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Preface

This report contains the proceedings of the 3rd International Workshop on Confluence (IWC
2014), which was held in Vienna on July 13, 2014. The workshop is affiliated with the Joint
meeting of the 25th International Conference on Rewriting Techniques and Applications and
the 12th International Conference on Typed Lambda Calculi and Applications (RTA-TLCA
2014), which is a part of the Federated Logic Conference (FLoC 2014) collocated with the
Vienna Summer of Logic (VSL 2014). The 1st IWC took place in Nagoya (2012) and 2nd IWC
in Eindhoven (2013).

Confluence provides a general notion of determinism and has been conceived as one of the
central properties of rewriting. Confluence relates to many topics of rewriting (completion,
modularity, termination, commutation, etc.) and had been investigated in many formalisms
of rewriting such as first-order rewriting, lambda-calculi, higher-order rewriting, constrained
rewriting, conditional rewriting, etc. Recently there is a renewed interest in confluence research,
resulting in new techniques, tool supports, certification as well as new applications. The work-
shop promotes and stimulates research and collaboration on confluence and related properties.
In addition to original contributions, the workshop solicited short versions of recently published
articles and papers submitted elsewhere.

IWC 2014 received 7 submissions. Each submission was reviewed by 3 program commit-
tee members. After deliberations the program committee decided to accept all submissions,
which are contained in this report. Apart from these contributed talks, the workshop had an
invited talk by Beniamino Accattoli on On the Formalization of Lambda-Calculus Confluence
and Residuals, and jointly with the 8th International Workshop on Computing with Terms
and Graphs (TERMGRAPH 2014), an invited talk by Samuel Mimram on An Introduction to
Higher-Dimensional Rewriting Theory. Their abstracts are also included in the report. More-
over, the 3rd Confluence Competition (CoCo 2014) was held during the workshop and the
results are available at http://coco.nue.riec.tohoku.ac.jp/2014/.

Several persons helped to make IWC 2014 a success. We are grateful to the members of the
program committee for their work. We also thank the members of VSL organizing committee
for hosting IWC 2014 in VSL.

Sendai & Paris, June 2014 Takahito Aoto & Delia Kesner
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On the Formalization of λ-Calculus Confluence

and Residuals

Beniamino Accattoli

Università di Bologna, Italy

The confluence or Church-Rosser theorem is the first result in every course on the λ-calculus.
Its standard proof follows Tait and Martin-Löf’s technique, based on reducing confluence of β-
reduction to the diamond property of its parallel closure. It is reasonably simple and yet
non-trivial. Presumably because most proof assistants are built over some functional language,
confluence for λ-calculus is the theorem with the highest number of formalized proofs [12, 15,
11, 16, 13, 14, 9, 4, 8, 5, 1].

On the one hand, such a formalization effort has helped to clarify the essence of the proof. On
the other hand, the confluence property became a simple and yet significant benchmark for proof
assistants, to test the faithfulness of the formalization to the informal, pen-and-paper reasoning
on the λ-calculus. Humans can easily (but informally) work up to equivalence or isomorphism,
while this kind of reasoning is a challenge for proof assistants. Formalizations about languages
with binders, as the λ-calculus, have to face the difficulty of reasoning transparently modulo
α-equivalence, i.e. renaming of bound variables. This issue is so relevant that in past years
the POPLmark challenge [2]—consisting in the formalization of some theorems in the theory
of λ-calculus—was proposed as a challenging benchmark for proof assistants.

In this talk I will introduce the proof assistant Abella [7, 6] and I will show a formalization of
confluence that mimics exactly the informal reasoning. Then I will compare with formalizations
in proof assistants based on different approaches to α-equivalence. Last, I will discuss some
variations and refinements, including the similar proof based on finite developments (sometimes
credited to Takahashi [17]), and the cube property for residuals [10, 3], a stronger form of
diamond property for parallel reduction, having an elegant formalization based on a brilliant
idea by Gérard Huet [9, 1].
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An Introduction to Higher-Dimensional

Rewriting Theory

Samuel Mimram1

CEA, LIST / École Polytechnique
samuel.mimram@cea.fr

The general methodology of rewriting systems has been applied to various settings: strings,
terms, graphs, etc. In this introductory talk, I will present higher-dimensional rewriting systems
which provide a unifying framework for many of them. These were introduced by Street (as
computads) and by Burroni (as polygraphs) with the following motivations. A string rewriting
system can be seen as a particular presentation of a monoid, describing it by the means of
generators and relations. Moreover, when the presentation is confluent and terminating, normal
forms provide us with a notion of canonical representative for the elements of the monoid,
allowing one to perform many computations on the monoid. The starting point of higher-
dimensional rewriting systems is that they should generalize these fruitful tools from monoids
to the much richer setting of n-categories.

I will present the nice inductive definition of those rewriting systems, in which an (n + 1)-
dimensional rewriting rule rewrites a rewriting path in an n-dimensional rewriting system, and
show how usual rewriting formalisms can be recovered as particular low-dimensional cases.
After that, I will explain how usual tools extend to this setting: in particular, I will show that
a finite rewriting system can have an infinite number of critical pairs, and present generic ways
of constructing termination orders. Finally, we will review some of the applications of those
rewriting systems: they can namely be used in order to obtain coherence theorems for various
categorical structures (such as MacLane’s coherence theorem for monoidal categories), they also
found applications in the study of algebraic structures up to homotopy through Koszul duality
theory for operads.

T. Aoto & D. Kesner (ed.); 3rd International Workshop on Confluence, pp. 3–3 3



Confluence of linear rewriting and homology of algebras
Yves Guiraud1, Eric Hoffbeck2, and Philippe Malbos3

1 INRIA, Laboratoire Preuves, Programmes et Systèmes, Université Paris 7
yves.guiraud@pps.univ-paris-diderot.fr

2 Université Paris 13, Sorbonne Paris Cité, LAGA, CNRS UMR 7539
hoffbeck@math.univ-paris13.fr

3 Université de Lyon, Institut Camille Jordan, Université Claude Bernard Lyon 1, Villeurbanne
malbos@math.univ-lyon1.fr

Abstract

We introduce the notion of higher dimensional linear rewriting systems for presentations of algebras,
generalizing the notion of non-commutative Gröbner bases. We show how to use this notion to compute
homological invariants of associative algebras, using the confluence properties of presentations of these
algebras. Our method constitutes a new application of confluence in algebra.

1 Introduction

Several methods of computing homological invariants of associative algebras are based on non-
commutative Gröbner bases of the ideal of relations of the algebra, [1, 3]. They consist in
computing free resolutions of modules over the algebra, generated by some iterated overlaps
of the leading terms of the Gröbner basis. In particular, these methods can be applied to
homogeneous algebras that arise in many contexts, for instance representation theory, non-
commutative geometry and mathematical physics. One of the fundamental properties in the
homological description of these algebras is the Koszul property, introduced by Priddy [8] and
generalized by Berger [2]. There exist methods to prove Koszulity based on Gröbner bases.

We present an extension of the categorical framework of higher-dimensional rewriting to the
linear setting in order to describe Koszulity in terms of confluence. We introduce the notion
of a linear polygraph encoding a presentation of an algebra by a rewriting system. Linear
polygraphs do not require a monomial order, allowing more possibilities of termination orders
than those associated with Gröbner bases. Therefore, we improve the known methods using
Gröbner bases to prove Koszulity. Finally, the higher-dimensional rewriting allows us to refine
methods to prove Koszulity using the homotopy reduction on convergent rewriting systems
developed in [6].

In this note, we consider the case of algebras. A more general case is developed in [4].

2 Linear rewriting

2.1 Linear 2-polygraph

We fix a base field K. A linear 2-polygraph Λ consists in a data (Σ1,Λ2) made of
- a set Σ1, that we will suppose finite, say Σ1 = {x1, . . . , xk},
- a vector space Λ2 equipped with two linear maps s and t (source and target) from Λ2 to the
free algebra on Σ1, denoted by Σ`

1, which is the free vector space on the set Σ∗1 of monomials in
the variables x1, . . . , xk. The length of the monomials induces a weight grading on Σ`

1. Elements
in Σ`

1 are called 1-cells and elements in Λ2 are called 2-cells.

4 T. Aoto & D. Kesner (ed.); 3rd International Workshop on Confluence, pp. 4–8
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Any 1-cell f in Σ`
1 can be written uniquely as a linear sum f = λ1m1 + . . .+ λpmp, where,

for any 1 ≤ i ≤ p, λi ∈ K \ {0} and mi is a monomial 1-cell. A 2-polygraph Λ is said to be
monic if the vector space Λ2 has a basis Σ2 such that any 2-cell in Σ2 has a monomial source.
For N ≥ 2, a monic N -homogeneous linear 2-polygraph is a linear 2-polygraph Λ, such that
any 2-cell in Σ2 has the form α : m⇒ λ1m1 + . . .+λpmp with m and the mi’s are in weight N .

Example 2.1. Consider the algebraA with generators x, y, z and the relation x3+y3+z3 = xyz
in weight 3. The monic 3-homogeneous linear 2-polygraph Λ defined by Σ1 = {x, y, z} and
Σ2 = {xyz ⇒ x3 + y3 + z3} presents the algebra A.

In this note, Λ denotes a monic linear 2-polygraph and A denotes the algebra presented by Λ.

2.2 Rewriting properties of linear 2-polygraphs
The rewriting paths of a string rewriting system form a structure of a 2-category, in which the
1-cells are the strings, the 2-cells are the rewriting paths and the compositions correspond to
the sequential and parallel compositions of rewriting paths, as described in [6]. In [4], we show
that for linear 2-polygraphs, the 2-category induced by the rewriting paths is linearly enriched.
We denote by Λ`

2 the free monoid enriched in 2-vector spaces generated by Λ. Its 1-cells are
the 1-cells in Σ`

1 and its 2-cells are linear combinations of all possible parallel and sequential
compositions of generating 2-cells in Λ2.

The notion of a rewriting step induced by a linear 2-polygraph Λ needs to be defined with
attention owing to the invertibility of 2-cells. Indeed, given a rule ϕ : m ⇒ h in Λ, there are
2-cells −ϕ : −m⇒ −h and −ϕ+(m+h) : h⇒ m in Λ`

2. Thus we cannot have termination if we
consider all 2-cells of Λ`

2 as rewriting sequences. We define a rewriting step as the application
of one rule on one monomial of a free linear combination of monomials. A rewriting step is a
2-cell in Λ`

2 with the shape α = λm1ϕm2 + g:

λ
(
•

m1
// •

m
  

h

>>
ϕ�� •

m2
// •
)

+ •
g
// •

where λ ∈ K \ {0}, m1,m2 are monomial 1-cells in Σ`
1 \ {0}, ϕ : m⇒ h is a monic rule and g a

1-cell in Σ`
1 such that the monomial m1mm2 does not appear in the basis decomposition of g.

A rewriting step α from f to f ′ is denoted by α : f ⇒p f ′. The relation ⇒p is called the
reduction relation induced by Λ. A rewriting sequence of Λ is a finite or an infinite sequence
f1 ⇒p f2 ⇒p f3 ⇒p · · · ⇒p fn ⇒p · · · of rewriting steps. We say that Λ terminates when it
has no infinite rewriting sequence. If there is a non-empty rewriting sequence from f to g, we
say that f rewrites into g and we denote f ⇒∗ g.

We denote by Λ+
2 (resp. Λ+f

2 ) the set of (resp. finite) rewriting sequences of Λ, also called
positive 2-cells of the linear 2-polygraph Λ. We denote f ⇔∗ g when there exists a finite zigzag
of rewriting steps between f and g.

We denote by I(Λ) the two-sided ideal of the algebraA generated by { m−h | m⇒ h ∈ Λ`
2 }.

Given 1-cells f and f ′ in Λ`
1, there is a 2-cell f ⇒ f ′ in Λ`

2 if and only if f − f ′ ∈ I(Λ).
A 1-cell f of Λ`

1 is irreducible when there is no rewriting step for Λ with source f . A normal
form of f is an irreducible 1-cell g such that f rewrites into g. A 1-cell in Λ`

1 is reducible if it
is not irreducible. We denote by ir(Λ) (resp. irm(Λ)) the set of (resp. monomials) irreducible
1-cells for Λ. The rules being monic, the set ir(Λ) forms a vector space generated by irm(Λ).

When Λ terminates, the vector space Λ`
1 has the following decomposition Λ`

1 = ir(Λ)+I(Λ).

5
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2.3 Confluence of 2-linear polygraphs

A branching of Λ is a pair (α, β) of 2-cells of Λ+
2 with a common source. A branching (α, β) is

local when α and β are rewriting steps. Local branchings belong to one of the following families:

aspherical branchings

f

α
p
�/

α
p
/C g

Peiffer branchings

f ′g

fg

αg p %9

fβ p
%9 fg′

additive Peiffer branchings

f ′ + g

f + g

α+ g p %9

f + β p
%9 f + g′

where α and β are rewriting steps. The overlapping branchings are the remaining lo-
cal branchings. The local branchings are compared by the strict order ≺ generated by
(α, β) ≺

(
λmαm′ + g, λmβm′ + g), for any local branching (α, β), where λ is in K \ {0},

m,m′ are monomial 1-cells in Σ`
1, g is a 1-cell in Σ`

1, no monomial in the basis decomposition
appears in the basis decomposition of ms(α)m′ and at least one of the two following conditions:
1/ either m or m′ is not an identity monomial, 2/ the 1-cell g is not zero.

