MAYBE *** Computating Strongly Quasi-Reducible Parts *** TRS: [ plus(0,?y) -> ?y, plus(s(?x),?y) -> s(plus(?x,?y)), qplus(0,?y) -> ?y, qplus(s(?x),?y) -> qplus(?x,s(?y)), plus(?x,?y) -> qplus(?x,?y) ] Constructors: {0,s} Defined function symbols: {plus,qplus} Constructor subsystem: [ ] Rule part & Conj Part: [ qplus(0,?y) -> ?y, qplus(s(?x),?y) -> qplus(?x,s(?y)), plus(?x,?y) -> qplus(?x,?y) ] [ plus(0,?y) -> ?y, plus(s(?x),?y) -> s(plus(?x,?y)) ] Rule part & Conj Part: [ plus(0,?y) -> ?y, plus(s(?x),?y) -> s(plus(?x,?y)), qplus(0,?y) -> ?y, qplus(s(?x),?y) -> qplus(?x,s(?y)) ] [ plus(?x,?y) -> qplus(?x,?y) ] Trying with: R: [ qplus(0,?y) -> ?y, qplus(s(?x),?y) -> qplus(?x,s(?y)), plus(?x,?y) -> qplus(?x,?y) ] E: [ plus(0,?y) = ?y, plus(s(?x),?y) = s(plus(?x,?y)) ] *** Ground Confluence Check by Rewriting Induction *** Sort: {Nat} Signature: [ plus : Nat,Nat -> Nat, qplus : Nat,Nat -> Nat, s : Nat -> Nat, 0 : Nat ] Rule Part: [ qplus(0,?y) -> ?y, qplus(s(?x),?y) -> qplus(?x,s(?y)), plus(?x,?y) -> qplus(?x,?y) ] Conjecture Part: [ plus(0,?y) = ?y, plus(s(?x),?y) = s(plus(?x,?y)) ] Termination proof failed. Trying with: R: [ plus(0,?y) -> ?y, plus(s(?x),?y) -> s(plus(?x,?y)), qplus(0,?y) -> ?y, qplus(s(?x),?y) -> qplus(?x,s(?y)) ] E: [ plus(?x,?y) = qplus(?x,?y) ] *** Ground Confluence Check by Rewriting Induction *** Sort: {Nat} Signature: [ plus : Nat,Nat -> Nat, qplus : Nat,Nat -> Nat, s : Nat -> Nat, 0 : Nat ] Rule Part: [ plus(0,?y) -> ?y, plus(s(?x),?y) -> s(plus(?x,?y)), qplus(0,?y) -> ?y, qplus(s(?x),?y) -> qplus(?x,s(?y)) ] Conjecture Part: [ plus(?x,?y) = qplus(?x,?y) ] Termination proof failed. new/qplus.trs: Failure(unknown) (23 msec.)