
Proving Confluence of Term Rewriting Systems

Automatically

Takahito Aoto, Junichi Yoshida, and Yoshihito Toyama

RIEC, Tohoku University
{aoto,yoshida,toyama}@nue.riec.tohoku.ac.jp

Abstract. We have developed an automated confluence prover for term
rewriting systems (TRSs). This paper presents theoretical and technical
ingredients that have been used in our prover. A distinctive feature of
our prover is incorporation of several divide–and–conquer criteria such
as those for commutative (Toyama, 1988), layer-preserving (Ohlebusch,
1994) and persistent (Aoto & Toyama, 1997) combinations. For a TRS
to which direct confluence criteria do not apply, the prover decomposes
it into components and tries to apply direct confluence criteria to each
component. Then the prover combines these results to infer the (non-
)confluence of the whole system. To the best of our knowledge, an auto-
mated confluence prover based on such an approach has been unknown.

1 Introduction

Termination and confluence are considered to be central properties of term
rewriting systems. Recently, automation of termination proving has been widely
investigated in the literature. On the other hand, automation of confluence prov-
ing has not been well-known. Numerous results have been obtained on prov-
ing the confluence of term rewriting systems [5, 7, 11, 12, 14, 16–18,20], but little
work is reported on automation or an integration of these results on a conflu-
ence prover. This motivates us to develop a fully-automated confluence prover. A
distinctive feature of our prover is incorporation of several divide–and–conquer
criteria such as those for commutative [16], layer-preserving [9] and persistent [2]
combinations. We present theoretical and technical ingredients that have been
used in our prover, design of the system, and some experimental results.

2 Preliminaries

This section fixes some notions and notations used in this paper. We refer to [3]
for omitted definitions.

The sets of function symbols and variables are denoted by F and V . We
denote by F(t) and V(t) the sets of function symbols and variables occurring in
a term t. The symbol in t at a position p is written as t(p). The root position
is denoted by ε. The (proper) subterm relation is denoted by � (�). A rewrite
rule l → r is a pair of terms l and r such that l /∈ V and V(l) ⊇ V(r). It is



collapsing if r ∈ V and left-linear if no variable occurs more than twice in l.
Rewrite rules are identified modulo variable renaming. A term rewriting system
(TRS for short) is a finite set of rewrite rules. We put F(l → r) = F(l) ∪ F(r),
V(l → r) = V(l) ∪V(r) and F(R) =

⋃

l→r∈R
F(l→ r).

A rewrite step s →R,p t is defined by s/p = lσ and t = s[rσ]p for some
l → r ∈ R and substitution σ. We omit subscripts R and/or p if they are not
important. The subterm s/p of s is the redex of the rewrite step s→p t. A term
s is in normal form if s → t for no term t. The set of normal forms is denoted
by NF(R). A rewrite step s →p t is said to be innermost when any u � s/p is
in normal form. An innermost rewrite step is written as s →i t. The reflexive
transitive closure (reflexive closure) of a relation → is denoted by

∗
→ (resp.

=
→).

We define
∗
→ i and

=
→ i similarly. A term s is in head normal form if there exists

no redex t such that s
∗
→ t. The set of head normal forms is denoted by HNF(R).

A normal form (head normal form) of s is a term t ∈ NF(R) (resp. t ∈ HNF(R))

such that s
∗
→ t. A normal form of s is denoted by s↓. Similarly, an innermost

normal form of s is denoted by s↓i which is obtained by replacing → by →i.
We use ◦ for the composition of relations. Terms s and t are joinable (innermost

joinable) if s
∗
→ ◦

∗
← t (s

∗
→ i◦

∗
← i t, respectively.) A TRS R is confluent

(locally confluent) or Church–Rosser if s
∗
← ◦

∗
→ t (resp. s ← ◦ → t) implies

s and t are joinable. A TRS R is terminating (innermost-terminating) if there
exists no infinite rewrite sequence s1 → s2 → s3 → · · · (s1 →i s2 →i s3 →i · · · ,
respectively). A development rewrite step −→◦ [9] is inductively defined as follows:
(1)

=
→ ⊆ −→◦ , (2) si −→◦ ti (1 ≤ i ≤ n) implies f(s1, . . . , sn) −→◦ f(t1, . . . , tn), or

(3) s −→◦ t if s/p = lσ, s[rσ′]p = t and σ(x) −→◦ σ′(x) for any x ∈ V .
Let s, t be terms whose variables are disjoint. The term s overlaps on t