An overlapping local branching that is minimal for the order ≺ is called a critical branching.
Note that the critical branchings have a monomial source. A branching (α, β) is confluent when
there exists a pair (α′, β′) of 2-cells of Λ+

2 with the following shape:
g α′ ∗

�/
f

α ∗ $8

β ∗
%9

f ′

g′
β′
∗
0D

We say that Λ is confluent (resp. locally confluent) when all of its branchings (resp. local
branchings) are confluent. We prove that a linear 2-polygraph is locally confluent if and only
if all its critical branchings are confluent. A linear 2-polygraph Λ is confluent if and only if for
any f in I(Λ), f ⇒∗ 0. If moreover, the linear 2-polygraph Λ is terminating, then it is confluent
if and only if we have the decomposition Σ`

1 = ir(Λ)⊕ I(Λ).
A linear 2-polygraph is said to be convergent when it is terminating and confluent. Such a

polygraph is called a convergent presentation of the algebra A. In this case, there is a canonical
section A → Σ`

1 sending f to its normal form denoted by f̂ , so that f̂ = ĝ holds in Σ`
1 if and

only if we have f = g in A. Thus, by the decomposition Σ`
1 = ir(Λ)⊕I(Λ), the set of irreducible

monomials irm(Λ) forms a K-linear basis of the algebra A via the canonical map ir(Λ) −→ A,
called a standard basis of A. In [4], we show that we recover the usual notions of Gröbner basis
and of PBW basis when the rules in Λ2 are compatible with a monomial order.

3 Polygraphic resolutions of algebras

In this section, we define polygraphic resolutions for algebras, which are extensions of presen-
tations of an algebra in higher dimensions with a property of acyclicity. Such resolutions were
introduced in [5] for monoids and categories.

Starting from a linear 2-polygraph Λ, we define the 2-spheres of Λ by the pairs (f, g) of
elements in Λ`

2 such that s(f) = s(g) and t(f) = t(g). A linear extension of Λ`
2 is a vector

space Λ3, together with linear maps s and t from Λ3 to Λ`
2 sending an element h on a 2-sphere

(s(h), t(h)). The data (Σ1,Λ2,Λ3) defines a linear 3-polygraph. Proceeding inductively with
the notion of spheres and linear extensions, we define the notion of linear n-polygraphs.

6
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A linear n-polygraph Λ is called acyclic when any k-sphere (f, g) can be filled by a (k+ 1) -
cell A, that is s(A) = f and t(A) = g, for all 1 ≤ k < n. A polygraphic resolution of A is an
acyclic linear ∞-polygraph Λ, whose underlying linear 2-polygraph Λ2 is a presentation of A.

Consider a linear 2-polygraph Λ, which is reduced, that is for every 2-cell ϕ : m⇒ f in Λ2,
the 1-cell m is a normal form for Σ2 \ {ϕ} and the 1-cell f is irreducible for Λ2. We define a
k-fold branching by a k-tuple (f1, . . . , fk) of 2-cells of Λ+

2 with the same source. As before, we
can define the overlapping branchings, and an ordering relation via inclusion. We define the
critical k-fold branchings as the minimal overlapping k-fold branchings. For instance, when
k = 3, we get two possible shapes of such critical branchings.

m1

// !!m2 // ==m3 //
!!m4 // m
//

ϕ
EY

ψ��

χ
EY

or m1

//
��

m2 // ==
m3
// m4 //

��

m
//

ϕ
EY

ψ��

χ
EY

where the mi’s are monomials and ϕ,ψ, χ are generating 2-cells. The following result states
that a polygraphic resolution can be built using higher critical branchings of a convergent
presentation.

Theorem 3.1. [4, 4.2.10] Any convergent linear 2-polygraph Λ extends to an acyclic linear
∞-polygraph whose k-cells, for k ≥ 3, are indexed by the critical (k − 1)-fold branchings.

4 Confluence for the Koszul property
An N -homogeneous algebra A is called Koszul if there exists a free resolution of graded right
A-modules

0←− K←− F0 ←− F1 ←− . . . ←− Fk−1 ←− Fk ←− . . .

such that for any integer k ≥ 0, the A-module Fk has the form Nk⊗A with all elements of Nk

in weight `N (k), where `N (k) = lN , if k = 2l, and `N (k) = lN + 1, if k = 2l + 1.
In [4], we show that polygraphic resolutions for an algebra A induce free resolutions of A-

modules of the base field K. As a consequence, a necessary condition for an algebra to be Koszul
can be expressed in terms of polygraphic resolutions. For this purpose, the weight grading on
a linear 2-polygraph is extended on higher cells. Given a weight function ω : N→ N, a graded
polygraphic resolution Λ is ω-concentrated when its k-cells are concentrated in weight ω(k).
The necessary condition is formulated as follows:

Theorem 4.1. [4, 5.3.4] Let A be an N -homogeneous algebra. If A has an `N -concentrated
polygraphic resolution, then A is Koszul.

As a consequence of this result, the confluence property can be used to prove that an algebra
is Koszul. Indeed, we have

Proposition 4.2. [4, 5.3.6] Let A be an algebra presented by a quadratic convergent 2-polygraph
Λ, then Λ can be extended into an `2-concentrated polygraphic resolution. In particular, such
an algebra is Koszul.

Finally, the following proposition is often be useful, in particular when using the homotopy
reduction procedure on convergent rewriting systems developed in [6].

Proposition 4.3. [4, 5.3.8] If an N -homogeneous algebra A is presented by an acyclic `N -
concentrated 3-polygraph Λ with Λ3 = {0}, then A is Koszul.

7
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We now show on some examples how our method can be applied. Given an algebra A
presented by generators and relations, the idea is first to obtain a convergent linear 2-polygraph
Λ (using usual completion procedures if necessary) presenting A. Then we study the critical
branchings of Λ to understand the polygraphic resolution and its properties.

Example 4.1. The linear 2-polygraph Λ defined in the Example 2.1 is convergent, without
any critical branching. It follows that (Σ1,KΣ2, {0}) is a `3-concentrated acyclic 3-polygraph,
hence by Proposition 4.3, A is Koszul.

Example 4.2. Consider the algebra A with generators x, y, z and the relations x2 + yz =
0, x2 + azy = 0 where a ∈ K \ {0; 1}. It is a Koszul algebra, see [7, Section 4.3], but has no
convergent quadratic presentation. We prove that the linear 3-polygraph Λ with Σ1 = {x, y, z},

Σ2 = { yz α %9 −x2 , zy
β %9 bx2 , yx2

γ %9 ax2y , zx2
δ %9 −bx2z }, Σ3 = {A1, B1, C1, D1}

byx2

bγ

��
yzy

yβ (<

αy "6 −x2y

A1
z�

bx2z

zyz

βz (<

zα "6 −zx2

−δ

EY

B1

Rf
bx4

zyx2

βx2 (<

zγ  4

x2zy

x2βbv

azx2y aδy

4HC1

^r

−x4

yzx2

αx2 (<

yδ
 4

x2yz

x2αbv

−byx2z −bγz

2FD1

_s

is acyclic and forms a presentation of the algebra A. There are four critical triples with sources
yzyz, yzyx2, zyzy, zyzx2. For instance, the 4-cell corresponding to the critical triple on yzyz is

−x2yz
−x2α

�.
yzyz

αyz
(<

yβz %9

yzα "6

byx2z

bγz
EY

x4

−yzx2
−yδ
EY

−αx2

0D

A1z^r

yB1

Xl

−D1

�)

A2
�?

−x2yz −x2α
�.

yzyz

αyz (<

yzα "6

x4

−yzx2 −αx2

0D≡

The 4-cell A2 relates the 3-cell D1 with the 3-cells A1 and B1. Using a homotopy reduction
procedure as in [6], we can remove the cells which are not on the diagonal. Thus we obtain an
`2-concentrated polygraphic resolution and by Proposition 4.3, it follows that A is Koszul.
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Abstract

This extended abstract breifly introduces rewriting of networks (directed acyclic graphs
with the extra structure needed to serve as expressions for PROducts and Permutations
categories) and describes the critical pairs aspects of this theory. The author’s interest
in these comes from wanting to do equational reasoning in algebraic theories (such as
Hopf algebras) that mix ordinary operations with co-operations; networks then serve as a
formalism for expressions.

The main message is to point out two phenomena that arise in network rewriting. The
first is that of non-convexity of rules, wherein the left hand side of a rule need not be
syntactically similar to a symbol in any extension of the underlying signature. The second
is one of critical pairs potentially arising where two redexes wrap around each other even
when they do not intersect.

1 Introduction to networks

Words provide a natural model for expressions in an algebraic theory of all-unary operations;
the corresponding abstract algebraic structure is the monoid, and the set of all words may be
formalised as the free monoid. Generalising to operations of arbitrary arity, the natural model
for expressions instead becomes that of terms. Adding the condition that the terms should
be linear in the sense that each variable occurs exactly once, one arrives at a concept whose
corresponding abstract algebraic structure is called an operad. Operads first became popular
within topology, but have since become useful tools also in algebra in general, especially to
study non-associative structures.

The generalisation from one to many is however not exhausted by operads or terms: if
an n-ary operation would be implemented by a subroutine with 1 out-parameter and n in-
parameters, then what kinds of expressions could be built from operations that syntactically
are like subroutines with m out-parameters and n in-parameters? The corresponding abstract
algebraic structure will be the PROP—or strict symmetric monoidal category (symocat) if one
works with multiple atomic sorts—and the natural expression model will be that of networks [2].

A network is essentially like a term, expect that instead of having an underlying tree there
is an underlying directed acyclic graph (DAG). Formally starting from a DAG, the extra data
needed to turn it into a network are the following. (i) Each inner vertex is given a symbol from
a doubly ranked alphabet. If the symbol D(v) of vertex v has rank (m,n), then the in-degree
of v must be n (the arity) and the out-degree of v must be m (the coarity). (ii) There is at each
vertex a total ordering of the incoming edges, and a separate total ordering of the outgoing
edges. (iii) There are two distinguished vertices 0 and 1 that represent the output and input
respectively sides of the network; the arity of the network as a whole is the degree (all outgoing)
of the input vertex 1, and the coarity of the network as a whole is the degree (all incoming)
of the output vertex 0. In the special case that each symbol in the alphabet has coarity 1,
the networks with coarity 1 are precisely the linear terms (networks of higher coarity would
be to linear terms as forests are to trees). As expression models, networks are special cases of
share graphs [1], but their built-in linearity—that each edge has exactly one tail and exactly
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one head implies each intermediate result is generated once and used once—make them valid
as expressions in a much wider range of contexts, such as quantum computing and multilinear
algebra where a classical duplication of information would violate fundamental axioms.

Just like a monoid offers a natural setting for evaluating a word as an expression, the natural
setting for evaluating a network is an algebraic structure called a PROP. A PRO [4, Ch. V] is a
set of doubly-ranked elements together with two composition operations: the serial composition
◦ which corresponds to ordinary composition of functions, and the parallel composition ⊗ which
corresponds to letting two functions act separately on disjoint parts of a composite argument;
a trivial example of the latter is to make (f ⊗ g)(x, y) :=

(
f(x), g(y)

)
, whereas other basic

examples make ⊗ the tensor product of two linear maps. As operations on networks, ◦ amounts
to joining the outputs of the right operand to the inputs of the left operand, whereas ⊗ simply
places the operands side-by-side, exposing each input and output of either operand as an input
or output of the combined network. A PROP is a PRO equipped with actions of permutations
on the elements, which for networks correspond to permutating outputs among themselves
and/or inputs among themselves. The formal definition of how to evaluate a network is rather
technical [2, Def. 5.2], although the fact that it can be done can be taken as an alternative
definition of PROP [2, Th. 5.17].

The multiple atomic sorts counterpart of a PRO is a monoidal category, whereas in terms
of networks it would correspond to adding a planarity constraint in the sense of ‘no crossing
edges’. PROs may seem more elementary if coming from the abstract algebra point of view,
but from the formalised expression perspective they rather constitute a curious restriction, in
that they call for items of data to be located to points within a geometric space.

2 Network rewriting

Naively, a rewriting step consists of replacing one subexpression equal to the left hand side of
a rule with the right hand side of that rule. Since networks are graphs (with extra structure),
network rewriting is visually intuitive: you cut some edges, remove the piece that thereby got
separated and match it to the left hand side of a rewrite rule, replace the piece with a new one
equal to the rewrite rule right hand side, and splice together the edges at the cuts. What turns
out to be a nonobvious matter is however that of what kind of piece qualifies as a subexpression:
different established formula formalisms lead to different answers.

The monoidal category perspective suggests that a rule l → r can be applied to those
expressions that are obtained by padding l using the two compositions ◦ and ⊗, i.e., that any
rewrite step done using l→ r can be written as

B ◦ C1 ⊗ l ⊗ C2 ◦D → B ◦ C1 ⊗ r ⊗ C2 ◦D

for some B, C1, C2, and D, where ⊗ is taken to have higher priority than ◦. (Having per-
mutations allows combining C1 and C2, but that is beside the point here.) This is also the
subexpression concept one gets from a straightforward double pushout graph rewriting formal-
ism where l and r are both being produced as images (under separate morphisms) of a marker
symbol x, and the context graph network has the form B ◦ C1 ⊗ x⊗ C2 ◦D. It is however not
the most general subexpression concept.

