MAYBE *** Computating Strongly Quasi-Reducible Parts *** TRS: [ zero(0) -> true, zero(s(?x)) -> false, if(true,?y,?z) -> ?y, if(false,?y,?z) -> ?z, f(0) -> 0, f(?x) -> if(zero(?x),s(0),0) ] Constructors: {0,s,true,false} Defined function symbols: {f,if,zero} Constructor subsystem: [ ] Rule part & Conj Part: [ zero(0) -> true, zero(s(?x)) -> false, if(true,?y,?z) -> ?y, if(false,?y,?z) -> ?z, f(?x) -> if(zero(?x),s(0),0) ] [ f(0) -> 0 ] Trying with: R: [ zero(0) -> true, zero(s(?x)) -> false, if(true,?y,?z) -> ?y, if(false,?y,?z) -> ?z, f(?x) -> if(zero(?x),s(0),0) ] E: [ f(0) = 0 ] *** Ground Confluence Check by Rewriting Induction *** Sort: {Nat,Bool} Signature: [ zero : Nat -> Bool, if : Bool,Nat,Nat -> Nat, f : Nat -> Nat, s : Nat -> Nat, 0 : Nat, true : Bool, false : Bool ] Rule Part: [ zero(0) -> true, zero(s(?x)) -> false, if(true,?y,?z) -> ?y, if(false,?y,?z) -> ?z, f(?x) -> if(zero(?x),s(0),0) ] Conjecture Part: [ f(0) = 0 ] Precedence (by weight): {(0,4),(f,7),(s,3),(if,1),(true,0),(zero,5),(false,2)} Rule part is confluent. R0 is ground confluent. Check conj part consists of inductive theorems of R0. Rules: [ zero(0) -> true, zero(s(?x)) -> false, if(true,?y,?z) -> ?y, if(false,?y,?z) -> ?z, f(?x) -> if(zero(?x),s(0),0) ] Conjectures: [ f(0) = 0 ] STEP 0 ES: [ f(0) = 0 ] HS: [ ] ES0: [ s(0) = 0 ] HS0: [ ] ES1: [ s(0) = 0 ] HS1: [ ] No equation to expand Failed to prove conj part consists of inductive theorems of R0. new/gncr.trs: Failure(unknown) (184 msec.)