(at position p) when there exists a non-variable subterm u = t/p of t such
that u and s are unifiable. Let l1 → r1 and l2 → r2 be rewrite rules w.l.o.g.
whose variables are disjoint. Suppose that l1 overlaps on l2 at position p. Let
σ be the most general unifier of l1 and l2/p. Then the term l2[l1]σ yields a
peak l2[r1]σ ← l2[l1]σ → r2σ. The pair 〈l2[r1]σ, r2σ〉 is called the critical pair
obtained by the overlap of l1 → r1 on l2 → r2 at position p. In the case of
self-overlap (i.e. when l1 → r1 and l2 → r2 are identical modulo renaming),
we do not consider the case p = ε. It is an outer critical pair if p = ε; else an
inner critical pair. The set CPin (l1 → r1, l2 → r2) (CPout(l1 → r1, l2 → r2))
is the set of inner critical pairs (outer critical pairs, respectively) obtained by
the overlap of l1 → r1 on l2 → r2. For TRSs R1 and R2 the set CPin (R1,R2)
of inner critical pairs are defined by

⋃

l1→r1∈R1

⋃

l2→r2∈R2
CPin (l1 → r1, l2 →

r2). CPout(R1,R2) is defined similarly. We set CP(R1,R2) = CPin (R1,R2) ∪
CPout(R1,R2), CPα(R) = CPα(R,R) (α ∈ {in, out}) and CP(R) = CPin (R)∪
CPout(R). A TRS R is overlay if CPin (R) = ∅. Note that 〈s, t〉 ∈ CPout(R) iff
〈t, s〉 ∈ CPout (R).

3 Direct Methods

In this section, we explain direct methods employed in our confluence prover.

2



Proposition 1 (Knuth–Bendix’s criterion[8]). A terminating TRS R is
confluent if and only if s↓ = t↓ for all 〈s, t〉 ∈ CP(R).

Thus it is decidable whether a terminating TRS R is confluent or not. Hence
termination proving take an important part of the confluence proving procedure.
Termination, however, is undecidable property of TRSs and we should take into
account the case where the prover fails to prove termination of terminating TRSs.

Since termination implies innermost-termination, it is natural to expect that
innermost-termination proving is more powerful than termination proving. This
is especially true for recent termination tools based on dependency pairs (see
e.g. [4]). This motivates the following criterion mentioned by Ohlebusch [10]
pp.125–126, which can be easily proved by Theorem 3.23 of Gramlich [6].

Theorem 1 (Gramlich–Ohlebusch’s criterion). For innermost-terminating
overlay TRS R, R is confluent if and only if s↓i = t↓i for all 〈s, t〉 ∈ CP(R).

Thus for overlay TRSs, one can safely switch the termination proof to the
innermost-termination proof and try Gramlich–Ohlebusch’s criterion instead of
Knuth–Bendix’s criterion.

When our confluence prover fails to detect (innermost) termination, our
prover next checks several sufficient confluence conditions.

Proposition 2 (Huet–Toyama–van Oostrom’s criterion[20]). A left-linear

TRS R is confluent if (1) s −→◦ t for all 〈s, t〉 ∈ CPin (R) and (2) s −→◦ ◦
∗
← t for

all 〈s, t〉 ∈ CPout(R).

Because u
∗
→ v is undecidable in general, we use u −→◦ v instead, i.e. our

prover checks (2′) s −→◦ ◦ ←−◦ t for all 〈s, t〉 ∈ CPout (R) in the place of (2). The
check of the following criterion is approximated in a similar way.

Proposition 3 (Huet’s strong-closedness criterion[7]). A linear TRS R

is confluent if s
=
→ ◦

∗
← t and s

∗
→ ◦

=
← t for all 〈s, t〉 ∈ CP(R).

So far there is no mechanism of detecting non-confluence of non-terminating
TRSs. Therefore, we add a simple non-confluence check based on the following
easy observation.

Theorem 2 (A simple non-confluence criterion). If there exist terms s′, t′

such that s
∗
→ s′ and t

∗
→ t′ for some 〈s, t〉 ∈ CP(R) which satisfy either (1)

s′, t′ ∈ NF(R) and s′ 6= t′; or (2) s′, t′ ∈ HNF(R) and s′(ε) 6= t′(ε). Then R is
not confluent.

Since it is undecidable whether a term s is in head normal form, our prover
checks a simple sufficient criterion s(ε) 6∈ {l(ε) | l→ r ∈ R} instead.