An alternative formula formalism for writing expressions in PROPs and symocats is the
Abstract Index Notation [7], which is an abstract reinterpretation of the Einstein summation
convention for tensors. Here, an expression is written as a formal product of factors which each
carry zero or more sub- and superscripts, e.g. µa

bcS
b
d∆dc

e . The Einstein summation convention

10



Critical Pairs in Network Rewriting Lars Hellström

says that there is an implicit summation over any index letter appearing once as superscript
and once as subscript in a product, whereas letters with one appearance in total are externally
visible indices of the composed tensor, and two or more appearances of the same kind (super or
sub) is forbidden. In terms of networks, the abstract index reinterpretation is that each factor
is a vertex, the base letter of a factor is the operation symbol associated with that vertex, and
the index letters name the edges that are incident with the vertex: superscripts are outgoing,
subscripts incoming. Here, two appearances of an index letter means it is an internal edge,
whereas just one means it is an external edge with the other end at the implicit output vertex
0 or input vertex 1 as appropriate; two or more appearances of the same kind are impossible
for a directed edge. In abstract index notation, any subset of the factors would constitute a
valid subexpression, so a rewrite step can be any lA → rA, where l, r, and A are products of
labelled factors such that the composite products lA and rA satisfy all syntactic constraints.

This is different from the previous subexpression concept in that it allows subexpressions to
be nonconvex : a path may begin in a vertex/factor of l, pass through some vertex in the context
A, and then return to the subexpression l, even if it must then be at a different vertex of l than
that at which it started. This is not possible in a formalism that considers a subexpression to
be something that is similar to a vertex, since any path leaving a vertex through one edge and
then returning to it via another would constitute a cycle. Are nonconvex subexpressions useful
for rewriting, though? The system for Hopf algebras considered in [3] demonstrate that they
are very useful indeed.

The axioms for a Hopf algebra can be naturally stated as a network rewrite system, five of
the rules in that being[ ]

→

[ ] [ ]
→
[ ] [ ]

→

[ ] [ ]
→
[ ] 

→ [ ]

The brackets here serve as frames around a network when it appears as part of a formula, to
clarify its graphical extent. For the interpretation of the various vertex types in the case of
Hopf algebras, see [3]. Completing the rewrite system consisting of just the Hopf axioms does
however produce several nonconvex rules. One of these derived rules (which follows directly
from those five above) is:

→ [ ]
where the left input may have a depenence on
the left output;

this ‘may have a dependence on’ phrase is stating that the left hand side may be matched
against a nonconvex subexpression during rewriting, and it says how that nonconvexity may be
realised.

The reason this rule should be nonconvex is that there is no step in its derivation which
contradicts a dependence of left input on left output; any rewrite step made where this rule
is matched against a nonconvex subexpression can alternatively be carried out as a sequence
of forward and backward steps using the five axiom rules above, at each step only replacing
convex subexpressions. One example of this would be

←


←


→


→ [ ]
→
[ ]

(1)

11
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where the right input to left output edge of the r = [ ] network is part of the top right edge
of the

[ ]
network, whereas the left input to right output edge of the r network is part of the

bottom right edge. It can therefore be argued that nonconvex subexpressions are natural from
a rewriting perspective: since a derived rule is somewhat like a prepackaged sequence of rewrite
steps, and since there in a two-dimensional setting is no reason for the union of a number of
polygons (say) to be convex (even if each component is convex and the union is connected),
there is no reason to expect that derived rules will all be convex even if the rules they are derived
from happen to be. Indeed, some experience with completing network rewriting systems suggest
that derived rules will typically grow nonconvex fairly soon after they have become complicated
enough to exhibit such features.

Allowing rewrite rules to match against nonconvex subexpressions does however raise the
problem of how to avoid creating cycles. (Many technicalities become much easier if one allows
cycles, including that of defining evaluation of a network—cf. the ‘normal form expressions’
in [6, Sec. 1.4]—but far from all interpretations of networks support cycles. In a computational
context, a cycle could correspond to sending information backwards in time, or at best to some
kind of fixpoint operation. For multilinear interpretations, cycles tend to be problematic as soon
as one considers infinite-dimensional spaces.) The framework of [2] uses a filtration (indexed
by boolean matrices) of the PROP of networks to keep track of which dependencies of inputs
on outputs of a network are consistent with it appearing as a subnetwork of another network.
Each rule has an associated transferrence type, and rules may only apply in contexts consistent
with that type. Likewise, each critical pair has an associated transferrence type, and if it gives
rise to a derived rule, then that will also be the transferrence type of that derived rule. In the
author’s opinion, nonconvex rules are well understood and cared for by the framework of [2].

3 Critical pairs

The nice thing about the ability to handle nonconvex subexpressions in network rewriting is
that the sites of critical ambiguities (i.e., critical pairs) need never include vertices that do not
correspond to a vertex in the left hand side of at least one of the rules [2, proof of L. 10.13];
without this, (1) would give rise to a separate critical pair for every way of replacing the wide

vertex with something else. In [5], Mimram seeks to achieve the same end of eliminating
irrelevant vertices by formally bending edges; unlike the nonconvex subexpression concept,
this cannot cope with an irrelevant vertex completely surrounded by vertices acted upon by a
rewrite rule of the critical pair, but on the other hand it preserves the plane embedding which
is a concern in that paper. As mentioned above, the network rewriting formalism of [2] does
not consider data items to have a location in a geometric space, so concerns about planarity
are meaningless.

An issue that at present is not fully understood is however that of critical pairs of ‘wrap’
type, which are due to two redexes wrapping around each other in such a way that reducing
one will block reducing the other, even though they do not overlap. The simplest example of
this is probably that the two rules

  s1→

  ,

  s2→

 

12
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give rise to the critical pair


s1←



 =

  =




s2→



 (2)

where a naive attempt at applying the other rewrite rule at either side would violate acyclicity.
The left hand side of one rule can still be found as a subexpression after the other rule has
been applied, but it is no longer a redex since the subexpression does no longer satisfy the
transferrence constraints associated with the rule. This is different from at least the elementary
sense of rewriting residual (wherein a redex is moved by but still remains a redex after the
application of a separate rule; the network rewriting framework handle ordinary residuals under
the name of ‘montage ambiguities’ [2, Def. 10.14]).

It is notable that this example of a wrap ambiguity does not rely on having nonconvex rules
or subexpressions, so including them in the framework did not cause this problem. Indeed, it
is rather the impression of the author that wrap ambiguities is a problem that nonconvex rules
do not quite manage to solve, even though that they are in the vicinity of doing so; if networks
are viewed as merely having a particular arity and coarity, then wrap ambiguities cannot be
ruled out, but if they are instead viewed as having a particular transferrence type then there
is a practical condition (‘sharpness’ [2, Def. 10.3]) that will guarantee that a rewrite system is
free of wrap ambiguities. Perhaps a further refinement of the network rewriting framework can
help eliminate them altogether.

On the other hand, the nontrivial derivation in (2) suggests that there really is something
here that an automated completion procedure would need to explore. It is an open problem in
the theory of network rewriting to enumerate all critical pairs where wrap ambiguities remain
a possiblity.
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Abstract

Métivier (1983) proved that every confluent and terminating rewrite system can be
transformed into an equivalent canonical rewrite system. He also proved that equivalent
canonical rewrite systems which are compatible with the same reduction order are unique
up to variable renaming. In this note we present simple and formalized proofs of these
results. The latter result is generalized to the uniqueness of normalization equivalent
reduced rewrite systems.

1 Introduction

Consider the TRS R of combinatory logic with equality test, studied by Klop [3]:

Sxyz → xz(yz) Kxy → x Ix→ x Dxx→ E

The TRS R is reduced, but neither terminating nor confluent. One might ask: is there another
reduced TRS S that computes the same normal forms for every starting term? We refer to this
property as normalization equivalence of two TRSs. According to the main result of this note,
it turns out that R is unique up to variable renaming.

In the next section normalization equivalence is studied in an abstract setting. The concrete
results on term rewrite systems are presented in Section 3. Throughout this note, we assume
familiarity with basic notions and terminology of term rewriting.

All the proofs that are presented in the following have been formalized as part of IsaFoR1

(see theory Normalization_Equivalence).

2 Abstract Normalization Equivalence

First, we introduce the two notions of equivalence that will be studied in this note.

Definition 2.1. Two ARSs A and B are (conversion) equivalent if ↔∗A = ↔∗B. If →!
A = →!

B
we say that A and B are normalization equivalent.

The following example shows that the two equivalence notions defined above are different.

Example 2.2. The ARSs

A1 : a b B1 : a b

∗Supported by JSPS KAKENHI Grant Number 25730004 and the Austrian Science Fund (FWF) projects
I963 and J3202.
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are conversion equivalent but not normalization equivalent. The ARSs

A2 : a b B2 : a b

are normalization equivalent but not conversion equivalent.

The easy proof (by induction on the length of conversions) of the following result is omitted.

Lemma 2.3. Normalization equivalent terminating ARSs are equivalent.

Note that the termination assumption can be weakened to weak normalization. However, the
present version suffices to prove the following lemma that we employ in our proof of Métivier’s
transformation result (Theorem 3.7).

Lemma 2.4. Let A and B be ARSs such that→B ⊆ →+
A and NF(B) ⊆ NF(A). If A is complete

then B is complete and normalization equivalent to A.

Proof. From the inclusion →B ⊆ →+
A we infer that B is terminating. Moreover, →∗B ⊆ →∗A

and, since NF(B) ⊆ NF(A), also →!
B ⊆ →!

A. For the reverse inclusion we reason as follows. Let
a→!

A b. Because B is terminating, a→!
B c for some c ∈ NF(B). So a→!

A c and thus b = c from
the confluence of A. It follows that A and B are normalization equivalent. It remains to show
that B is locally confluent. This follows from the sequence of inclusions

B← · →B ⊆ +
A← · →

+
A ⊆ →

∗
A · ∗A← ⊆ →!

A · !
A← ⊆ →!

B · !
B←

where we use the inclusion →B ⊆ →+
A, the confluence of A, the termination of A, and the

normalization equivalence of A and B.

In the above lemma, completeness can be weakened to semi-completeness (i.e., the combi-
nation of confluence and weak normalization), which is not true for Theorem 3.7 as shown by
Gramlich [1]. Again, the present version suffices for our purposes.

3 Normalization Equivalence

In this section we study normalization equivalence for TRSs.

Definition 3.1. A variable substitution is a substitution from V to V. A renaming is a bijective
variable substitution. A term s is a variant of a term t if s = tσ for some renaming σ. If `→ r
is a rewrite rule and σ is a renaming then the rewrite rule `σ → rσ is a variant of ` → r. A
TRS is said to be variant-free if it does not contain rewrite rules that are variants of each other.

TRSs are usually assumed to be variant-free. We make the same assumption, but see
Example 3.6 below.

Given terms s and t, we write s
.
= t if sσ = t and s = tτ for some substitutions σ and τ .

The following result is folklore; the proof has recently been formalized [2].

Lemma 3.2. Two terms s and t are variants if and only if s
.
= t.

Definition 3.3. Two TRSs R1 and R2 over the same signature F are called literally similar,
denoted by R1

.
= R2, if every rewrite rule in R1 has a variant in R2 and vice-versa.

15
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Definition 3.4. A TRS R is left-reduced if ` ∈ NF(R \ {` → r}) for every rewrite rule ` → r
in R. We say that R is right-reduced if r ∈ NF(R) for every rewrite rule `→ r in R. A reduced
TRS is left- and right-reduced. A reduced complete TRS is called canonical.

Theorem 3.7 below states that we can always eliminate redundancy in a complete TRS.
This is achieved by the two-stage transformation defined below.

Definition 3.5. Given a complete TRS R, the TRSs Ṙ and R̈ are defined as follows:

Ṙ = {`→ r↓R | `→ r ∈ R}
R̈ = {`→ r ∈ Ṙ | ` ∈ NF(Ṙ \ {`→ r})}

The TRS Ṙ is obtained from R by normalizing the right-hand sides. To obtain R̈ we remove
the rules of Ṙ whose left-hand sides are reducible with another rule of Ṙ.

Example 3.6. Consider the TRS R1 consisting of the four rules

f(x)→ a f(y)→ b a→ c b→ c

Then the first transformation yields Ṙ1

f(x)→ c f(y)→ c a→ c b→ c

and the second one R̈1

a→ c b→ c

Note that R̈1 is not equivalent to R1. This is caused by the fact that the result of the first
transformation is no longer variant-free.

The proof of the following theorem depends on the implicit assumption that TRSs are always
variant-free. However, even for variant-free R, Ṙ does not necessarily have this property (as
shown by Example 3.6 above). Thus, in our formalization, we explicitly remove variants of
rules as part of the Ṙ transformation.

Theorem 3.7. If R is a complete TRS then R̈ is a normalization and conversion equivalent
canonical TRS.

The proof by Métivier [4, Theorem 7] is hard to reconstruct. The proof in [5, Exercise 7.4.7]
involves 13 steps with lots of redundancy. The proof below uses induction on the well-founded
encompassment order ·B and has been formalized. Since subsumption as well as encompassment
have not been part of IsaFoR before, we had to amend this situation. See theory Encompassment

for details.

