Termination proof failed. *** Ground Confluence Check by Rewriting Induction *** Sort: {Nat} Signature: [ * : Nat,Nat -> Nat, + : Nat,Nat -> Nat, s : Nat -> Nat, sq : Nat -> Nat ] Rule Part: [ +(s(?x),?y) -> +(?x,s(?y)), *(?x,s(?y)) -> +(?x,*(?x,?y)), sq(?x) -> *(?x,?x) ] Conjecture Part: [ +(?x,s(?y)) = +(s(?x),?y), *(s(?x),?y) = +(*(?x,?y),?y), sq(s(?x)) = +(*(?x,?x),s(+(?x,?x))), +(?x,+(?y,?z)) = +(+(?x,?y),?z), +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,?y) = +(?y,?x), *(?x,?y) = *(?y,?x) ] Termination proof failed. examples/fromCops/cr/60.trs: Failure(unknown) (48 msec.)