4 Divide and Conquer Methods

When all of direct methods fail to prove the (non-)confluence of the TRS, our
prover next tries to infer it using divide–and–conquer approach. Several criteria
to infer the (non-)confluence of a TRS from that of its subsystems are known [1,
2, 9, 15–17].

3



4.1 Persistent Decomposition

The first decomposition method our prover tries is the one based on the persis-
tency [23], which is an extension of the direct-sum decomposition [15].

Definition 1 (persistent property[23]). A property P is said to be persistent
if P holds for a many-sorted TRS R if and only if P holds for its underlying
unsorted TRS Θ(R). Here Θ is the operation that forget the sort information.

Proposition 4 (persistency of confluence[2]). Confluence is a persistent
property of TRSs.

Let us describe how persistency of confluence is used to show the confluence
of a TRS from its subsystems.

Let S be a set of sorts. A sort attachment τ is a mapping F → S∗ such that
arity(f) = n implies τ(f) ∈ Sn+1, which is written as f : α1 × · · · ×αn → α0. A
sort attachment τ is consistent with a TRS R if for any l → r ∈ R, l and r are
well-sorted under τ with the same sort. For any term t well-sorted under τ , let
tτ be the many-sorted term sorted by τ . Any sort attachment τ consistent with
R induces a many-sorted TRS Rτ = {lτ → rτ | l → r ∈ R}. Let us denote by
Tτ the set of many-sorted terms, by Tτ

α the set of many-sorted terms of sort α,
and let Tτ

�α = {t ∈ Tτ | t � u for some u ∈ Tτ
α}. For any set A of terms closed

under rewrite steps, let us write Conf(A) iff s →∗ ◦ ←∗ t for any s, t ∈ A such
that s←∗ ◦ →∗ t. By persistency, Conf(T(F , V )) iff Conf(Tτ ) iff Conf(Tτ

α) for
any sort α. Because any rewrite rule that can be applied to a term of sort α
is in Rτ ∩ (Tτ

�α)2, we have Conf(Tτ
α) iff Rτ ∩ (Tτ

�α)2 is confluent. Since the
confluence of any set A of unsorted terms implies confluence of {tτ | t ∈ A}, R
is confluent iff Θ(Rτ ∩ (Tτ

�α)2) is confluent for any α ∈ S. Thus the following
persistent criterion is obtained.

Definition 2 (persistent decomposition). Let R be a TRS and τ a sort
attachment consistent with R. Then max({Θ(Rτ ∩ (T�α)2) | α ∈ S}) is said to
be a persistent decomposition of R. Here max is the operation of taking maximal
(w.r.t. subset relation) sets. We write R = R1⊕

τ · · · ⊕τ Rn if {R1, . . . ,Rn} is a
persistent decomposition of R. A persistent decomposition is said to be minimal
if each components has no persistent decomposition.

Theorem 3 (persistent criterion). A TRS R = R1⊕τ · · ·⊕τ Rn is confluent
if and only if so is each Ri.

Example 1 (confluence proof by persistency decomposition). Let

Ra =







f(a(x), x) → f(x, a(x)) g(b(x), y)→ g(a(a(x)), y)
f(b(x), x) → f(x, b(x)) g(c(x), y) → y
a(x) → b(x)







.

The direct methods do not apply to Ra, because Ra is neither terminating nor
left-linear. Consider the attachment τ on S = {0, 1, 2} such that f : 0× 0 → 1,

4



a : 0 → 0, b : 0 → 0, c : 0 → 0, and g : 0 × 2 → 2. Then we have the following
persistent decomposition of Ra:

Ra1 =







f(a(x), x) → f(x, a(x))
f(b(x), x) → f(x, b(x))
a(x) → b(x)







, Ra2 =







a(x) → b(x)
g(b(x), y) → g(a(a(x)), y)
g(c(x), y) → y







.

Ra1 is confluent by Knuth–Bendix’s criterion and Ra2 is confluent by Huet–
Toyama–van Oostrom’s criterion. Thus the confluence of Ra follows from the
persistency of confluence. 2

Since a most general sort attachment consistent with a TRS is unique (mod-
ulo renaming of sorts), we know that a minimal persistent decomposition of R is
unique. Since the smaller a component of persistent decomposition becomes, the
easier it becomes to prove confluence of that component. Thus it suffices to com-
pute the minimal persistent decomposition and try to prove (non-)confluence of
each components. Furthermore, since the persistency is a necessary and sufficient
criterion, if non-confluence is detected in any component then non-confluence of
the whole TRS is concluded.