Proof. LetR be a complete TRS. The inclusions R̈ ⊆ Ṙ ⊆ →+
R are obvious from the definitions.

Since R and Ṙ have the same left-hand sides, their normal forms coincide. We show that
NF(R̈) ⊆ NF(Ṙ). To this end we show that ` /∈ NF(R̈) whenever ` → r ∈ Ṙ by induction on
` with respect to the well-founded order ·B. If ` → r ∈ R̈ then ` /∈ NF(R̈) trivially holds. So
suppose ` → r /∈ R̈. By definition of R̈, ` /∈ NF(Ṙ \ {` → r}). So there exists a rewrite rule
`′ → r′ ∈ Ṙ different from `→ r such that ` ·D `′. We distinguish two cases.

• If ` ·B `′ then we obtain `′ /∈ NF(R̈) from the induction hypothesis and hence ` /∈ NF(R̈)
as desired.
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• If `
.
= `′ then by Lemma 3.2 there exists a renaming σ such that ` = `′σ. Since Ṙ is

right-reduced by construction, r and r′ are normal forms of Ṙ. The same holds for r′σ
because normal forms are closed under renaming. We have r Ṙ← ` = `′σ →Ṙ r′σ. Since

Ṙ is confluent as a consequence of Lemma 2.4, r = r′σ. Hence `′ → r′ is a variant of
`→ r, contradicting the assumption that TRSs are variant-free.

From Lemma 2.4 we infer that the TRSs Ṙ and R̈ are complete and normalization equivalent to
R. The TRS R̈ is right-reduced because R̈ ⊆ Ṙ and Ṙ is right-reduced. From NF(R̈) = NF(Ṙ)
we easily infer that R̈ is left-reduced. It follows that R̈ is canonical. It remains to show that R̈
is not only normalization equivalent but also (conversion) equivalent toR. This is an immediate
consequence of Lemma 2.3.

For our next result we need the following technical lemma.

Lemma 3.8. Let R be a right-reduced TRS and let s be a reducible term which is minimal with
respect to ·B. If s→+

R t then s→ t is a variant of a rule in R

Proof. Let ` → r be the rewrite rule that is used in the first step from s to t. So s ·D `.
By assumption, s ·B ` does not hold and thus s

.
= `. According to Lemma 3.2 there exists a

renaming σ such that s = `σ. We have s→R rσ →∗R t. Because R is right-reduced, r ∈ NF(R).
Since normal forms are closed under renaming, also rσ ∈ NF(R) and thus rσ = t. It follows
that s→ t is a variant of `→ r.

In our formalization, the above proof is the first spot where we actually need that R satisfies
the variable condition (more precisely, right-hand sides of rules do not introduce fresh variables).

The next result is the main result of this note.

Theorem 3.9. Normalization equivalent reduced TRSs are unique up to literal similarity.

Proof. Let R and S be normalization equivalent reduced TRSs. Suppose `→ r ∈ R. Because
R is right-reduced, r ∈ NF(R) and thus ` 6= r. Hence ` →+

S r by normalization equivalence.
Because R is left-reduced, ` is a minimal (with respect to ·B) R-reducible term. Another
application of normalization equivalence yields that ` is minimal S-reducible. Hence `→ r is a
variant of a rule in S by Lemma 3.8.

We show that the corresponding result of Métivier [4, Theorem 8] is an easy consequence
of Theorem 3.9. Here a TRS R is said to be compatible with a reduction order > if ` > r for
every rewrite rule `→ r of R.

Theorem 3.10. Let R and S be equivalent canonical TRSs. If R and S are compatible with
the same reduction order then R .

= S.

Proof. Suppose R and S are compatible with the reduction order >. We show that→!
R ⊆ →!

S .
Let s →!

R t. We show that t ∈ NF(S). Let u be the unique S-normal form of t. We have
t →!

S u and thus t ↔∗R u because R and S are equivalent. Since t ∈ NF(R), we have u →!
R t.

If t 6= u then both t > u (as t→!
S u) and u > t (as u→!

R t), which is impossible. Hence t = u
and thus t ∈ NF(S). Together with s↔∗S t, which follows from the equivalence of R and S, we
conclude that s→!

S t. We obtain →!
S ⊆ →!

R by symmetry. Hence R and S are normalization
equivalent and the result follows from Theorem 3.9.
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1 Introduction

CeTA was originally developed as a tool for certifying termination proofs [5], which have to be
provided as certificates in the CPF-format. Given a certificate CeTA will either answer CERTIFIED,
or return a detailed error message why the proof was REJECTED. Its correctness is formally proven
as part of IsaFoR, the Isabelle Formalization of Rewriting: IsaFoR contains executable “check”-
functions for each formalized proof technique together with formal proofs that whenever such
a check is accepted, the technique is applied correctly. Isabelle’s code-generator is then used to
obtain CeTA.1 By now, CeTA can also be used for certifying confluence and non-confluence proofs.
In this system description, we give an overview on what kind of proofs are supported, and what
information has to be given in the certificates. As we will see, only little information is required
and so we hope that CSI [8] will not stay the only confluence tool that can produce certificates.

2 Terminating Term Rewrite Systems (TRSs)

It is well known that confluence of terminating TRSs is decidable by checking joinability of
all critical pairs. The latter can be decided by reducing both terms of a critical pair to ar-
bitrary normal forms and then checking if these are equal. This technique is also supported
in CeTA, where in the certificate one just has to provide the termination proof and CeTA auto-
matically constructs all critical pairs and checks their joinability by rewriting to normal forms.
Alternatively one can also specify to check joinability by an automatic breadth-first search.
Finally one can completely provide the joining sequences for all critical pairs in the certifi-
cate. Although the latter results in more verbose certificates, which are harder to produce,
they are faster to check as no search is required for certification. For example, for R = Rack∪
{f(x) → x, a → ack(1000, 1000), a → f(ack(1000, 1000))}, where Rack is a convergent TRS for
the Ackermann-function, all critical pairs are joinable, but rewriting to normal form won’t work.

3 Certificates for Confluence

IsaFoR contains formalizations of two techniques that ensure confluence and do not demand
termination: strongly closed and linear TRSs as well as weakly orthogonal TRSs are confluent.

For the latter, the certificate only consists of the statement that the TRS is weakly orthog-
onal, which is a syntactic criterion that can easily be checked by CeTA. For the former criterion,
the interesting part is to ensure that a given TRS R is strongly closed, i.e., for every critical
pair (s, t) there are terms u and v such that s→∗R u =

R← t and s→=
R v ∗R← t. Clearly, rewrit-

ing to normal forms is of little use here, so we just offer a breadth-first search in CeTA. In the
certificate one just has to provide a bound on the length of the joining derivations. The reason
for requiring the explicit bound is that in Isabelle all functions have to be total.In contrast to

∗Supported by the Austrian Science Fund (FWF), projects P22467 and P22767.
1At http://cl-informatik.uibk.ac.at/software/ceta/ one can access CeTA, IsaFoR, and the CPF-format.
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Section 2, here R is not necessarily terminating, and thus an unbounded breadth-first search
might be non-terminating, whereas an explicit bound on the depth easily ensures totality.

At this point, let us recall our notions of TRSs and critical pairs: as usual a TRS R is just
a set of rewrite rules. However we do not assume the following standard variable conditions:

VC lhs(R) = ∀`→ r ∈ R. ` /∈ V VC⊇(R) = ∀`→ r ∈ R.V(`) ⊇ V(r)

The critical pairs of a TRS R are defined as

CP(R) = {(rσ, C[r′]σ) | `→ r ∈ R, `′ → r′ ∈ R, ` = C[u], u /∈ V, mgu(u, `′) = σ}

where it is assumed that the variables in ` → r and `′ → r′ have been renamed apart. We do
not exclude root overlaps of a rule with itself, which gives rise to trivial critical pairs of the
form (rσ, rσ). Therefore, most techniques in IsaFoR that rely on critical pairs immediately try
to remove all trivial critical pairs, i.e., they consider {(s, t) ∈ CP(R) | s 6= t} instead of CP(R).
So, in practice these additional critical pairs do not play a role. However, for TRSs that do not
satisfy the variable conditions they are essential. For example, for the TRS R1 = {a→ y} over
signature {a, b, c} we have CP(R) = {(x, y)}, whereas without root-overlaps with the same rule
there would be no critical pair and we might wrongly conclude confluence via orthogonality.

The confluence criterion of weak orthogonality not only implicitly demands VC⊇(R), but
explicitly demands VC lhs(R). In contrast, none of the variable conditions is required for
strongly closed and linear TRSs. Hence, the following two TRSs are confluent via this cri-
terion: R2 = {x → f(x), y → g(y)} is strongly closed as there are no critical pairs, and
R3 = {a→ f(x), f(x)→ b} is strongly closed as the only non-trivial critical pair is (f(x), f(y)),
which is obviously joinable in one step to b. Also R4 = {a → f(x), f(x) → b, x → f(g(x))}—
which satisfies neither of the variable conditions—is strongly closed and linear, and thus con-
fluent. Similarly as for weak orthogonality, the addition of root overlaps w.r.t. the same rule is
essential, as otherwise the non-confluent and linear TRS R1 would be strongly closed.

4 Disproving Confluence via Non-Joinable Forks

One way to disprove confluence of an arbitrary, possibly non-terminating TRS R is to provide
a non-joinable fork, i.e., s →∗R t1 and s →∗R t2 such that t1 and t2 have no common reduct.
To certify these proofs, in CeTA we demand the concrete derivations from s to t1 and t2 and
additionally a certificate that t1 and t2 are not joinable, which is clearly the more interesting
part. To this end, we generalize the notion of non-joinability to two TRSs, which allows us to
conveniently and modularly formalize several existing techniques for non-joinability. Initially,
R1 = R2 = R and any change on one of the TRSs is currently internally computed by CeTA.

NJR1,R2(t1, t2) = (¬∃u. t1 →∗R1
u ∧ t2 →∗R2

u)

4.1 Grounding

Clearly, NJR1,R2
(t1σ, t2σ) implies NJR1,R2

(t1, t2) for some arbitrary substitution σ. This
substitution has to be provided in the certificate and can be used replace each variable in t1
and t2 by some fresh constant. Grounding can be beneficial for other non-joinability techniques.

4.2 Tcap and Unification

The function tcapR can approximate an upper part of a term where no rewriting with R is
possible, and thus, remains unchanged by rewriting. Hence, it suffices to check that tcapR1

(t1)
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is not unifiable with tcapR2
(t2) to ensure NJR1,R2(t1, t2).

Since tcapRi
replaces variables by fresh ones, it is beneficial to apply grounding beforehand

[8]. To this end, CeTA computes a suitable grounding substitution, if some ti is not a ground
term. Because of grounding, this criterion fully subsumes the criterion, that two different normal
forms are not joinable. Nevertheless one can also refer to the latter criterion in certificates.

4.3 Usable Rules for Reachability

In [1] the usable rules for reachability Ur have been defined (via some inductive definition of
auxiliary usable rules U0). They have the crucial property that t →∗R s implies t →∗Ur(R,t) s.
This property immediately shows the following theorem.

Theorem 1. NJUr(R1,t1),Ur(R2,t2)(t1, t2) implies NJR1,R2(t1, t2).

Whereas the crucial property was easily formalized within IsaFoR following the original proof,
it was actually more complicated to provide an implementation of usable rules that turns the
inductive definition of U0 into executable code. Note that we did not have this problem in
previous work on usable rules [3] where we explicitly demand that the set of usable rules is
provided in the certificate. However, due to our implementation of usable rules, we no longer
require the set of usable rules in the certificate.

4.4 Discrimination Pairs

In [1] term orders are utilized to prove non-joinability. To be precise, (%,�) is a discrimination
pair iff % is a rewrite order, � is irreflexive, and % ◦ � ⊆ �.2 We formalized the following
theorem, which in combination with Theorem 1 completely simulates [1, Theorem 12].

Theorem 2. If (%,�) is a discrimination pair, R−11 ∪R2 ⊆ %, and t1 � t2 then NJR1,R2
(t1, t2).

Proof. We perform a proof by contradiction, so assume t1 →∗R1
u and t2 →∗R2

u and hence
t2 →∗R−1

1 ∪R2
t1. Then by the preconditions we obtain t2 %∗ t1 � t2. Iteratively applying

% ◦ � ⊆ � yields t2 � t2 in contradiction to irreflexivity of �.

We have also proven within IsaFoR that every reduction pair is a discrimination pair, and
thus one can use all reduction pairs that are available in CeTA in the certificate.

4.5 Argument Filters

In [1] it is shown that argument filters π are useful for non-confluence proofs. The essence is

Observation 3. NJπ(R1),π(R2)(π(t1), π(t2)) implies NJR1,R2
(t1, t2).

Consequently, one may show non-joinability by applying an argument filter and then con-
tinue on the filtered problem. At this point we can completely simulate [1, Theorem 14]: apply
usable rules, apply argument filter, apply usable rules, apply discrimination pair.

4.6 Interpretations

Let F be some signature. Let A be a weakly monotone F-algebra (A, (fA)f∈F ,≥), i.e., fA :
An → A for each n-ary symbol f ∈ F , ≥ is a partial order, and for all a, b, f , a ≥ b implies

2Note, that unlike what is said in [1], one does not require � ◦ % ⊆ �.
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fA(. . . , a, . . . ) ≥ fA(. . . , b, . . . ). A is a quasi-model for R iff [[`]]A,α ≥ [[r]]A,α for all `→ r ∈ R
and every valuation α : V → A. Let αd be some default valuation.

