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The confluence or Church-Rosser theorem is the first result in every course on the λ-calculus.
Its standard proof follows Tait and Martin-Löf’s technique, based on reducing confluence of β-
reduction to the diamond property of its parallel closure. It is reasonably simple and yet
non-trivial. Presumably because most proof assistants are built over some functional language,
confluence for λ-calculus is the theorem with the highest number of formalized proofs [12, 15,
11, 16, 13, 14, 9, 4, 8, 5, 1].

On the one hand, such a formalization effort has helped to clarify the essence of the proof. On
the other hand, the confluence property became a simple and yet significant benchmark for proof
assistants, to test the faithfulness of the formalization to the informal, pen-and-paper reasoning
on the λ-calculus. Humans can easily (but informally) work up to equivalence or isomorphism,
while this kind of reasoning is a challenge for proof assistants. Formalizations about languages
with binders, as the λ-calculus, have to face the difficulty of reasoning transparently modulo
α-equivalence, i.e. renaming of bound variables. This issue is so relevant that in past years
the POPLmark challenge [2]—consisting in the formalization of some theorems in the theory
of λ-calculus—was proposed as a challenging benchmark for proof assistants.

In this talk I will introduce the proof assistant Abella [7, 6] and I will show a formalization of
confluence that mimics exactly the informal reasoning. Then I will compare with formalizations
in proof assistants based on different approaches to α-equivalence. Last, I will discuss some
variations and refinements, including the similar proof based on finite developments (sometimes
credited to Takahashi [17]), and the cube property for residuals [10, 3], a stronger form of
diamond property for parallel reduction, having an elegant formalization based on a brilliant
idea by Gérard Huet [9, 1].
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