4.2 Layer-Preserving Decomposition

The second decomposition method our prover tries is the one based on the
(composable) layer-preserving combination [9]. In what follows, D(l → r) =
{l(ε), r(ε)}, \ and ] stand for the set difference and disjoint union.

Definition 3 (layer-preserving[9]). A pair 〈R1,R2〉 of TRSs is said to be a
layer-preserving combination if there exists a partition D1 ] D2 ] C of function
symbols such that (1) for any α ∈ R1 \ R2, D(α) ⊆ D1 and F(α) ⊆ D1 ∪ C (2)
for any α ∈ R2 \ R1, D(α) ⊆ D2 and F(α) ⊆ D2 ∪ C (3) for any α ∈ R1 ∩ R2,
F(α) ⊆ C. If 〈R1,R2〉 is a layer-preserving combination the union R1 ∪ R2 is
denoted by R1 dR2.

Based on the definition of layer-preserving combination given above we define
the layer-preserving decomposition as follows.

Definition 4 (layer-preserving decomposition). A set {R1, . . . ,Rn} (n ≥
1, Ri 6= ∅) of TRSs is said to be a layer-preserving decomposition of R (denoted
by R = R1 d · · · dRn) if R = R1 ∪ · · · ∪ Rn and 〈Ri,Rj〉 is a layer-preserving
combination for i 6= j. A layer-preserving decomposition is said to be minimal
if each component has no layer-preserving decomposition.

Proposition 5 (layer-preserving criterion[9]). A TRS R = R1 d · · · dRn

is confluent if and only if so is each Ri.

Example 2 (confluence proof by layer-preserving decomposition). Let

Rb =

{

f(x, a(g(x))) → g(f(x, x)) a(x) → x
f(x, g(x)) → g(f(x, x)) h(x)→ h(a(h(x)))

}

5



It is clear that the direct methods do not apply to Rb. Taking the partition
of function symbols as D1 = {f, g},D2 = {h}, C = {a}, we have the following
layer-preserving decomposition of Rb:

Rb1 =







f(x, a(g(x))) → g(f(x, x))
f(x, g(x)) → g(f(x, x))
a(x) → x







, Rb2 =

{

a(x) → x
h(x)→ h(a(h(x)))

}

.

Rb1 is confluent by Knuth–Bendix’s criterion and Rb2 is confluent by Huet–
Toyama–van Oostrom’s criterion. Thus the confluence of Rb follows from the
layer-preserving criterion. 2

Note that the layer-preserving decomposition does not apply to Ra in Exam-
ple 1 because of a collapsing rule. Similarly, the persistent decomposition does
not apply to Rb in Example 2 because the only possible sort attachment is on a
single sort. Thus, the two decompositions are incomparable.

One can show that a minimal layer-preserving decomposition is unique. Same
as the case of persistent decomposition, it suffices to compute the minimal layer-
preserving decomposition and if non-confluence is detected in any component
then non-confluence of the whole TRS is concluded.

4.3 Commutative Decomposition

The third and last decomposition method our prover tries is the one based on
commutation [13].

Definition 5 (commutation[13]). TRSs R1 and R2 commute if
∗
←R1

◦
∗
→R2

⊆
∗
→R2

◦
∗
←R1

. If R1 and R2 commute then their union R1 ∪R2 is denoted by
R1 t R2.

Definition 6 (commutative decomposition). A set {R1, . . . ,Rn} (n ≥ 1,
Ri 6= ∅) of TRSs is said to be a commutative decomposition of R (denoted by
R = R1 t · · · t Rn) if R = R1 ∪ · · · ∪ Rn and Ri,Rj commute for i 6= j.
A commutative decomposition is said to be minimal if each component has no
commutative decomposition.

Proposition 6 (commutativity criterion[13]). A TRS R = R1 t · · · t Rn

is confluent if so is each Ri.

Since the commutativity criterion is merely a sufficient criterion, unlike previ-
ous two decompositions, it can not be used to infer the non-confluence from that
of its subsystems. Moreover, since non-left-linear rules destroy commutativity,
the commutative decomposition is restricted to left-linear TRSs.

Commutativity of TRSs is undecidable in general but a sufficient condition
is known [16]. Our prover employs a slightly more general condition which is
obtained by extending the proof of [20] along the line of [16]1.