Theorem 4. If A is a quasi-model of R−11 ∪R2 and [[t2]]A,αd
6≥ [[t1]]A,αd

then NJR1,R2
(t1, t2).

Proof. Similar as for Theorem 2. Given t2 →∗R−1
1 ∪R2

t1 and the quasi-model condition we

conclude [[t2]]A,αd
≥ [[t1]]A,αd

. This is an immediate contradiction to [[t2]]A,αd
6≥ [[t1]]A,αd

.

This proof was easy to formalize as it could reuse the formalization of semantic labeling [4],
which also includes algorithms to check the quasi-model conditions as well as a format for models
in the certificate. Here, CeTA is currently restricted to algebras over finite domains. Moreover, the
valuation αd cannot be specified in the certificate. However, by previously applying grounding,
the choice of αd does not matter any longer.

Note that in contrast to [1, Theorem 10], we only require [[t2]]A,αd
6≥ [[t1]]A,αd

instead of
[[t2]]A,αd

6≥ [[t1]]A,αd
∧ [[t1]]A,αd

≥ [[t2]]A,αd
. This has an immediate advantage, namely that we

can derive [1, Corollary 6] as a consequence: instantiate ≥ by equality, then weak monotonicity
is always guaranteed, the quasi-model condition becomes a model condition, and [[t2]]A,αd

6≥
[[t1]]A,αd

is equivalent to [[t1]]A,αd
6= [[t2]]A,αd

. Moreover, the usable rules can easily be integrated
as a preprocessing step in the same way as we did for discrimination pairs.

Further note that [1, Corollary 6] can also simulate [1, Theorem 5], by just taking the
quotient algebra. Therefore, by Theorems 1, 2, and 4, and Observation 3 we can now simulate
all non-joinability criteria of [1] and CeTA can also certify all example proofs of [1].

4.7 Tree Automata

A bottom-up tree automaton A is a quadruple (Q,F ,∆,Qf ) with states Q, signature F , tran-
sitions ∆, and final states Qf , and L(A) ⊆ T (F) denotes the accepted regular tree language.
We say that A is closed under R if {t | s ∈ L(A), s→R t} ⊆ L(A).

Observation 5. Let A1 and A2 be tree automata. If ti ∈ L(Ai) and Ai is closed under Ri for
i = 1, 2, and L(A1) ∩ L(A2) = ∅ then NJR1,R2

(t1, t2).

For checking these non-joinability certificates, CeTA implemented standard tree automata
algorithms for membership, intersection, and emptiness. The most difficult part is checking
whether A is closed under R for some A and R. Here, CeTA provides three alternatives. One can
refer to Genet’s criterion of compatibility, or use the more liberal condition of state-compatibility
[2], which requires an additional compatibility relation in the certificate, or one can just refer
to the decision procedure [2], which currently requires a deterministic automaton as input.
Since all of the conditions have been formalized under the condition VC⊇(R), Observation 5
can only be applied if both TRSs satisfy this variable condition. Moreover, grounding is an
essential preprocessing step, since tree automata only accept ground terms.

Example 6. Let R5 = {a → b1, a → b2, x → f(x)}. Non-confluence can easily be shown
since the critical pair (b1, b2) is not joinable: Take the automata Ai = ({1},F , {f(1)→ 1, bi →
1}, {1}), which satisfy all conditions of Observation 5.

5 Modularity of Confluence

In [6] it was proven that confluence is a modular property for disjoint unions of TRSs. Whereas
a certificate for applying this proof technique is trivial by just providing the decomposition, we
cannot certify these proofs, since currently a formalization of this modularity result is missing.
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However, we at least formalized the easy direction of the modularity theorem that non-
confluence of one of the TRSs implies non-confluence of the disjoint union, and we can thus
certify non-confluence proofs in a modular way. We base our certifier on the following theorem.
Here, we assume an infinite set of symbols3 and finite signatures F(R) and F(S) of the TRSs.

Theorem 7. Let F(R) ∩ F(S) = ∅, let VC⊇(R), let VC lhs(S). Then ¬CR(R) implies
¬CR(R∪ S).

Proof. By assuming ¬CR(R) there are s, t, u such that s →∗R t, s →∗R u, and NJR,R(t, u).
Since F(R)∩F(S) = ∅, w.l.o.g. we assume F(s)∩F(S) = ∅.4 By VC⊇(R) we conclude that
also (F(t)∪F(u))∩F(S) = ∅ must hold. Assume that t and u are joinable byR∪S. By looking
at the function symbols and using VC lhs(S) we conclude that the joining sequences cannot use
any rule from S. Hence, t and u are joinable by R, a contradiction to NJR,R(t, u).

There is an asymmetry in the modularity theorem, namely that R and S have to satisfy
different variable conditions. Note that in general it is not possible to weaken these conditions
as can be seen by the following two examples of [7, Example 20 and example in Section 5.3]. If
R = {a → b, a → c} and S = {x → d} (or if R = {f(x, y) → f(z, z), f(b, c) → a, b → d, c → d}
and S = {g(y, x, x) → y, g(x, x, y) → y}) then ¬CR(R), but CR(R ∪ S). Hence VC lhs(S)
(or VC⊇(R)) cannot be dropped from Theorem 7. The relaxation on the variable conditions
sometimes is helpful:

Example 8. Consider the non-confluent R5 of Example 6 and S = {g(x)→ y}. By Theorem 7
and ¬CR(R5) we immediately conclude ¬CR(R5 ∪S). Note that the proof in Example 6 is not
applicable to R5 ∪ S, since VC⊇(R5 ∪ S) does not hold.

Acknowledgments We thank Thomas Sternagel for his formalized breadth-first search al-
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References

[1] T. Aoto. Disproving confluence of term rewriting systems by interpretation and ordering. In FroCoS,
volume 8152 of LNCS, pages 311–326, 2013.

[2] B. Felgenhauer and R. Thiemann. Reachability analysis with state-compatible automata. In LATA,
volume 8370 of LNCS, pages 347–359, 2014.

[3] C. Sternagel and R. Thiemann. Certified subterm criterion and certified usable rules. In RTA,
volume 6 of LIPIcs, pages 325–340, 2010.

[4] C. Sternagel and R. Thiemann. Modular and certified semantic labeling and unlabeling. In RTA,
volume 10 of LIPIcs, pages 329–344, 2011.

[5] R. Thiemann and C. Sternagel. Certification of termination proofs using CeTA. In TPHOLs, volume
5674 of LNCS, pages 452–468, 2009.

[6] Y. Toyama. On the Church-Rosser property for the direct sum of term rewriting systems. Journal
of the ACM, 34(1):128–143, 1987.

[7] V. van Oostrom. Modularity of confluence. In IJCAR, volume 5195 of LNCS, pages 348–363, 2008.

[8] H. Zankl, B. Felgenhauer, and A. Middeldorp. CSI – A confluence tool. In CADE, volume 6803 of
LNAI, pages 499–505, 2011.

3Note that in IsaFoR function symbols do not come with a fixed arity.
4Here is exactly the point where in the formalization we use the assumptions of finite signatures and an

infinite set of symbols. Then it is always possible to rename all symbols in F(s) ∩ F(S) into fresh ones.

23



On Proving Confluence of Conditional Term

Rewriting Systems via the Computationally

Equivalent Transformation∗

Naoki Nishida1, Makishi Yanagisawa1 and Karl Gmeiner2

1 Graduate School of Information Science, Nagoya University
Furo-cho, Chikusa-ku, Nagoya 4648603, Japan

nishida@is.nagoya-u.ac.jp makishi@trs.cm.is.nagoya-u.ac.jp
2 Institute of Computer Science, UAS Technikum Wien

gmeiner@technikum-wien.at

Abstract

This paper improves the existing criterion for proving confluence of a normal condi-
tional term rewriting system (CTRS) via the Şerbănuţă-Roşu transformation, a compu-
tationally equivalent transformation of CTRSs into unconditional term rewriting systems
(TRS), showing that a weakly left-linear normal CTRS is confluent if the transformed
TRS is confluent. Then, we discuss usefulness of the optimization of the Şerbănuţă-Roşu
transformation, which has informally been proposed in the literature.

1 Introduction

Conditional term rewriting is known to be much more complicated than unconditional term
rewriting in the sense of analyzing properties, e.g., operational termination [8], confluence [16],
reachability [4], and so on. A popular approach to the analysis of conditional term rewriting
systems (CTRS) is to transform a CTRS into an unconditional term rewriting system (TRS)
that is an overapproximation of the CTRS in terms of reduction. This approach enables us
to use techniques for the analysis of TRSs, which are well investigated in the literature. For
example, if the transformed TRS is terminating then the CTRS is operationally terminating [3].

There are two approaches to such transformations: unravelings [9, 10] proposed by Mar-
chiori (see, e.g., [5, 11]), and a transformation [17] proposed by Viry (see, e.g., [14, 5]). The
latest transformation based on Viry’s approach is a computationally equivalent transformation
proposed by Şerbănuţă and Roşu [14, 15], called the SR transformation. This converts a left-
linear confluent normal CTRS into a TRS which is computationally equivalent to the CTRS.
This means that the converted TRS can be used to exactly simulate reduction sequences of the
CTRS to normal forms — there is no reduction to from possible initial terms to normal forms,
which does not hold on the original CTRS. Another interesting use of the SR transformation is
to prove confluence of a left-linear normal CTRS: if the converted TRS is confluent on reachable
terms, then the CTRS is confluent [14]. However, as far as we know, there are no formal method
to prove confluence on reachable terms.

In this paper, we revisit the SR transformation from the viewpoint of proving confluence
of CTRSs, especially normal CTRSs. First, we improve the existing criterion [14] for proving
confluence of normal CTRSs via the SR transformation, showing that a weakly left-linear normal
CTRS is confluent if the transformed TRS is confluent on reachable terms. Then, by an example,
we show uselessness of the improved criterion for the case that we attempt to use confluence on

∗The research in this paper is partly supported by the Austrian Science Fund (FWF) international project
I963 and the Japan Society for the Promotion of Science (JSPS).
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arbitrary terms instead of confluence on reachable terms. Finally, we discuss usefulness of the
optimization of the SR transformation, which has informally been proposed in the literature [14].

2 The SR transformation for Normal CTRSs
In this section, we briefly recall the SR transformation [14] for normal CTRSs. For the sake
of readability, as in [14], we restrict our interest to normal 1-CTRSs, any rule of which has at
most one condition.

This paper assumes familiarity of readers with the basic notions and notations of term
rewriting [2, 13]. We only give the definition of normal CTRSs. Throughout the paper, we use
V as a countably infinite set of variables. An (oriented) conditional rewrite rule over a signature
F is a triple (l, r, c), denoted by l → r ⇐ c, such that the left-hand side l is a non-variable
term in T (F ,V), the right-hand side r is a term in T (F ,V), and the conditional part c is either
an empty sequence or a pair s � t of terms s and t over F . We may abbreviate it to l → r
if the conditional part is the empty sequence. A conditional term rewriting system (CTRS) is
a finite set R of conditional rewrite rules, and it is called a normal 1-CTRS if, for every rule
l→ r ⇐ s� t ∈ R, Var(l) ⊇ Var(r)∪Var(s) and the term t is a ground normal form w.r.t. the
underlying unconditional system Ru = {l → r | l → r ⇐ c ∈ R}. The sets of defined symbols
and constructors of R are denoted by DR and CR, respectively.

In the following, the word “conditional rule” is used for representing rules having exactly
one condition. We often denote a sequence oi, oi+1, . . . , oj of objects by oi..j . Moreover, for
the application of a mapping op to oi..j , we denote op(oi), . . . , op(oj) by op(oi..j), e.g., for a
sequence ti..j of terms and a substitution θ, we denote tiθ, . . . , tjθ by θ(ti..j).

Before transforming a CTRS R, we extend the signature of R as follows: we leave construc-
tors of R without any change; the arity of an n-ary defined symbol f is expanded to n + m
where f has m conditional rules in R, and we replace f by f with the arity n + m; a fresh
constant ⊥ and a fresh unary symbol 〈·〉 are introduced. We denote the extended signature by
F : F = {c | c ∈ CR} ∪ {f | f ∈ DR} ∪ {⊥, 〈·〉}. We introduce the mapping ext(·) to extend
the arguments of defined symbols by applying to terms inductively as follows: ext(x) = x for
x ∈ V; ext(c(t1..n)) = c(ext(t1..n)) for c/n ∈ CR; ext(f(t1..n)) = f(ext(t1..n), z1..m) for f/n ∈
DR where arityF (f) = n+m and z1, . . . , zm are fresh variables. The expanded arguments of f
are used for evaluating the corresponding conditions, and the fresh constant ⊥ is introduced to
the expanded arguments of defined symbols, which does not store any evaluation. We define a
mapping · from T (F ,V) to T (F ,V), which extends the arguments of defined symbols and puts
⊥ to all the expanded arguments by applying to terms inductively as follows: x = x for x ∈ V;
c(t1..n) = c(t1..n) for c ∈ CR; f(t1..n) = f(t1..n,⊥, . . . ,⊥) for f ∈ DR.

