YES (ignored inputs)COMMENT translated from Cops 13 *** Computating Strongly Quasi-Reducible Parts *** TRS: [ f(f(?x,?y),?z) -> f(?x,f(?y,?z)), f(?x,1) -> ?x ] Constructors: {1} Defined function symbols: {f} Constructor subsystem: [ ] Rule part & Conj Part: [ f(?x,1) -> ?x ] [ f(f(?x,?y),?z) -> f(?x,f(?y,?z)) ] *** Ground Confluence Check by Rewriting Induction *** Sort: {Elem} Signature: [ 1 : Elem, f : Elem,Elem -> Elem ] Rule Part: [ f(?x,1) -> ?x ] Conjecture Part: [ f(f(?x,?y),?z) = f(?x,f(?y,?z)) ] Precedence (by weight): {(1,0),(f,1)} Rule part is confluent. R0 is ground confluent. Check conj part consists of inductive theorems of R0. Rules: [ f(?x,1) -> ?x ] Conjectures: [ f(f(?x,?y),?z) = f(?x,f(?y,?z)) ] STEP 0 ES: [ f(f(?x,?y),?z) = f(?x,f(?y,?z)) ] HS: [ ] ES0: [ f(f(?x,?y),?z) = f(?x,f(?y,?z)) ] HS0: [ ] ES1: [ f(f(?x,?y),?z) = f(?x,f(?y,?z)) ] HS1: [ ] Expand f(f(?x,?y),?z) = f(?x,f(?y,?z)) [ f(?x_1,?z) = f(?x_1,f(1,?z)) ] ES2: [ f(?x_1,?z) = f(?x_1,f(1,?z)) ] HS2: [ f(f(?x,?y),?z) -> f(?x,f(?y,?z)) ] STEP 1 ES: [ f(?x_1,?z) = f(?x_1,f(1,?z)) ] HS: [ f(f(?x,?y),?z) -> f(?x,f(?y,?z)) ] ES0: [ f(?x_1,?z) = f(?x_1,f(1,?z)) ] HS0: [ f(f(?x,?y),?z) -> f(?x,f(?y,?z)) ] ES1: [ f(?x_1,?z) = f(?x_1,f(1,?z)) ] HS1: [ f(f(?x,?y),?z) -> f(?x,f(?y,?z)) ] Expand f(?x_1,f(1,?z)) = f(?x_1,?z) [ f(?x_1,1) = f(?x_1,1) ] ES2: [ ?x_1 = f(?x_1,1) ] HS2: [ f(?x_1,f(1,?z)) -> f(?x_1,?z), f(f(?x,?y),?z) -> f(?x,f(?y,?z)) ] STEP 2 ES: [ ?x_1 = f(?x_1,1) ] HS: [ f(?x_1,f(1,?z)) -> f(?x_1,?z), f(f(?x,?y),?z) -> f(?x,f(?y,?z)) ] ES0: [ ?x_1 = ?x_1 ] HS0: [ f(?x_1,f(1,?z)) -> f(?x_1,?z), f(f(?x,?y),?z) -> f(?x,f(?y,?z)) ] ES1: [ ] HS1: [ f(?x_1,f(1,?z)) -> f(?x_1,?z), f(f(?x,?y),?z) -> f(?x,f(?y,?z)) ] Conj part consisits of inductive theorems of R0. examples/fromCops/noncr/13.trs: Success(GCR) (4 msec.)