1 The detailed proof can be found in [22].

6



Proposition 7 (sufficient condition for commutativity[22]). Left-linear
TRSs R1 and R2 commute if (1) s −→◦ R2

t for any 〈s, t〉 ∈ CPin (R1,R2), and

(2) s −→◦ R1
◦

∗
←R2

t for any 〈t, s〉 ∈ CP(R2,R1).

Condition (2) is undecidable and our prover uses a condition s −→◦ R1
◦ ←−◦ R2

t instead of the condition s −→◦ R1
◦

∗
←R2

t.

Example 3 (confluence proof by commutative decomposition). Let

Rc =

{

f(x) → g(x) f(x) → h(f(x))
h(f(x))→ h(g(x)) g(x)→ h(g(x))

}

.

Neither the direct methods nor the previous decomposition methods apply to
Rc. One can divide Rc into the following Rc1 and Rc2 which commute from
Proposition 7.

Rc1 =

{

f(x) → g(x)
h(f(x)) → h(g(x))

}

, Rc2 =

{

f(x) → h(f(x))
g(x)→ h(g(x))

}

.

Rc1 is confluent by Knuth–Bendix’s criterion and Rc2 is confluent by Huet–
Toyama–van Oostrom’s criterion. Thus, the confluence of Rc follows from the
commutativity criterion. 2

Contrast to the persistent or layer-preserving decompositions, a minimal
commutative decomposition is not unique. Furthermore, unlike the previous two
decompositions, it does not always hold that a smaller decomposition is more
useful to prove confluence [22], i.e. there is an example that can be proved by a
non-minimal commutative decomposition but minimal ones fail.

5 Implementation and Experiments

We have implemented a confluence prover ACP (Automated Confluence Prover)
in SML/NJ; the length of codes is about 14,000 lines2. It has a command line
interface which takes an argument to specify a filename containing a TRS spec-
ification in TPDB3 format. Several options are supported so that partial combi-
nations of decompositions can be tested. An external termination prover can be
specified in the place of an internal termination prover.

The overview of the prover is illustrated in Figure 1. Procedure Direct consists
of the direct methods explained in Section 1. If Direct fails (i.e. neither confluence
nor non-confluence is detected), then the prover finds the minimal persistent
decomposition R = R1⊕τ · · ·⊕τRn. If the decomposition is not proper (i.e. n =
1) then the prover tries a minimal layer-preserving decomposition to R = R1. If

2 A heap image of ACP that can be loaded into an SML/NJ runtime system, ex-
amples used for the experiments, and details of experiments can be obtained from
http://www.nue.riec.tohoku.ac.jp/tools/acp/.

3 http://www.lri.fr/˜marche/tpdb/

7



the decomposition is proper (i.e. n > 1) then the prover applies the procedure
Direct to each components R1, . . . ,Rn. For each component Ri on which Direct
fails, then the prover tries a minimal layer-preserving decomposition and so on.
When the direct methods and successive three kinds of proper decompositions
fail, the prover aborts the proof of (non-)confluence of (that component of) the
system. Furthermore, if there is another possibility of decompositions then the
prover backtracks and tries another decomposition.

R overlay? terminating?
n

innermost

terminating?

y

innermost
locally confluent?

y

CR/NON-CR

y/n

locally
confluent?

y

sufficient

conditions?

n

n

CR/NON-CR

y/n
y

Procedure Direct

Find persistent decomposition R = R1 ⊕τ · · · ⊕τ Rn

and apply Direct to each Ri

n

Find layer-preserving decomposition Ri = Ri1 d · · · d Rim

and apply Direct to each Rij

failing Ri

Find commutative decomposition Rij = Rij1 t · · · t Rijl

and apply Direct to each Rijk

failing Rij

failing Rijk as R

Fig. 1. Overview of ACP

For the experiment, we prepare a collection of 103 examples extracted from
the literatures on confluence. We have tested confluence proving using various
combinations of decomposition techniques. All tests have been performed in a
PC equipped with Intel Xeon processors of 2.66GHz and a memory of 7GB.