The SR transformation [14] is formally defined as follows.

Definition 1 (SR). Let f/n ∈ DR that has m conditional rules in R. Then, SR(f(w1..n)→ r)
= { f(ext(w1..n), z1..m)→ 〈r〉 } and, for the i-th conditional rule of f,

SR(f(w1..n)→ ri ⇐ si� ti)=

{
f(w′

1..n, z1..i−1,⊥, zi+1..m)→ f(w′
1..n, z1..i−1, 〈si〉, zi+1..m),

f(w′
1..n, z1..i−1, 〈ti〉, zi+1..m)→〈ri〉

}
where z1, . . . , zm are fresh variables, and w′j = ext(wj) for all 1 ≤ j ≤ n. The set of auxiliary
rules is defined as follows:

Raux = { 〈〈x〉〉 → 〈x〉 } ∪ { c(x1..i−1, 〈xi〉,xi+1..n)→ 〈c(x1..n)〉 | c/n ∈ CR, 1 ≤ i ≤ n }
∪{ f(x1..i−1, 〈xi〉,xi+1..n, z1..m)→ 〈f(x1..n,⊥, . . . ,⊥)〉 | f/n ∈ DR, 1 ≤ i ≤ n }

where z1, . . . , zm are fresh variables. The transformation SR is defined as follows: SR(R) =⋃
ρ∈R SR(ρ)∪Raux . Note that SR(R) is a TRS over F . The backtranslation mapping ·̂ for · is
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defined as follows: x̂ = x for x ∈ V; ̂c(t′1..n) = c(t̂′1..n) for c ∈ CR; ̂f(t′1..n,u1..m) = f(t̂′1..n)

for f ∈ DR; 〈̂t′〉 = t̂′. A term t′ in T (F ,V) is called reachable if there exists a term s ∈ T (F ,V)
such that 〈s〉 →∗SR(R) t

′. We say that SR (and also SR(R)) is sound for (reduction of) R if,

for all terms s in T (F ,V) and terms t′ ∈ T (F ,V), 〈s〉 →∗SR(R) t
′ implies s →∗R t̂′.

Note that ·̂ is not defined for ⊥, but ·̂ is a total function for reachable terms and their structural
subterms [14].

SR is complete for all normal CTRSs [14], i.e., for all terms s and t in T (F ,V), s →∗R t
implies 〈s〉 →∗SR(R) 〈t〉. On the other hand, SR is not sound for all normal CTRSs [14]. The

first rule in Raux removes the nest of 〈·〉, the second rule is used for shifting 〈·〉 upward, and
the third rules are used for both shifting 〈·〉 upward and resetting the evaluation of conditions
at the expanded arguments of f (see [14] for the detail of the role of 〈·〉 and its rules).

Example 2. Consider the following normal CTRS, a variant of the one in [14]:

R1 = { e(0)→ true, e(s(x))→ true⇐ e(x) � false, e(s(x))→ false⇐ e(x) � true }
R1 is transformed by SR as follows:

SR(R1) =


e(0, z1, z2)→ 〈true〉,

e(s(x),⊥, z2)→ e(s(x), 〈e(x,⊥,⊥)〉, z2), e(s(x), 〈false〉, z2)→ 〈true〉,
e(s(x), z1,⊥)→ e(s(x), z1, 〈e(x,⊥,⊥)〉), e(s(x), z1, 〈true〉)→ 〈false〉,

〈〈x〉〉 → 〈x〉, s(〈x〉)→ 〈s(x)〉, e(〈x〉, z1, z2)→ 〈e(x,⊥,⊥)〉


SR(R1) is confluent on reachable terms, but SR(R1) is not confluent.

3 Proving Confluence of CTRSs via the Transformation
It has been shown that if SR(R) is left-linear and confluent on reachable terms, then R is
confluent [14]. Note that by definition, R is left-linear iff so is SR(R). As described in [14], in
this claim, left-linearity is assumed in order to ensure soundness. Here, we give a proof so as
to relax the left-linearity to soundness.

Theorem 3. If SR(R) is sound for R and confluent on reachable terms, then R is confluent.

Proof. Let s, t1, and t2 be terms in T (F ,V) such that t1 ←∗R s →∗R t2. It follows from
completeness of SR that 〈t1〉 ←∗SR(R) 〈s〉 →

∗
SR(R) 〈t2〉. Since SR(R) is confluent on reachable

terms, there exists a term u′ ∈ T (F ,V) such that 〈t1〉 →∗SR(R) u
′ ←∗SR(R) 〈t2〉. It follows from

soundness of SR(R) that t1 →∗R û′ ←∗R t2. Therefore, R is confluent.

Theorem 3 means that soundness conditions of SR are very useful in proving confluence of
normal CTRSs. A normal CTRS R is called weakly left-linear [6] if every conditional rewrite
rule having at least one condition is left-linear, and for every unconditional rule, any non-linear
variable in the left-hand side does not occur in the right-hand side. Note that a left-linear
CTRS is weakly left-linear. Note also that R is weakly left-linear iff so is SR(R). It has been
shown that SR is sound for weakly left-linear normal CTRSs [12]. Thus, Theorem 3 provides
us a new sufficient condition for confluence of normal CTRSs.

Theorem 4. A weakly left-linear normal CTRS R is confluent if SR(R) is confluent on reach-
able terms.

It would be difficult to directly prove that SR(R) is confluent on reachable terms. A trivial
sufficient condition for the property is confluence on arbitrary terms.

Lemma 5. SR(R) is confluent on reachable terms if SR(R) is confluent.
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Due to Lemma 5, to prove confluence of R, instead of proving confluence on reachable terms,
we try to prove confluence of SR(R). Unfortunately, this approach looks impractical.

Example 6. As described in Example 2, SR(R1) is not confluent. Since R1 is a basic example
of normal CTRSs, the combination of Theorem 4 and Lemma 5 looks unpractical.

It is often that critical pairs between rules in SR(R) \Raux and Raux are not joinable. For
this reason, confluence of SR(R) is too severe to prove termination of R, and thus, SR is not
so useful to prove confluence of normal CTRSs.

Let us consider a direct proof for confluence on reachable terms again. When SR(R) is
terminating, it would be sufficient to prove that any critical pair is joinable if an instance of the
critical peak is reachable. For example, to prove confluence of SR(R1) on reachable terms, it
would be sufficient to prove that any instance of e(s(x), 〈false〉, 〈true〉) is not reachable. However,
it is in general undecidable whether a term is reachable.

Instead of such unreachability, an optimization has already been discussed in [14]. We recall
the optimization via the following example.

Example 7. Consider R1 in Example 2 again. The overlapping rules e(s(x))→ true⇐ e(x) �
false and e(s(x)) → false ⇐ e(x) � true have the same initial terms e(x) of conditions to be
evaluated. For this reason, we do not need two extra arguments of e, and then SR(R1) is
optimized as follows, where we denote the optimization of SR by SRopt :

SRopt(R1) =

{
e(0, z)→ 〈true〉, e(s(x),⊥)→ e(s(x), 〈e(x,⊥)〉),

e(s(x), 〈false〉)→ 〈true〉, e(s(x), 〈true〉)→ 〈false〉, . . .

}
SRopt(R1) is still not confluent since there are two critical pairs which are not joinable:
(e(〈s(x)〉, 〈false〉), 〈true〉) and (e(〈s(x)〉, 〈true〉), 〈false〉). As described in [14], the introduced
unary symbol 〈·〉 and its related rules are not necessary for constructor CTRSs in the sense of
soundness. Then, by removing them from SR(R1), we obtain the following orthogonal TRS:

{ e(0, z)→ true, e(s(x),⊥)→ e(s(x), e(x,⊥)), e(s(x), false)→ true, e(s(x), true)→ false }
Note that the resulting TRS above is equivalent to that obtained by [1]. Therefore, from
Theorem 4 and Lemma 5, R1 is confluent.

The optimization is useful in proving confluence of R2, but it is not always successful.

Example 8. Consider the following constructor normal CTRS, a variant of R1:

R2 =

{
e(0)→ true, e(s(x))→ true⇐ o(x) � true, e(s(x))→ false⇐ e(x) � true,
o(0)→ false, o(s(x))→ true⇐ e(x) � true, o(s(x))→ false⇐ o(x) � true

}
ForR2, SRopt does not differ from SR, i.e., SR(R2) = SRopt(R2) even when 〈·〉 is not introduced.
SR(R2) with/without 〈·〉 is not confluent, and thus, useful to prove confluence of R2.

Finally, we consider the case of non-constructor-based CTRSs.

Example 9. Consider the following normal CTRS over the signature {0, s, ◦, true, false} [14]:

R3 =

◦(x, ◦(y, l))→ ◦(y, ◦(x, l))⇐ x < y � true,
0 < 0→ false, 0 < s(0)→ true, 0 < s(s(x))→ 0 < s(x),

s(0) < 0→ false, s(s(x)) < 0→ s(x) < 0, s(x) < s(y)→ x < y


R3 is operationally terminating and the critical pair (◦(x, ◦(z, ◦(y, l)), ◦(y, ◦(x, ◦(z, l))))⇐ y <
z � true, x < y � true is joinable. Thus, R3 is confluent. The CTRS R3 is transformed by SR
into the following TRS: SR(R3) = SRopt(R3) = { ◦(x, ◦(y, l, c),⊥) → ◦(x, ◦(y, l, c), 〈x<y〉),
◦(x, ◦(y, l, c), 〈true〉)→ 〈◦(y, ◦(x, l,⊥))〉, . . . }. SR(R3) is not confluent because there is some
critical pairs which are not joinable, e.g., (〈◦(x, ◦(y, l, c),⊥)〉, 〈◦(y, ◦(x, l,⊥))〉). Notice that
◦(〈x〉, l, z1)→ 〈◦(x, l,⊥)〉 ∈ SR(R3).
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4 Conclusion
In this paper, we showed that a weakly left-linear normal CTRS is confluent if the transformed
TRS is confluent (on reachable terms). Then, by an example, we showed uselessness of the
improved criterion for the case that we attempt to use confluence on arbitrary terms instead
of confluence on reachable terms. Finally, we discussed usefulness of the optimization of the
SR transformation. We will make an experiment to evaluate usefulness of the optimization in
terms of proving confluence of CTRSs. The discussion is not a sufficient evidence for usefulness
of the optimization, and thus, we will formalize the optimization, adapt the claims which hold
on SR to the optimization, and compare the optimization with that of unravelings [7]. We will
also develop a more practical method to prove confluence of a CTRS by using critical pairs of
the transformed TRS.
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Abstract

In this note we introduce critical-pair-closing systems which are aimed at analyzing
confluence of term rewriting systems. Based on the notion two new confluence criteria are
presented. One is a generalization of weak orthogonality based on relative termination,
and another is a partial solution to the RTA Open Problem #13.

1 Introduction

For confluence of a left-linear term rewriting system (TRS) joinability of every critical pair is
necessary but not sufficient [4]. In this note we focus attention on rewrite steps that are used
for closing critical pairs. For brevity we adopt Dershowitz’s critical pair notation [2].

Definition 1.1. A TRS C is critical-pair-closing for a TRS R if C ⊆ R̂ and R←o→R ⊆ ↓C .
Here R̂ = {`σ → rσ | `→ r ∈ R and xσ is a ground normal form for all x ∈ Dom(σ)}.

We present two confluence criteria. One is the criterion that a left-linear TRS R is confluent
if there exists a confluent critical-pair-closing system C for R such that →Cd/R is terminating.
Here Cd is the set of duplicating rewrite rules of C and→Cd/R =→∗R · →Cd · →

∗
R. In other words,

if a left-linear TRS R that admits a confluent critical-pair-closing system C is not confluent,
there exists an infinite rewrite sequence of R that contains infinitely many Cd-steps. Another
criterion is that a left-linear TRS R is confluent if there is a terminating critical-pair-closing

system C for R with R
>ε←−−o−→R ⊆ ‖−→C · ∗C←. The symbol R

>ε←−−o−→R stands for the set of
all inside critical pairs of R induced from non-root-overlaps. As a corollary, a left-linear TRS
R is confluent if R←o→R ⊆ ‖−→C ∪ C ‖←− holds for some terminating subsystem C of R. This is
regarded as a partial solution to one of variations of the RTA Open Problem 13: Is a left-linear
TRS R confluent if R←o→R ⊆ ‖−→R ∪R ‖←− holds? Both criteria subsume weak orthogonality,
considering the case C = ∅.

2 Confluence Criteria

In this section we prove the two criteria stated in the introduction. Both rely on the following
confluence criterion for abstract rewriting systems (ARSs). Let >1, >2 be strict orders and &1

a preorder such that &1 · >1 · &1 ⊆ >1. We define the lexicographic product ((>1,&1), >2)lex
as follows: (a, b) ((>1,&1), >2) (c, d) if either a >1 c, or a &1 c and b >2 d. The lexicographic
product is well-founded, whenever >1 and >2 are well-founded. Let A = (A, {→α}α∈I) be a
labeled ARS equipped with a well-founded order > on the label set I. The union of →β for all
β < α is denoted by →∨α.

Lemma 2.1. Let B be a confluent ARS with →B ⊆ →∗A. The labeled ARS A is confluent if

∗Supported by JSPS KAKENHI Grant Number 25730004.
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Figure 1: The proof of Lemma 2.3.

