MAYBE *** Computating Strongly Quasi-Reducible Parts *** TRS: [ eq(0,0) -> true, eq(s(?x),0) -> false, eq(0,s(?y)) -> false, eq(s(?x),s(?y)) -> eq(?x,?y), count(zero,?y,?z) -> eq(?y,?z), count(succ(?x),?y,?z) -> count(?x,s(?y),?z), count(pred(?x),?y,?z) -> count(?x,?y,s(?z)), intZero(?x) -> count(?x,0,0), succ(pred(?x)) -> ?x, pred(succ(?x)) -> ?x ] Constructors: {0,s,pred,succ,true,zero,false} Defined function symbols: {eq,count,intZero} Constructor subsystem: [ succ(pred(?x)) -> ?x, pred(succ(?x)) -> ?x ] Rule part & Conj Part: [ succ(pred(?x)) -> ?x, pred(succ(?x)) -> ?x, eq(0,0) -> true, eq(s(?x),0) -> false, eq(0,s(?y)) -> false, eq(s(?x),s(?y)) -> eq(?x,?y), count(zero,?y,?z) -> eq(?y,?z), count(succ(?x),?y,?z) -> count(?x,s(?y),?z), count(pred(?x),?y,?z) -> count(?x,?y,s(?z)), intZero(?x) -> count(?x,0,0) ] [ ] Trying with: R: [ succ(pred(?x)) -> ?x, pred(succ(?x)) -> ?x, eq(0,0) -> true, eq(s(?x),0) -> false, eq(0,s(?y)) -> false, eq(s(?x),s(?y)) -> eq(?x,?y), count(zero,?y,?z) -> eq(?y,?z), count(succ(?x),?y,?z) -> count(?x,s(?y),?z), count(pred(?x),?y,?z) -> count(?x,?y,s(?z)), intZero(?x) -> count(?x,0,0) ] E: [ ] *** Ground Confluence Check by Rewriting Induction *** Sort: {Int,Nat,Bool} Signature: [ eq : Nat,Nat -> Bool, count : Int,Nat,Nat -> Bool, intZero : Int -> Bool, true : Bool, false : Bool, pred : Int -> Int, succ : Int -> Int, zero : Int, s : Nat -> Nat, 0 : Nat ] Rule Part: [ succ(pred(?x)) -> ?x, pred(succ(?x)) -> ?x, eq(0,0) -> true, eq(s(?x),0) -> false, eq(0,s(?y)) -> false, eq(s(?x),s(?y)) -> eq(?x,?y), count(zero,?y,?z) -> eq(?y,?z), count(succ(?x),?y,?z) -> count(?x,s(?y),?z), count(pred(?x),?y,?z) -> count(?x,?y,s(?z)), intZero(?x) -> count(?x,0,0) ] Conjecture Part: [ ] Termination proof failed. new/int3.trs: Failure(unknown) (16 msec.)