MAYBE *** Computating Strongly Quasi-Reducible Parts *** TRS: [ null(nil) -> true, null(cons(?x,?xs)) -> false, hd(nil) -> 0, hd(cons(?x,?xs)) -> ?x, tl(nil) -> nil, tl(cons(?x,?xs)) -> ?xs, inc(?xs) -> if(null(?xs),nil,cons(s(hd(?xs)),inc(tl(?xs)))), if(true,?ys,?zs) -> ?ys, if(false,?ys,?zs) -> ?zs, nil -> inc(nil), inc(cons(?x,?xs)) -> cons(s(?x),inc(?xs)) ] constructor detection timeout; switch to an approximation. Constructors: {0,s,cons,true,false} Defined function symbols: {hd,if,tl,inc,nil,null} Constructor subsystem: [ ] Rule part & Conj Part: [ null(cons(?x,?xs)) -> false, hd(cons(?x,?xs)) -> ?x, tl(cons(?x,?xs)) -> ?xs, if(true,?ys,?zs) -> ?ys, if(false,?ys,?zs) -> ?zs, nil -> inc(nil), inc(?xs) -> if(null(?xs),nil,cons(s(hd(?xs)),inc(tl(?xs)))) ] [ inc(cons(?x,?xs)) -> cons(s(?x),inc(?xs)), null(nil) -> true, hd(nil) -> 0, tl(nil) -> nil ] Rule part & Conj Part: [ null(cons(?x,?xs)) -> false, hd(cons(?x,?xs)) -> ?x, tl(cons(?x,?xs)) -> ?xs, if(true,?ys,?zs) -> ?ys, if(false,?ys,?zs) -> ?zs, nil -> inc(nil), inc(cons(?x,?xs)) -> cons(s(?x),inc(?xs)) ] [ inc(?xs) -> if(null(?xs),nil,cons(s(hd(?xs)),inc(tl(?xs)))), null(nil) -> true, hd(nil) -> 0, tl(nil) -> nil ] Trying with: R: [ null(cons(?x,?xs)) -> false, hd(cons(?x,?xs)) -> ?x, tl(cons(?x,?xs)) -> ?xs, if(true,?ys,?zs) -> ?ys, if(false,?ys,?zs) -> ?zs, nil -> inc(nil), inc(?xs) -> if(null(?xs),nil,cons(s(hd(?xs)),inc(tl(?xs)))) ] E: [ inc(cons(?x,?xs)) = cons(s(?x),inc(?xs)), null(nil) = true, hd(nil) = 0, tl(nil) = nil ] *** Ground Confluence Check by Rewriting Induction *** Sort: {Nat,Bool,List} Signature: [ null : List -> Bool, hd : List -> Nat, tl : List -> List, inc : List -> List, if : Bool,List,List -> List, true : Bool, false : Bool, cons : Nat,List -> List, nil : List, s : Nat -> Nat, 0 : Nat ] Rule Part: [ null(cons(?x,?xs)) -> false, hd(cons(?x,?xs)) -> ?x, tl(cons(?x,?xs)) -> ?xs, if(true,?ys,?zs) -> ?ys, if(false,?ys,?zs) -> ?zs, nil -> inc(nil), inc(?xs) -> if(null(?xs),nil,cons(s(hd(?xs)),inc(tl(?xs)))) ] Conjecture Part: [ inc(cons(?x,?xs)) = cons(s(?x),inc(?xs)), null(nil) = true, hd(nil) = 0, tl(nil) = nil ] Termination proof failed. Trying with: R: [ null(cons(?x,?xs)) -> false, hd(cons(?x,?xs)) -> ?x, tl(cons(?x,?xs)) -> ?xs, if(true,?ys,?zs) -> ?ys, if(false,?ys,?zs) -> ?zs, nil -> inc(nil), inc(cons(?x,?xs)) -> cons(s(?x),inc(?xs)) ] E: [ inc(?xs) = if(null(?xs),nil,cons(s(hd(?xs)),inc(tl(?xs)))), null(nil) = true, hd(nil) = 0, tl(nil) = nil ] *** Ground Confluence Check by Rewriting Induction *** Sort: {Nat,Bool,List} Signature: [ null : List -> Bool, hd : List -> Nat, tl : List -> List, inc : List -> List, if : Bool,List,List -> List, true : Bool, false : Bool, cons : Nat,List -> List, nil : List, s : Nat -> Nat, 0 : Nat ] Rule Part: [ null(cons(?x,?xs)) -> false, hd(cons(?x,?xs)) -> ?x, tl(cons(?x,?xs)) -> ?xs, if(true,?ys,?zs) -> ?ys, if(false,?ys,?zs) -> ?zs, nil -> inc(nil), inc(cons(?x,?xs)) -> cons(s(?x),inc(?xs)) ] Conjecture Part: [ inc(?xs) = if(null(?xs),nil,cons(s(hd(?xs)),inc(tl(?xs)))), null(nil) = true, hd(nil) = 0, tl(nil) = nil ] Termination proof failed. new/inc2.trs: Failure(unknown) (1785 msec.)