YES *** Computating Strongly Quasi-Reducible Parts *** TRS: [ +(0,?y) -> ?y, +(s(?x),?y) -> s(+(?x,?y)), +(p(?x),?y) -> p(+(?y,?x)), p(s(?x)) -> s(p(?x)), s(p(?x)) -> ?x ] Constructors: {0,p,s} Defined function symbols: {+} Constructor subsystem: [ p(s(?x)) -> s(p(?x)), s(p(?x)) -> ?x ] Rule part & Conj Part: [ p(s(?x)) -> s(p(?x)), s(p(?x)) -> ?x, +(0,?y) -> ?y, +(s(?x),?y) -> s(+(?x,?y)), +(p(?x),?y) -> p(+(?y,?x)) ] [ ] Trying with: R: [ p(s(?x)) -> s(p(?x)), s(p(?x)) -> ?x, +(0,?y) -> ?y, +(s(?x),?y) -> s(+(?x,?y)), +(p(?x),?y) -> p(+(?y,?x)) ] E: [ ] *** Ground Confluence Check by Rewriting Induction *** Sort: {Int} Signature: [ + : Int,Int -> Int, s : Int -> Int, p : Int -> Int, 0 : Int ] Rule Part: [ p(s(?x)) -> s(p(?x)), s(p(?x)) -> ?x, +(0,?y) -> ?y, +(s(?x),?y) -> s(+(?x,?y)), +(p(?x),?y) -> p(+(?y,?x)) ] Conjecture Part: [ ] Precedence (by weight): {(+,3),(0,1),(p,2),(s,0)} Rule part is not confluent. Check ground confluence of Rule part (R0) by basic RI. Rules: [ p(s(?x)) -> s(p(?x)), s(p(?x)) -> ?x, +(0,?y) -> ?y, +(s(?x),?y) -> s(+(?x,?y)), +(p(?x),?y) -> p(+(?y,?x)) ] Conjectures: [ +(?x_1,?y_3) = +(?y_3,?x_1), +(?x,?y_4) = p(+(?y_4,s(?x))) ] STEP 0 ES: [ +(?x_1,?y_3) = +(?y_3,?x_1), +(?x,?y_4) = p(+(?y_4,s(?x))) ] HS: [ ] ES0: [ +(?x_1,?y_3) = +(?y_3,?x_1), +(?x,?y_4) = p(+(?y_4,s(?x))) ] HS0: [ ] ES1: [ +(?x_1,?y_3) = +(?y_3,?x_1), +(?x,?y_4) = p(+(?y_4,s(?x))) ] HS1: [ ] Expand +(?x_1,?y_3) = +(?y_3,?x_1) [ ?y_5 = +(?y_5,0), s(+(?x_6,?y_6)) = +(?y_6,s(?x_6)), p(+(?y_7,?x_7)) = +(?y_7,p(?x_7)) ] ES2: [ ?y_5 = +(?y_5,0), s(+(?x_6,?y_6)) = +(?y_6,s(?x_6)), p(+(?y_7,?x_7)) = +(?y_7,p(?x_7)), +(?x,?y_4) = p(+(?y_4,s(?x))) ] HS2: [ +(?x_1,?y_3) -> +(?y_3,?x_1) ] STEP 1 ES: [ ?y_5 = +(?y_5,0), s(+(?x_6,?y_6)) = +(?y_6,s(?x_6)), p(+(?y_7,?x_7)) = +(?y_7,p(?x_7)), +(?x,?y_4) = p(+(?y_4,s(?x))) ] HS: [ +(?x_1,?y_3) -> +(?y_3,?x_1) ] ES0: [ ?y_5 = +(?y_5,0), s(+(?x_6,?y_6)) = +(?y_6,s(?x_6)), p(+(?y_7,?x_7)) = +(?y_7,p(?x_7)), +(?x,?y_4) = p(+(?y_4,s(?x))) ] HS0: [ +(?x_1,?y_3) -> +(?y_3,?x_1) ] ES1: [ ?y_5 = +(?y_5,0), s(+(?x_6,?y_6)) = +(?y_6,s(?x_6)), p(+(?y_7,?x_7)) = +(?y_7,p(?x_7)), +(?x,?y_4) = p(+(?y_4,s(?x))) ] HS1: [ +(?x_1,?y_3) -> +(?y_3,?x_1) ] Expand +(?y_5,0) = ?y_5 [ 0 = 0, s(+(?x_4,0)) = s(?x_4), p(+(0,?x_5)) = p(?x_5) ] ES2: [ 0 = 0, s(+(?x_4,0)) = s(?x_4), p(?x_5) = p(?x_5), +(?x,?y_4) = p(+(?y_4,s(?x))), p(+(?y_7,?x_7)) = +(?y_7,p(?x_7)), s(+(?x_6,?y_6)) = +(?y_6,s(?x_6)) ] HS2: [ +(?y_5,0) -> ?y_5, +(?x_1,?y_3) -> +(?y_3,?x_1) ] STEP 2 ES: [ 0 = 0, s(+(?x_4,0)) = s(?x_4), p(?x_5) = p(?x_5), +(?x,?y_4) = p(+(?y_4,s(?x))), p(+(?y_7,?x_7)) = +(?y_7,p(?x_7)), s(+(?x_6,?y_6)) = +(?y_6,s(?x_6)) ] HS: [ +(?y_5,0) -> ?y_5, +(?x_1,?y_3) -> +(?y_3,?x_1) ] ES0: [ 0 = 0, s(?x_4) = s(?x_4), p(?x_5) = p(?x_5), +(?x,?y_4) = p(+(?y_4,s(?x))), p(+(?y_7,?x_7)) = +(?y_7,p(?x_7)), s(+(?x_6,?y_6)) = +(?y_6,s(?x_6)) ] HS0: [ +(?y_5,0) -> ?y_5, +(?x_1,?y_3) -> +(?y_3,?x_1) ] ES1: [ +(?x,?y_4) = p(+(?y_4,s(?x))), p(+(?y_7,?x_7)) = +(?y_7,p(?x_7)), s(+(?x_6,?y_6)) = +(?y_6,s(?x_6)) ] HS1: [ +(?y_5,0) -> ?y_5, +(?x_1,?y_3) -> +(?y_3,?x_1) ] Expand p(+(?y_4,s(?x))) = +(?x,?y_4) [ p(s(?x)) = +(?x,0), p(s(+(?x_8,s(?x)))) = +(?x,s(?x_8)), p(p(+(s(?x),?x_9))) = +(?x,p(?x_9)) ] ES2: [ ?x = +(?x,0), +(?x_8,s(?x)) = +(?x,s(?x_8)), p(+(?x,?x_9)) = +(?x,p(?x_9)), s(+(?x_6,?y_6)) = +(?y_6,s(?x_6)), p(+(?y_7,?x_7)) = +(?y_7,p(?x_7)) ] HS2: [ p(+(?y_4,s(?x))) -> +(?x,?y_4), +(?y_5,0) -> ?y_5, +(?x_1,?y_3) -> +(?y_3,?x_1) ] STEP 3 ES: [ ?x = +(?x,0), +(?x_8,s(?x)) = +(?x,s(?x_8)), p(+(?x,?x_9)) = +(?x,p(?x_9)), s(+(?x_6,?y_6)) = +(?y_6,s(?x_6)), p(+(?y_7,?x_7)) = +(?y_7,p(?x_7)) ] HS: [ p(+(?y_4,s(?x))) -> +(?x,?y_4), +(?y_5,0) -> ?y_5, +(?x_1,?y_3) -> +(?y_3,?x_1) ] ES0: [ ?x = ?x, +(?x_8,s(?x)) = +(?x,s(?x_8)), p(+(?x,?x_9)) = +(?x,p(?x_9)), s(+(?x_6,?y_6)) = +(?y_6,s(?x_6)), p(+(?y_7,?x_7)) = +(?y_7,p(?x_7)) ] HS0: [ p(+(?y_4,s(?x))) -> +(?x,?y_4), +(?y_5,0) -> ?y_5, +(?x_1,?y_3) -> +(?y_3,?x_1) ] ES1: [ +(?x_8,s(?x)) = +(?x,s(?x_8)), p(+(?x,?x_9)) = +(?x,p(?x_9)), s(+(?x_6,?y_6)) = +(?y_6,s(?x_6)), p(+(?y_7,?x_7)) = +(?y_7,p(?x_7)) ] HS1: [ p(+(?y_4,s(?x))) -> +(?x,?y_4), +(?y_5,0) -> ?y_5, +(?x_1,?y_3) -> +(?y_3,?x_1) ] Expand +(?x_8,s(?x)) = +(?x,s(?x_8)) [ s(?x) = +(?x,s(0)), s(+(?x_12,s(?x))) = +(?x,s(s(?x_12))), p(+(s(?x),?x_13)) = +(?x,s(p(?x_13))) ] ES2: [ s(?x) = +(?x,s(0)), s(+(?x_12,s(?x))) = +(?x,s(s(?x_12))), +(?x,?x_13) = +(?x,s(p(?x_13))), p(+(?y_7,?x_7)) = +(?y_7,p(?x_7)), s(+(?x_6,?y_6)) = +(?y_6,s(?x_6)), p(+(?x,?x_9)) = +(?x,p(?x_9)) ] HS2: [ +(?x_8,s(?x)) -> +(?x,s(?x_8)), p(+(?y_4,s(?x))) -> +(?x,?y_4), +(?y_5,0) -> ?y_5, +(?x_1,?y_3) -> +(?y_3,?x_1) ] STEP 4 ES: [ s(?x) = +(?x,s(0)), s(+(?x_12,s(?x))) = +(?x,s(s(?x_12))), +(?x,?x_13) = +(?x,s(p(?x_13))), p(+(?y_7,?x_7)) = +(?y_7,p(?x_7)), s(+(?x_6,?y_6)) = +(?y_6,s(?x_6)), p(+(?x,?x_9)) = +(?x,p(?x_9)) ] HS: [ +(?x_8,s(?x)) -> +(?x,s(?x_8)), p(+(?y_4,s(?x))) -> +(?x,?y_4), +(?y_5,0) -> ?y_5, +(?x_1,?y_3) -> +(?y_3,?x_1) ] ES0: [ s(?x) = +(?x,s(0)), s(+(?x_12,s(?x))) = +(?x,s(s(?x_12))), +(?x,?x_13) = +(?x,?x_13), p(+(?y_7,?x_7)) = +(?y_7,p(?x_7)), s(+(?x_6,?y_6)) = +(?y_6,s(?x_6)), p(+(?x,?x_9)) = +(?x,p(?x_9)) ] HS0: [ +(?x_8,s(?x)) -> +(?x,s(?x_8)), p(+(?y_4,s(?x))) -> +(?x,?y_4), +(?y_5,0) -> ?y_5, +(?x_1,?y_3) -> +(?y_3,?x_1) ] ES1: [ s(?x) = +(?x,s(0)), s(+(?x_12,s(?x))) = +(?x,s(s(?x_12))), p(+(?y_7,?x_7)) = +(?y_7,p(?x_7)), s(+(?x_6,?y_6)) = +(?y_6,s(?x_6)), p(+(?x,?x_9)) = +(?x,p(?x_9)) ] HS1: [ +(?x_8,s(?x)) -> +(?x,s(?x_8)), p(+(?y_4,s(?x))) -> +(?x,?y_4), +(?y_5,0) -> ?y_5, +(?x_1,?y_3) -> +(?y_3,?x_1) ] Expand +(?x,s(0)) = s(?x) [ s(0) = s(0), s(+(?x_4,s(0))) = s(s(?x_4)), p(+(s(0),?x_5)) = s(p(?x_5)) ] ES2: [ s(0) = s(0), s(+(?x_4,s(0))) = s(s(?x_4)), ?x_5 = s(p(?x_5)), p(+(?x,?x_9)) = +(?x,p(?x_9)), s(+(?x_6,?y_6)) = +(?y_6,s(?x_6)), p(+(?y_7,?x_7)) = +(?y_7,p(?x_7)), s(+(?x_12,s(?x))) = +(?x,s(s(?x_12))) ] HS2: [ +(?x,s(0)) -> s(?x), +(?x_8,s(?x)) -> +(?x,s(?x_8)), p(+(?y_4,s(?x))) -> +(?x,?y_4), +(?y_5,0) -> ?y_5, +(?x_1,?y_3) -> +(?y_3,?x_1) ] STEP 5 ES: [ s(0) = s(0), s(+(?x_4,s(0))) = s(s(?x_4)), ?x_5 = s(p(?x_5)), p(+(?x,?x_9)) = +(?x,p(?x_9)), s(+(?x_6,?y_6)) = +(?y_6,s(?x_6)), p(+(?y_7,?x_7)) = +(?y_7,p(?x_7)), s(+(?x_12,s(?x))) = +(?x,s(s(?x_12))) ] HS: [ +(?x,s(0)) -> s(?x), +(?x_8,s(?x)) -> +(?x,s(?x_8)), p(+(?y_4,s(?x))) -> +(?x,?y_4), +(?y_5,0) -> ?y_5, +(?x_1,?y_3) -> +(?y_3,?x_1) ] ES0: [ s(0) = s(0), s(s(?x_4)) = s(s(?x_4)), ?x_5 = ?x_5, p(+(?x,?x_9)) = +(?x,p(?x_9)), s(+(?x_6,?y_6)) = +(?y_6,s(?x_6)), p(+(?y_7,?x_7)) = +(?y_7,p(?x_7)), s(+(?x_12,s(?x))) = +(?x,s(s(?x_12))) ] HS0: [ +(?x,s(0)) -> s(?x), +(?x_8,s(?x)) -> +(?x,s(?x_8)), p(+(?y_4,s(?x))) -> +(?x,?y_4), +(?y_5,0) -> ?y_5, +(?x_1,?y_3) -> +(?y_3,?x_1) ] ES1: [ p(+(?x,?x_9)) = +(?x,p(?x_9)), s(+(?x_6,?y_6)) = +(?y_6,s(?x_6)), p(+(?y_7,?x_7)) = +(?y_7,p(?x_7)), s(+(?x_12,s(?x))) = +(?x,s(s(?x_12))) ] HS1: [ +(?x,s(0)) -> s(?x), +(?x_8,s(?x)) -> +(?x,s(?x_8)), p(+(?y_4,s(?x))) -> +(?x,?y_4), +(?y_5,0) -> ?y_5, +(?x_1,?y_3) -> +(?y_3,?x_1) ] Expand +(?x,p(?x_9)) = p(+(?x,?x_9)) [ p(?x_9) = p(+(0,?x_9)), s(+(?x_13,p(?x_9))) = p(+(s(?x_13),?x_9)), p(+(p(?x_9),?x_14)) = p(+(p(?x_14),?x_9)) ] ES2: [ p(?x_9) = p(+(0,?x_9)), s(+(?x_13,p(?x_9))) = p(+(s(?x_13),?x_9)), p(p(+(?x_14,?x_9))) = p(+(p(?x_14),?x_9)), s(+(?x_12,s(?x))) = +(?x,s(s(?x_12))), p(+(?y_7,?x_7)) = +(?y_7,p(?x_7)), s(+(?x_6,?y_6)) = +(?y_6,s(?x_6)) ] HS2: [ +(?x,p(?x_9)) -> p(+(?x,?x_9)), +(?x,s(0)) -> s(?x), +(?x_8,s(?x)) -> +(?x,s(?x_8)), p(+(?y_4,s(?x))) -> +(?x,?y_4), +(?y_5,0) -> ?y_5, +(?x_1,?y_3) -> +(?y_3,?x_1) ] STEP 6 ES: [ p(?x_9) = p(+(0,?x_9)), s(+(?x_13,p(?x_9))) = p(+(s(?x_13),?x_9)), p(p(+(?x_14,?x_9))) = p(+(p(?x_14),?x_9)), s(+(?x_12,s(?x))) = +(?x,s(s(?x_12))), p(+(?y_7,?x_7)) = +(?y_7,p(?x_7)), s(+(?x_6,?y_6)) = +(?y_6,s(?x_6)) ] HS: [ +(?x,p(?x_9)) -> p(+(?x,?x_9)), +(?x,s(0)) -> s(?x), +(?x_8,s(?x)) -> +(?x,s(?x_8)), p(+(?y_4,s(?x))) -> +(?x,?y_4), +(?y_5,0) -> ?y_5, +(?x_1,?y_3) -> +(?y_3,?x_1) ] ES0: [ p(?x_9) = p(?x_9), +(?x_13,?x_9) = +(?x_13,?x_9), p(p(+(?x_14,?x_9))) = p(p(+(?x_9,?x_14))), s(+(?x_12,s(?x))) = +(?x,s(s(?x_12))), p(+(?y_7,?x_7)) = p(+(?y_7,?x_7)), s(+(?x_6,?y_6)) = +(?y_6,s(?x_6)) ] HS0: [ +(?x,p(?x_9)) -> p(+(?x,?x_9)), +(?x,s(0)) -> s(?x), +(?x_8,s(?x)) -> +(?x,s(?x_8)), p(+(?y_4,s(?x))) -> +(?x,?y_4), +(?y_5,0) -> ?y_5, +(?x_1,?y_3) -> +(?y_3,?x_1) ] ES1: [ s(+(?x_12,s(?x))) = +(?x,s(s(?x_12))), s(+(?x_6,?y_6)) = +(?y_6,s(?x_6)) ] HS1: [ +(?x,p(?x_9)) -> p(+(?x,?x_9)), +(?x,s(0)) -> s(?x), +(?x_8,s(?x)) -> +(?x,s(?x_8)), p(+(?y_4,s(?x))) -> +(?x,?y_4), +(?y_5,0) -> ?y_5, +(?x_1,?y_3) -> +(?y_3,?x_1) ] Expand +(?y_6,s(?x_6)) = s(+(?x_6,?y_6)) [ s(?x) = s(+(?x,0)), s(+(?x_4,s(?x))) = s(+(?x,s(?x_4))), p(+(s(?x),?x_5)) = s(+(?x,p(?x_5))) ] ES2: [ s(?x) = s(+(?x,0)), s(+(?x_4,s(?x))) = s(+(?x,s(?x_4))), +(?x,?x_5) = s(+(?x,p(?x_5))), s(+(?x_12,s(?x))) = +(?x,s(s(?x_12))) ] HS2: [ +(?y_6,s(?x_6)) -> s(+(?x_6,?y_6)), +(?x,p(?x_9)) -> p(+(?x,?x_9)), +(?x,s(0)) -> s(?x), +(?x_8,s(?x)) -> +(?x,s(?x_8)), p(+(?y_4,s(?x))) -> +(?x,?y_4), +(?y_5,0) -> ?y_5, +(?x_1,?y_3) -> +(?y_3,?x_1) ] STEP 7 ES: [ s(?x) = s(+(?x,0)), s(+(?x_4,s(?x))) = s(+(?x,s(?x_4))), +(?x,?x_5) = s(+(?x,p(?x_5))), s(+(?x_12,s(?x))) = +(?x,s(s(?x_12))) ] HS: [ +(?y_6,s(?x_6)) -> s(+(?x_6,?y_6)), +(?x,p(?x_9)) -> p(+(?x,?x_9)), +(?x,s(0)) -> s(?x), +(?x_8,s(?x)) -> +(?x,s(?x_8)), p(+(?y_4,s(?x))) -> +(?x,?y_4), +(?y_5,0) -> ?y_5, +(?x_1,?y_3) -> +(?y_3,?x_1) ] ES0: [ s(?x) = s(?x), s(s(+(?x,?x_4))) = s(s(+(?x_4,?x))), +(?x,?x_5) = +(?x,?x_5), s(s(+(?x,?x_12))) = s(s(+(?x_12,?x))) ] HS0: [ +(?y_6,s(?x_6)) -> s(+(?x_6,?y_6)), +(?x,p(?x_9)) -> p(+(?x,?x_9)), +(?x,s(0)) -> s(?x), +(?x_8,s(?x)) -> +(?x,s(?x_8)), p(+(?y_4,s(?x))) -> +(?x,?y_4), +(?y_5,0) -> ?y_5, +(?x_1,?y_3) -> +(?y_3,?x_1) ] ES1: [ ] HS1: [ +(?y_6,s(?x_6)) -> s(+(?x_6,?y_6)), +(?x,p(?x_9)) -> p(+(?x,?x_9)), +(?x,s(0)) -> s(?x), +(?x_8,s(?x)) -> +(?x,s(?x_8)), p(+(?y_4,s(?x))) -> +(?x,?y_4), +(?y_5,0) -> ?y_5, +(?x_1,?y_3) -> +(?y_3,?x_1) ] R0 is ground confluent. Conjucture part is empty. new/int1.trs: Success(GCR) (18 msec.)