MAYBE *** Computating Strongly Quasi-Reducible Parts *** TRS: [ sum(leaf(?x)) -> ?x, sum(node(?x,?yt,?zt)) -> +(+(?x,sum(?yt)),sum(?zt)), +(0,?y) -> ?y, +(s(?x),?y) -> s(+(?x,?y)), +(?x,?y) -> +(?y,?x), node(?x,?yt,?zt) -> node(?x,?zt,?yt) ] constructor detection timeout; switch to an approximation. Constructors: {0,s,leaf,node} Defined function symbols: {+,sum} Constructor subsystem: [ ] Rule part & Conj Part: [ sum(leaf(?x)) -> ?x, sum(node(?x,?yt,?zt)) -> +(+(?x,sum(?yt)),sum(?zt)), +(0,?y) -> ?y, +(s(?x),?y) -> s(+(?x,?y)) ] [ +(?x,?y) -> +(?y,?x), node(?x,?yt,?zt) -> node(?x,?zt,?yt) ] Trying with: R: [ sum(leaf(?x)) -> ?x, sum(node(?x,?yt,?zt)) -> +(+(?x,sum(?yt)),sum(?zt)), +(0,?y) -> ?y, +(s(?x),?y) -> s(+(?x,?y)) ] E: [ +(?x,?y) = +(?y,?x), node(?x,?yt,?zt) = node(?x,?zt,?yt) ] *** Ground Confluence Check by Rewriting Induction *** Sort: {Nat,Tree} Signature: [ + : Nat,Nat -> Nat, s : Nat -> Nat, 0 : Nat, node : Nat,Tree,Tree -> Tree, leaf : Nat -> Tree, sum : Tree -> Nat ] Rule Part: [ sum(leaf(?x)) -> ?x, sum(node(?x,?yt,?zt)) -> +(+(?x,sum(?yt)),sum(?zt)), +(0,?y) -> ?y, +(s(?x),?y) -> s(+(?x,?y)) ] Conjecture Part: [ +(?x,?y) = +(?y,?x), node(?x,?yt,?zt) = node(?x,?zt,?yt) ] Precedence (by weight): {(+,5),(0,1),(s,4),(sum,2),(leaf,3),(node,6)} Rule part is confluent. R0 is ground confluent. Check conj part consists of inductive theorems of R0. Rules: [ sum(leaf(?x)) -> ?x, sum(node(?x,?yt,?zt)) -> +(+(?x,sum(?yt)),sum(?zt)), +(0,?y) -> ?y, +(s(?x),?y) -> s(+(?x,?y)) ] Conjectures: [ +(?x,?y) = +(?y,?x), node(?x,?yt,?zt) = node(?x,?zt,?yt) ] STEP 0 ES: [ +(?x,?y) = +(?y,?x), node(?x,?yt,?zt) = node(?x,?zt,?yt) ] HS: [ ] ES0: [ +(?x,?y) = +(?y,?x), node(?x,?yt,?zt) = node(?x,?zt,?yt) ] HS0: [ ] ES1: [ +(?x,?y) = +(?y,?x), node(?x,?yt,?zt) = node(?x,?zt,?yt) ] HS1: [ ] Expand +(?x,?y) = +(?y,?x) [ ?y_3 = +(?y_3,0), s(+(?x_4,?y_4)) = +(?y_4,s(?x_4)) ] ES2: [ ?y_3 = +(?y_3,0), s(+(?x_4,?y_4)) = +(?y_4,s(?x_4)), node(?x,?yt,?zt) = node(?x,?zt,?yt) ] HS2: [ +(?x,?y) -> +(?y,?x) ] STEP 1 ES: [ ?y_3 = +(?y_3,0), s(+(?x_4,?y_4)) = +(?y_4,s(?x_4)), node(?x,?yt,?zt) = node(?x,?zt,?yt) ] HS: [ +(?x,?y) -> +(?y,?x) ] ES0: [ ?y_3 = +(?y_3,0), s(+(?x_4,?y_4)) = +(?y_4,s(?x_4)), node(?x,?yt,?zt) = node(?x,?zt,?yt) ] HS0: [ +(?x,?y) -> +(?y,?x) ] ES1: [ ?y_3 = +(?y_3,0), s(+(?x_4,?y_4)) = +(?y_4,s(?x_4)), node(?x,?yt,?zt) = node(?x,?zt,?yt) ] HS1: [ +(?x,?y) -> +(?y,?x) ] Expand +(?y_3,0) = ?y_3 [ 0 = 0, s(+(?x_4,0)) = s(?x_4) ] ES2: [ 0 = 0, s(+(?x_4,0)) = s(?x_4), node(?x,?yt,?zt) = node(?x,?zt,?yt), s(+(?x_4,?y_4)) = +(?y_4,s(?x_4)) ] HS2: [ +(?y_3,0) -> ?y_3, +(?x,?y) -> +(?y,?x) ] STEP 2 ES: [ 0 = 0, s(+(?x_4,0)) = s(?x_4), node(?x,?yt,?zt) = node(?x,?zt,?yt), s(+(?x_4,?y_4)) = +(?y_4,s(?x_4)) ] HS: [ +(?y_3,0) -> ?y_3, +(?x,?y) -> +(?y,?x) ] ES0: [ 0 = 0, s(?x_4) = s(?x_4), node(?x,?yt,?zt) = node(?x,?zt,?yt), s(+(?x_4,?y_4)) = +(?y_4,s(?x_4)) ] HS0: [ +(?y_3,0) -> ?y_3, +(?x,?y) -> +(?y,?x) ] ES1: [ node(?x,?yt,?zt) = node(?x,?zt,?yt), s(+(?x_4,?y_4)) = +(?y_4,s(?x_4)) ] HS1: [ +(?y_3,0) -> ?y_3, +(?x,?y) -> +(?y,?x) ] Expand +(?y_4,s(?x_4)) = s(+(?x_4,?y_4)) [ s(?x) = s(+(?x,0)), s(+(?x_4,s(?x))) = s(+(?x,s(?x_4))) ] ES2: [ s(?x) = s(+(?x,0)), s(+(?x_4,s(?x))) = s(+(?x,s(?x_4))), node(?x,?yt,?zt) = node(?x,?zt,?yt) ] HS2: [ +(?y_4,s(?x_4)) -> s(+(?x_4,?y_4)), +(?y_3,0) -> ?y_3, +(?x,?y) -> +(?y,?x) ] STEP 3 ES: [ s(?x) = s(+(?x,0)), s(+(?x_4,s(?x))) = s(+(?x,s(?x_4))), node(?x,?yt,?zt) = node(?x,?zt,?yt) ] HS: [ +(?y_4,s(?x_4)) -> s(+(?x_4,?y_4)), +(?y_3,0) -> ?y_3, +(?x,?y) -> +(?y,?x) ] ES0: [ s(?x) = s(?x), s(s(+(?x,?x_4))) = s(s(+(?x_4,?x))), node(?x,?yt,?zt) = node(?x,?zt,?yt) ] HS0: [ +(?y_4,s(?x_4)) -> s(+(?x_4,?y_4)), +(?y_3,0) -> ?y_3, +(?x,?y) -> +(?y,?x) ] ES1: [ node(?x,?yt,?zt) = node(?x,?zt,?yt) ] HS1: [ +(?y_4,s(?x_4)) -> s(+(?x_4,?y_4)), +(?y_3,0) -> ?y_3, +(?x,?y) -> +(?y,?x) ] No equation to expand Failed to prove conj part consists of inductive theorems of R0. new/tree6.trs: Failure(unknown) (1763 msec.)