• α← · →β ⊆ (→∗B · →A · A← · ∗B←) ∪ (∨α← · ↔∗B · →∨β) for all labels α, β ∈ I, and

• B← · →α ⊆ (→α · ∗B←) ∪ (↔∗B · →∨α · ∗B←) for all labels α ∈ I.

Proof. Let� =→∗B · →A. Since →A ⊆� ⊆ →∗A, it is enough to prove the diamond property
of �. The inclusion α← · →m

B · nB← · →β ⊆� ·� is shown by induction on ({α, β},m + n)

with respect to ((>mul,=), >)lex. Hence, � ·� ⊆ A← · →∗B · ∗B← · →A ⊆� ·�.

2.1 A criterion based on relative termination

We prove correctness of the first criterion. For a set U of parallel redex occurrences, the parallel

step of R that contracts U is referred to as
U
‖−→R. We write s

n
‖−→R t if s

U
‖−→R t and |U | 6 n for

some U . For technical convenience we assume
n
‖−→R = ∅ when n < 0.

Lemma 2.2. Suppose that a left-linear TRS R admits a critical-pair-closing system C. If

t R
m
‖←− s

n
‖−→R u then t ‖−→R · R ‖←− u, or there exist v and w such that t R

m−1
‖←−−− v ↔∗C w

n−1
‖−−−→R u

and v R← s→R w.

Lemma 2.3. Suppose that C is a confluent critical-pair-closing system for a left-linear R. If

t C← s
n
‖−→R u then one of the following conditions holds.

(a) t
n
‖−→R · ∗C← u,

(b) t↔∗C v ‖−→R · ∗C← u and s→Cd/R v hold for some v,

(c) t↔∗C v
n−1
‖−−−→R · ∗C← u and s→∗R v hold for some v.

Proof. If n = 0 then (a) holds trivially. Otherwise, one of the three diagrams in Figure 2.1
holds. In any case one of conditions (a–c) holds.

Theorem 2.4. A left-linear TRS R is confluent if Cd/R is terminating for some confluent
critical-pair-closing system C for R.

Proof. We define the labeled ARS A on terms as follows: s →α t if s
n
‖−→R t and α = (s, n).

Moreover, we define the ARS B as →B = →C . Lemmata 2.2 and 2.3 ensure the conditions of
Lemma 2.1 for the well-founded order ((→+

Cd/R,→
∗
R), >)lex on labels. Therefore, confluence of

A is obtained. Hence, R is confluent.

We illustrate use of Theorem 2.4 with an example for which ACP v0.40 [1] and CSI v0.4.1 [7]
fail to show confluence.

30



Normalization Equivalence of Rewrite Systems Oyamaguchi, Hirokawa

Example 2.5. We show confluence of the left-linear TRS R

f(h(x, d), y)→ f(h(y, d), x) h(c, x)→ h(x, x)

by successive application of Theorem 2.4.

(i) The left-linear TRS C

1: f(h(x, d), c)→ f(h(c, d), x) 2 : h(c, d)→ h(d, d)

is critical-pair-closing for R, and Cd/R is terminating as Cd = ∅. Thus, it is sufficient to
show that C is confluent.

(ii) Let C′ = {2}. The TRS C′ is critical-pair-closing for C. Because C′d = ∅, termination of
C′d/R is trivial. It remains to show that C′ is confluent.

(iii) Since C′ admits no critical pair, the empty TRS ∅ is a confluent critical-pair-closing system
for C′. Termination of ∅d/R1 is trivial, and therefore C′ is confluent.

Hence, R is confluent. Note that taking C from instances of rules in R is essential.

The following examples explain why none of confluence of C, termination of Cd/R, or the

ground normal form condition of R̂ can be removed from the conditions of Theorem 2.4.

Example 2.6. Consider the non-confluent left-linear TRS R taken from [4]:

b→ a b→ c c→ b c→ d

Let C = R. While C is not confluent, C is critical-pair-closing and termination of Cd/R follows
from Cd = ∅.

Example 2.7. Consider the non-confluent left-linear TRS R from [3]:

1 : f(a, a)→ b 2: f(x, b)→ f(x, x) 3 : f(b, x)→ f(x, x) 4 : a→ b

Let C = {1, 2, 3}. Then, C is confluent and critical-pair-closing for R, while Cd/R is not
terminating. Let C′ = {1, 2′, 3′}, where 2′ : f(a, b)→ f(a, a) and 3′ : f(b, a)→ f(a, a). Confluence

of C′, termination of C′d/R, and R←o→R ⊆ ↓C′ hold, while C′ ⊆ R̂ does not hold.

2.2 A criterion based on termination

Next, we show the second criterion.

Lemma 2.8. Every terminating critical-pair-closing system C for a TRS R is confluent.

Proof. By the definition of R̂ every critical pair of C is an instance of some critical pair of R.
Therefore, C←o→C ⊆ ↓C . Hence, Knuth and Bendix’ criterion entails confluence.

In order to analyze local peaks we recall Huet’s measure which was used for proving cor-
rectness of the Parallel Closedness Theorem [4].

Definition 2.9. Let γ : t R
U
‖←− s

V
‖−→R u. The weight w(γ) of the local peak γ is given by

w(γ) =
∑
p∈W

∣∣s|p∣∣
where, W = {p ∈ U | q 6 p for some q ∈ V } ∪ {p ∈ V | q < p for some q ∈ U}. Note that if
W = ∅ then w(γ) = 0.
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Figure 2: The proof of Lemma 2.10.

Lemma 2.10. Let C be a terminating critical-pair-closing system for a left-linear TRS R, and

suppose R
>ε←−−o−→R ⊆ ‖−→C · ∗C←. The following inclusions hold.

(a) C← · ‖−→R ⊆ →∗C · ‖−→R · ∗C←

(b) R ‖←− · ‖−→R ⊆ →∗C · ‖−→R · R ‖←− · ∗C←

Proof. We only prove (a) since (b) can be proved in a similar way. We show the stronger claim

that γ : t C
U
‖←− s

V
‖−→R u implies t →∗C · ‖−→R · ∗C← u, by induction on (w(γ), s) with respect

to ((>,=),�)lex. Here � stands for the proper superterm relation. We distinguish four cases,
depending on U and V :

• If U and V admit no critical overlap, the Parallel Moves Lemma entails t ‖−→R · C ‖←− u.

• If neither U nor V contains ε, the induction hypotheses for immediate subterms of s apply.

• If some p ∈ U and ε ∈ V form a critical overlap, (a) in Figure 2.2 holds.

• If ε ∈ U and some p ∈ V with p > ε form a critical overlap, (b) in Figure 2.2 holds.

Theorem 2.11. A left-linear TRS R is confluent if R
>ε←−−o−→R ⊆ ‖−→C · ∗C← holds for some

terminating critical-pair-closing system C of R.

Proof. Define the labeled ARS A as follows: s →α t if s ‖−→R t and α = s. The claim follows
from Lemmata 2.1, 2.8, and 2.10 by taking →B =→C and > =→+

C .

Example 2.12. Consider the left-linear TRS R from [6]:

1 : x− 0→ x 7: gcd(x, 0)→ x 13: if(false, x, y)→ x

2: 0− x→ 0 8: gcd(0, x)→ x 14: if(true, x, y)→ x

3: s(x)− s(y)→ x− y 9: gcd(x, y)→ gcd(y,mod(x, y))

4 : x < 0→ false 10: mod(x, 0)→ x

5: 0 < s(y)→ true 11: mod(0, y)→ 0

6: s(x) < s(y)→ x < y 12: mod(s(x), s(y))→ if(x < y, s(x),mod(x− y, s(y)))

Let C = {7, 8, 10, 11}. The system C is terminating and critical-pair-closing for R. Since R
admits no inside critical pairs, R

>ε←−−o−→R ⊆ ‖−→C · ∗C← holds. Hence, R is confluent.

The termination assumption of C cannot be dropped from Theorem 2.11, as seen below.

Example 2.13. Recall the TRS R of Example 2.6. There are no inside critical pairs. Let
C = R. Then C is a critical-pair-closing system of R. But R is not confluent.

32



Normalization Equivalence of Rewrite Systems Oyamaguchi, Hirokawa

Table 1: Experiments on 192 left-linear TRSs
Th.2.4 Th.2.11 [3, Th.3]

confluence proved 44 37 29
timeout (30 sec) 28 43 0

3 Concluding Remarks

We have introduced the notion of critical-pair-closing subsystems for left-linear TRSs and shown
two new confluence criteria for left-linear TRSs. The first criterion (Theorem 2.4) is a gener-
alization of weak orthogonality based on relative termination, and the second criterion (Theo-
rem 2.11) is related to the long-standing open problem stated in the introduction.

Table 1 summaries experimental results of the two criteria on left-linear TRSs in Cops
Nos. 1–3901. As in Example 2.5, Theorem 2.4 was tested as a stand-alone criterion. For the
comparison sake we also tested [3, Theorem 3], which is another generalization of weak orthog-
onality based on relative termination. A suitable critical-pair-closing system is searched from
subsets of an input TRS R by enumeration. We have not supported use of R̂ yet. Termination
and relative termination were checked by using TTT2 v1.16 [5], and joinability of critical pairs
for Theorems 2.4 and [3, Theorem 3] were checked by →k · m← for k,m 6 4. The tests were
single-threaded run on a system equipped with an Intel Core i7-4500U with 1.8 GHz using a
timeout of 30 seconds. Although the current implementation is still naive and inefficient, the
numbers of proofs in the table clearly show effectiveness of our criteria.

All the three criteria are incomparable. For instance, Cops Nos. 22, 19, and 14 can be
handled only by Theorem 2.4, Theorem 2.11, and [3, Theorem 3], respectively. It is worthwhile
to investigate whether critical-pair-closing systems and critical pair systems [3] can be combined.

Acknowledgements. We thank the anonymous reviewers for their valuable comments.
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1 Introduction

Confluence of term rewriting systems (TRSs) is undecidable, even for flat TRSs [MOJ06] or length-two
string rewrite systems [SW08]. Two decidable subclasses are known: right-linear and shallow TRSs by
tree automata techniques [GT05] and terminating TRSs [KB70]. Most of sufficient conditions are for
either terminating TRSs [KB70] (extended to TRSs with relative termination [HA11, KH12]) or left-
linear non-overlapping TRSs (and their extensions) [Ros73, Hue80, Toy87, Oos95, Oku98, OO97]. For
non-linear TRSs, a goal is RTA open problem 58 “strongly non-overlapping and right-linear TRSs are
confluent”. A best known result strengthens the right-linear assumption to simple-right-linear [TO95,
OOT95], which means that each rewrite rule is right-linear and no left-non-linear variables appear in
the right hand side. Other trials by depth-preserving conditions are found in [GOO98].

We have proposed a different methodology, called a reduction graph [SO10]. It has shown that
“weakly non-overlapping, shallow, and non-collapsing TRSs are confluent”. An original idea comes
from observation that, when non-E-overlapping, peak-elimination uses only “copies” of reductions in
an original rewrite sequences. Thus, if we focus on terms appearing in peak elimination, they are
finitely many. We regard a rewrite relation over these terms as a directed graph, and we construct
a confluent directed acyclic graph (DAG) in a bottom-up manner, in which the shallow assumption
works. The keys are, a connected convergent DAG always has a unique normal form (if it is finite),
and convergence is preserved if we add an arbitrary reduction starting from that normal form.

This paper briefly sketches that “non-E-overlapping and weakly-shallow TRSs are confluent” by
extending reduction graph in our previous work [SO10] by introducing constructor expansion. A term
is weakly shallow if each defined function symbol appears either at the root or in the ground subterms,
and a TRS is weakly shallow if the both sides of rules are weakly shallow. The non-E-overlapping
property is undecidable for weakly shallow TRSs [MOM12] and a decidable sufficient condition is the
strongly non-overlapping condition. A Turing machine can be simulated by a weakly shallow TRS
(p.27 in [Klo93]); thus the word problem is undecidable, in contrast to shallow TRSs [CHJ94].

Basic definitions and notations
We follow standard definitions and terminology of graphs and TRSs [BN98]. As notational con-

vention, V for a finite set (often of terms), F is a finite set of function symbols, D and C are the sets
of defined and constructor symbols in F , respectively. X is the set of variables. We use s, t, u, v, w for
terms, x, y for variables, p, q for positions, σ, θ for substitutions, `→ r for a rewrite rule, and R for a
TRS.

An abstract reduction system (ARS) is a directed graph G = 〈V,→〉 with →⊆ V × V . For
V ′, V ′′ ⊆ V , →|V ′×V ′′ =→∩ (V ′ × V ′′). We write VG and →G to emphasize G. An edge v → u is an
out-edge of v and an in-edge of u. A node v is →-normal if it has no out-edges. Let G = 〈V,→〉 and
G′ = 〈V ′,→′〉. The union G∪G′ is 〈V ∪V ′,→∪→′〉. We say G is finite if V is finite, G is convergent
if G is confluent and terminating, G′ includes G (denoted by G′ ⊇ G) if V ′ ⊇ V and →′ ⊇ →, and G′

weakly subsumes G (denoted by G′ w G) if V ′ ⊇ V and ↔′∗ ⊇ →.
We use sub(t) for the set of direct subterms of a term t defined as sub(t) = ∅ if t is a variable and

sub(t) = {t1, . . . , tn} if t = f(t1, . . . , tn). s
p→
R

t is a top reduction if p = ε. Otherwise, it is a non-top
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reduction, written as s
ε<→
R
t. We use T |f to denote the subset of T ⊆ T(F,X) and f ∈ F that consists

of the terms in T with the root symbol f . For F ′ ⊆ F , we use T |F ′ to denote ∪f∈F ′T |f .
A weakly shallow term is a term in which defined function symbols appear only either at the root

or in the ground subterms (i.e., p 6= ε and root(s|p) ∈ D imply that s|p is ground). A rewrite rule
`→ r is weakly shallow if ` and r are weakly shallow. A TRS is weakly shallow if each rewrite rule is
weakly shallow. We assume that a TRS has finitely many rewrite rules.

