YES (ignored inputs)COMMENT translated from Cops 160 *** Computating Strongly Quasi-Reducible Parts *** TRS: [ +(?x,0) -> ?x, +(?x,s(?y)) -> s(+(?x,?y)), +(?x,+(?y,?z)) -> +(+(?x,?y),?z), +(+(?x,?y),?z) -> +(?x,+(?y,?z)) ] Constructors: {0,s} Defined function symbols: {+} Constructor subsystem: [ ] Rule part & Conj Part: [ +(?x,0) -> ?x, +(?x,s(?y)) -> s(+(?x,?y)) ] [ +(?x,+(?y,?z)) -> +(+(?x,?y),?z), +(+(?x,?y),?z) -> +(?x,+(?y,?z)) ] *** Ground Confluence Check by Rewriting Induction *** Sort: {Nat} Signature: [ + : Nat,Nat -> Nat, 0 : Nat, s : Nat -> Nat ] Rule Part: [ +(?x,0) -> ?x, +(?x,s(?y)) -> s(+(?x,?y)) ] Conjecture Part: [ +(?x,+(?y,?z)) = +(+(?x,?y),?z), +(+(?x,?y),?z) = +(?x,+(?y,?z)) ] Precedence (by weight): {(+,3),(0,2),(s,0)} Rule part is confluent. R0 is ground confluent. Check conj part consists of inductive theorems of R0. Rules: [ +(?x,0) -> ?x, +(?x,s(?y)) -> s(+(?x,?y)) ] Conjectures: [ +(?x,+(?y,?z)) = +(+(?x,?y),?z), +(+(?x,?y),?z) = +(?x,+(?y,?z)) ] STEP 0 ES: [ +(?x,+(?y,?z)) = +(+(?x,?y),?z), +(+(?x,?y),?z) = +(?x,+(?y,?z)) ] HS: [ ] ES0: [ +(?x,+(?y,?z)) = +(+(?x,?y),?z), +(+(?x,?y),?z) = +(?x,+(?y,?z)) ] HS0: [ ] ES1: [ +(?x,+(?y,?z)) = +(+(?x,?y),?z), +(+(?x,?y),?z) = +(?x,+(?y,?z)) ] HS1: [ ] Expand +(?x,+(?y,?z)) = +(+(?x,?y),?z) [ +(?x,?x_1) = +(+(?x,?x_1),0), +(?x,s(+(?x_2,?y_2))) = +(+(?x,?x_2),s(?y_2)) ] ES2: [ +(?x,?x_1) = +(+(?x,?x_1),0), s(+(?x,+(?x_2,?y_2))) = +(+(?x,?x_2),s(?y_2)), +(+(?x,?y),?z) = +(?x,+(?y,?z)) ] HS2: [ +(?x,+(?y,?z)) -> +(+(?x,?y),?z) ] STEP 1 ES: [ +(?x,?x_1) = +(+(?x,?x_1),0), s(+(?x,+(?x_2,?y_2))) = +(+(?x,?x_2),s(?y_2)), +(+(?x,?y),?z) = +(?x,+(?y,?z)) ] HS: [ +(?x,+(?y,?z)) -> +(+(?x,?y),?z) ] ES0: [ +(?x,?x_1) = +(?x,?x_1), s(+(?x,+(?x_2,?y_2))) = s(+(+(?x,?x_2),?y_2)), +(+(?x,?y),?z) = +(?x,+(?y,?z)) ] HS0: [ +(?x,+(?y,?z)) -> +(+(?x,?y),?z) ] ES1: [ ] HS1: [ +(?x,+(?y,?z)) -> +(+(?x,?y),?z) ] Conj part consisits of inductive theorems of R0. examples/fromCops/open/160.trs: Success(GCR) (10 msec.)