MAYBE *** Computating Strongly Quasi-Reducible Parts *** TRS: [ sum(leaf(?x)) -> ?x, sum(node(?x,?yt,?zt)) -> +(?x,+(sum(?yt),sum(?zt))), +(?x,0) -> ?x, +(?x,s(?y)) -> s(+(?x,?y)), node(?x,?yt,?zt) -> node(?x,?zt,?yt) ] constructor detection timeout; switch to an approximation. Constructors: {0,s,leaf,node} Defined function symbols: {+,sum} Constructor subsystem: [ ] Rule part & Conj Part: [ sum(leaf(?x)) -> ?x, sum(node(?x,?yt,?zt)) -> +(?x,+(sum(?yt),sum(?zt))), +(?x,0) -> ?x, +(?x,s(?y)) -> s(+(?x,?y)) ] [ node(?x,?yt,?zt) -> node(?x,?zt,?yt) ] Trying with: R: [ sum(leaf(?x)) -> ?x, sum(node(?x,?yt,?zt)) -> +(?x,+(sum(?yt),sum(?zt))), +(?x,0) -> ?x, +(?x,s(?y)) -> s(+(?x,?y)) ] E: [ node(?x,?yt,?zt) = node(?x,?zt,?yt) ] *** Ground Confluence Check by Rewriting Induction *** Sort: {Nat,Tree} Signature: [ + : Nat,Nat -> Nat, s : Nat -> Nat, 0 : Nat, node : Nat,Tree,Tree -> Tree, leaf : Nat -> Tree, sum : Tree -> Nat ] Rule Part: [ sum(leaf(?x)) -> ?x, sum(node(?x,?yt,?zt)) -> +(?x,+(sum(?yt),sum(?zt))), +(?x,0) -> ?x, +(?x,s(?y)) -> s(+(?x,?y)) ] Conjecture Part: [ node(?x,?yt,?zt) = node(?x,?zt,?yt) ] Precedence (by weight): {(+,5),(0,1),(s,4),(sum,6),(leaf,0),(node,2)} Rule part is confluent. R0 is ground confluent. Check conj part consists of inductive theorems of R0. Rules: [ sum(leaf(?x)) -> ?x, sum(node(?x,?yt,?zt)) -> +(?x,+(sum(?yt),sum(?zt))), +(?x,0) -> ?x, +(?x,s(?y)) -> s(+(?x,?y)) ] Conjectures: [ node(?x,?yt,?zt) = node(?x,?zt,?yt) ] STEP 0 ES: [ node(?x,?yt,?zt) = node(?x,?zt,?yt) ] HS: [ ] ES0: [ node(?x,?yt,?zt) = node(?x,?zt,?yt) ] HS0: [ ] ES1: [ node(?x,?yt,?zt) = node(?x,?zt,?yt) ] HS1: [ ] No equation to expand Failed to prove conj part consists of inductive theorems of R0. new/tree5.trs: Failure(unknown) (1869 msec.)