Let `1 → r1, `2 → r2 ∈ R. If there exist substitutions θ1, θ2 for p ∈ PosX(`1) such that `1|pθ1 =

`2θ2 (resp. `1|pθ1
ε<↔
R

∗ `2θ2), (r1θ1, (`1θ1)[r2θ2]p) is a critical pair (resp. E-critical pair) except that

p = ε and the two rules are identical (up to renaming variables). A TRS R is overlapping (resp.
E-overlapping, strongly overlapping) if there exists a critical pair (resp. E-critical pair, critical pair
of linearizatoin of R). Note that when a TRS is left-linear, they are equivalent.

2 Extensions of convergent abstract reduction systems

Definition 2.1. For ARSs G1 = 〈V1,→1〉 and G2 = 〈V2,→2〉, we say that G1 ∪G2 is the hierarchical
combination of G2 with G1, denoted by G1 mG2, if →1 ⊆ (V1 \ V2)× V1.

Lemma 2.2. Let G1 m G2 be a convergent hierarchical combination of ARSs. If a convergent ARS
G3 weakly subsumes G2 and G1 mG3 is a hierarchical combination, then G1 mG3 is convergent.

Definition 2.3. Let G = 〈V,→〉 be a convergent ARS and v 6= v′. Let G′ be obtained by:
〈V ∪ {v′},→∪ {(v, v′)}〉 if v ∈ V is →-normal, and v′ 6∈ V
〈V,→∪ {(v, v′)}〉 if v ∈ V is →-normal, v′ ∈ V and v′ 6↔∗ v
〈V,→\ {(v′, v′′) | v′ → v′′} ∪ {(v, v′)}〉 if v ∈ V is →-normal, v′ ∈ V , and v′ ↔∗ v
〈V ∪ {v, v′},→∪ {(v, v′)}〉 if v 6∈ V
Undefined otherwise

We denote G′ by 〈V,→〉( (v → v′) if G′ is defined (i.e., the first four cases). We denote G( (v0 →
v1) ( (v1 → v2) ( · · ·( (vn−1 → vn) as G( (v0 → v1 → · · · → vn).

Proposition 2.4. Let G = 〈V,→〉 be a convergent ARS. Let v0, v1, . . . , vn satisfy vi 6= vj (for i 6= j),
and the following conditions:

i) if v0 ∈ V , then v0 is →-normal and vi ∈ V implies vi ↔∗ v0 for each i(< n),

ii) if v0 6∈ V , then v1, · · · , vn−1 6∈ V .

Then, G′ = G( (v0 → v1 → · · · → vn) is convergent, and satisfies G′ w G.

3 Reduction graphs

Definition 3.1 ([SO10]). A finite ARS G = 〈V,→〉 is an R-reduction graph if V ⊆ T(F,X) and
→ ⊆→

R
.

For an R-reduction graph G = 〈V,→〉, top-edges, inner-edges, and strict inner-edges are given as
ε→ = →∩ ε→

R
,
ε<→ = → ∩ ε<→

R
, and

6=ε→ = → \ ε→
R

, respectively. We use Gε, Gε<, and G6=ε to denote

〈V, ε→ 〉 〈V, ε<→ 〉, and 〈V, 6=ε→ 〉, respectively. Remark that an edge (s, t) ∈ → may be both
ε→ and

ε<→ ,

e.g., (f(a, a), f(b, a)) for R = {a → b, f(x, x) → f(b, a)}. For an R-reduction graph G = 〈V,→〉 and
F ′ ⊆ F , we represent G|F ′ = 〈V,→|F ′〉 where →|F ′ =→|V |F ′×V .
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Definition 3.2. Let G = 〈V,→〉 be an R-reduction graph. The direct-subterm reduction-graph

sub(G) of G is 〈sub(V ), sub(→)〉 where 〈sub(V ), sub(→)〉 = 〈
⋃
t∈V sub(t), {(si, ti) | f(s1, . . . , sn)

ε<→
f(t1, . . . , tn), si 6= ti}〉. An R-reduction graph G = 〈V,→〉 is subterm-closed if sub(V ) ⊆ V and

sub(
6=ε→ ) ⊆ ↔∗.

Lemma 3.3. Let G = 〈V,→〉 be a subterm-closed R-reduction graph. Assume that p ∈ Pos(s) for a
term s and s[t]p ↔∗ s[t′]p, in which any reductions do not occur above p. Then t↔∗ t′.
Definition 3.4. Let G = 〈V,→〉 be an R-reduction graph and F ′ (⊆ F ). The F ′-monotonic extension
is

MF ′(G) = 〈V1,→1〉 for

{
V1 = {f(s1, . . . , sn) | f ∈ F ′, s1, . . . , sn ∈ V },
→1 = {(f(· · · s · · · ), f(· · · t · · · )) ∈ V1 × V1 | s→ t}.

When G is subterm-closed, an C-expansion MC(G) is the hierarchical combination G|D m MC(G)

(= G|D ∪MC(G)). The k-times application of MC to G is denoted by MC
k
(G).

Example 3.5. As a running example, we use a TRS R2 = {f(x, g(x))→ g3(x), c→ g(c) } with C =
{g} and D = {c, f}. Consider a subterm-closed R2-reduction graph G = 〈{c, g(c), g2(c)}, {(c, g(c))}〉.
For easy description, we also denote asG = {c→ g(c), g2(c)}. Then, MC(G) = {g(c)→ g2(c), g3(c)},
MC(G) = {c→ g(c)→ g2(c), g3(c)}, MC

3
(G) = {c→ g(c)→ g2(c)→ g3(c)→ g4(c), g5(c)}.

Lemma 3.6. For a subterm-closed R-reduction graph G and m > k ≥ 0, (1) G v MC
k
(G),

(2) MC
k
(G) is subterm-closed, (3) MC

k
(G) is convergent, if G is convergent, and (4) MC

k
(G) v

MC
m

(G).

4 Constructor expansion

In Section 4 and 5, given an R-reduction graph G0, we show how to inductively construct a convergent
and subterm-closed R-reduction graph G4 with G0 v G4. Note that Section 5 assumes that a TRS R
is non-E-overlapping and weakly shallow. Throughout these sections, we fix the notations.

• Given an R-reduction graph G0 = 〈V0,→0〉 as an input.

• G = 〈V,→〉 is used to denote a convergent and subterm-closed R-reduction graph that weakly
subsumes sub(G0) (by induction hypothesis).

• G1 = 〈V1,→1〉 denotes a convergent R-reduction graph with MF (G) v G1 (by Lemma 4.1).

• G2i = 〈V2i ,→2i〉 denotes MF (MC
i
(G)) for i ≥ 0.

• T denotes a subgraph of (Gε0∪Gε)\(Gε<0 ∪Gε<) such that T modulo↔∗1 is acyclic and preserves
connectivity of (Gε0 ∪Gε) \ (Gε<0 ∪Gε<) modulo ↔∗1.

• We repeatedly expand G1 (by Lemma 5.1 and 5.2) by adding edges of T from nodes with
out-edges only to sink order, and construct a convergent and subterm-closed G4 with G0 v G4.

If Gi = 〈Vi,→i〉 is convergent, we refer the normal form (in Gi) of a term u(∈ Vi) by u↓i.
Lemma 4.1. For a convergent and subterm-closed R-reduction graph G, there exist k (≥ 0) and an
R-reduction graph G1 satisfying the following conditions: i) G1 is convergent, and consists of non-top
edges, ii) G1 v G2k , iii) u↔∗2i v implies u↔∗1 v for each u, v ∈ V1 and i (≥ 0), and iv) MF (G) v G1.

Example 4.2. Consider R2 in Example 3.5. Let G0 = {f(g(c), c) ← f(c, c) → f(c, g(c))
ε→ g3(c)}.

The subterm graph sub(G0) is equal to G in Example 3.5, and is convergent and subterm-closed.
Then, Lemma 4.1 starts from MF (G), which is displayed by the solid arrows in Figure 1. An example
of G1 is constructed by augmenting the dashed edges with k = 1.
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c f(c, c) → f(g(c), c) f(g2(c), c)

→̇ ↓ ↓ ↓

g(c) f(c, g(c)) → f(g(c), g(c)) 99K f(g2(c), g(c))
↓
99K

g2(c) f(c, g2(c)) → f(g(c), g2(c)) 99K f(g2(c), g2(c))99K ‖
g3(c) →̇ g4(c) →̇ g5(c) ←̇ f(g2(c), g2(c))

Figure 1: G4 (dot arrows) and G1 (dashed arrows) starting from G0 (solid arrows) in Example 3.5

5 Merging top edges to the direct-subterm graph

Let G1 = 〈V1,→1〉 and T1 = 〈VT1 ,→ T1
〉 be R-reduction graphs with VT1 ⊆ V1. The component graph,

denoted by T1/G1, of T1 with G1, is the graph 〈V,→〉 having connected components of G1 as nodes
and→T1/G1

as edges such that V = {[v]↔ ∗1 | v ∈ V1} and→T1/G1
= {([u]↔ ∗1 , [v]↔ ∗1) | (u, v) ∈ →T1

}.

If clear from the context, we simply denote [v] instead of [v]↔ ∗1 .

Lemma 5.1. Let G be a convergent subterm-closed R-reduction graph, G1 = 〈V1,→1〉, and k as in

Lemma 4.1. Let →S ,→T ⊆ V1 × V1 such that →S =
ε→ S, →T =

ε→ T ,
ε→G⊆ (↔ S ∪ ↔ T ∪ ↔ 1)ε,

and

v) The component graph (S ∪ T )/G1 is acyclic, where out-edges are at most one for each node.
Moreover, if [u]↔ ∗1 has an in-edge in T/G1 then it has no edges in S/G1.

vi) u is →1-normal for each (u, v) ∈ S.

If T 6= ∅, there is a tuple (S′, T ′, G′1, k
′) such that |T | > |T ′| and the conditions i) to vi), (1) ↔ ∗1 ⊆

↔ ∗1′ and (2) (↔ T ∪↔ S)∗ ⊆ (↔ T ′∪↔ S′∪↔ 1′)
∗ hold. We denote it by (S, T,G1, k) ` (S′, T ′, G′1, k

′).

A convergent reduction graph G4 = 〈V4,→4〉 with G0 v G4 is obtained from S = φ, T (after
` in Lemma 5.1 is preprocessed), and G1 by repeated applications of `l, `r, and `e below. For

(`σ, rσ) ∈ T , there are h ≥ k and a substitution θ with (`σ)↓1 = u0(
ε<→
R
∩ ↔ ∗2h)u1(

ε<→
R
∩ ↔ ∗2h) · · · (ε<→

R

∩ ↔ ∗2h)un = `θ.

Let


(S, T,G1, k) `l (S, T,G1l , h) by G1l = G1 ( (u0 → · · · → un).

(S, T,G1l , h) `r (S, T,G1′ , k
′) for w ∈ V1 such that w is → 1l -normal, and w ↔ ∗2k′ rθ.

(S, T,G1′ , k
′) `e (S′, T ′, G1′ , k

′) for S′ = S ∪ {(`θ, rθ)} and T ′ = T \ {(`σ, rσ)}.

Lemma 5.2. Let G0 = 〈V0,→0〉 be an R-reduction graph. Then, there exists a convergent and
subterm-closed R-reduction graph G4 with G0 v G4.

Example 5.3. Let us consider to apply Lemma 5.2 on G0 in Example 4.2. First, we take a convergent
subterm-closed R2-reduction graph that weakly subsumes sub(G0). This graph is essentially the same
as G in Example 3.5, containing some garbage. For simplicity, we use G in Example 3.5. As in
Example 4.2, we obtain G1 and k = 1. Let T = (Gε0 ∪Gε) \ (Gε<0 ∪Gε<), where Gε0 and Gε have the
only edges f(c, g(c))→ g3(c) and c→ g(c), respectively.
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The conversion ` is applied twice, corresponding to two edges in T . The edge c → g(c) in T is
simply moved to S. For the edge f(c, g(c)) → g3(c) in T , `l adds f(g2(c), g2(c)) → f(g2(c), g3(c))
to G1. `r adds g3(c) → g4(c) → g5(c) to G1 and increases k to 3. `e adds f(g2(c), g3(c)) → g5(c)

to S. They are denoted by dotted arrows. Since MC(MC
3
(G)) is {g(c) → g3(c) → · · · → g4(c) →

g5(c), g6(c)}, G4 = (S ∪ G1|D) mMC(MC
2
(G)) is as in Figure 1, in which some garbage nodes are

not presented.

Main Theorem Non-E-overlapping and weakly-shallow TRSs are confluent.
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