The table below summarizes our experimental results. d, p, l, c, c’ stand for
direct methods, (minimal) persistent decomposition, (minimal) layer-preserving

8



decomposition, minimal commutative decomposition, (possibly non-minimal)
commutative decomposition, respectively.

d dp dl dc dc’ dpl dpc dpc’ dlc dlc’ dplc dplc’
success (CR) 30 35 34 41 43 37 47 49 46 47 49 50
success (NON-CR) 13 13 13 13 13 13 13 13 13 13 13 13
failure 60 55 56 49 47 53 43 41 44 43 41 40
timeout (60 sec.) 0 0 0 0 0 0 0 0 0 0 0 0
total time (sec.) 4.1 4.4 4.8 7.0 33.6 4.9 8.1 30.9 7.6 34.2 8.1 34.4

It is seen that decomposition techniques are effective to prove confluence, al-
though it is ineffective to prove non-confluence. Each decomposition techniques
succeeds to prove confluence of some different examples. Commutative decom-
position is costly but most powerful of three decompositions.

6 Conclusion

We have presented an automated confluence prover ACP for TRSs, in which
divide–and–conquer approach based on the persistent, layer-preserving, commu-
tative decompositions is employed. To the best of our knowledge, an automated
confluence prover based on such an approach has been unknown. We believe that
our approach is useful to integrate different (non-)confluence criteria to prove
the (non-)confluence of large systems.

The previous version of our confluence prover has been described in [22]. The
new version is different in the following points in particular: new direct crite-
ria (Gramlich–Ohlebusch’s criterion, Huet’s strong-closedness criterion, a simple
non-confluence criterion) are added; the direct-sum decomposition is replaced
with the persistent decomposition; the layer-preserving decomposition is added;
the algorithm for computing commutative decompositions is changed to improve
the efficiency.

There are still many confluence criteria which are not included in our prover—
for example, stronger sufficient criteria for left-linear TRSs (e.g. [11, 12, 18]), the
decreasing diagram technique (e.g. [19, 21]) and decision procedures for some
subclass of TRSs (e.g. [5, 14]). It is our future work to include these criteria and
make the system more powerful.

Acknowledgments

Thanks are due to anonymous referees for detailed and helpful comments. This
work was partially supported by grants from JSPS, Nos. 19500003 and 20500002.

References

1. T. Aoto and Y. Toyama. On composable properties of term rewriting systems. In
Proc. of ALP’97 – HOA’97, volume 1298 of LNCS, pages 114–128. Springer-Verlag,
1997.

9



2. T. Aoto and Y. Toyama. Persistency of confluence. Journal of Universal Computer

Science, 3(11):1134–1147, 1997.
3. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University

Press, 1998.
4. J. Giesl, R. Thiemann, and P. Schneider-Kamp. Mechanizing and improving de-

pendency pairs. Journal of Automated Reasoning, 37(3):155–203, 2006.
5. G. Godoy and A. Tiwari. Confluence of shallow right-linear rewrite systems. In

Proc. of CSL’05, volume 3634 of LNCS, pages 541–556. Springer-Verlag, 2005.
6. B. Gramlich. Abstract relations between restricted termination and confluence

property of rewrite systems. Fundamenta Informaticae, 24:3–23, 1995.
7. G. Huet. Confluent reductions: abstract properties and applications to term rewrit-

ing systems. Journal of the ACM, 27(4):797–821, 1980.
8. D. E. Knuth and P. B. Bendix. Simple word problems in universal algebras. In

J. Leech, editor, Computational Problems in Abstract Algebra, pages 263–297. Perg-
amon Press, 1970.

9. E. Ohlebusch. Modular Properties of Composable Term Rewriting Systems. PhD
thesis, Universität Bielefeld, 1994.

10. E. Ohlebusch. Advanced Topics in Term Rewriting Systems. Springer-Verlag, 2002.
11. S. Okui. Simultaneous critical pairs and Church-Rosser property. In Proc. of

RTA-98, volume 1379 of LNCS, pages 2–16. Springer-Verlag, 1998.
12. M. Oyamaguchi and Y. Ohta. A new parallel closed condition for Church-Rosser

of left-linear TRS’s. In Proc. of RTA-97, volume 1232 of LNCS, pages 187–201.
Springer-Verlag, 1997.

13. B. K. Rosen. Tree-manipulating systems and Church-Rosser theorems. Journal of

the ACM, 20:160–187, 1973.
14. A. Tiwari. Deciding confluence of certain term rewriting systems in polynomial

time. In Proc. of LICS 2002, pages 447–458. IEEE Computer Society Press, 2002.
15. Y. Toyama. On the Church-Rosser property for the direct sum of term rewriting

systems. Journal of the ACM, 34(1):128–143, 1987.
16. Y. Toyama. Commutativity of term rewriting systems. In K. Fuchi and L. Kott,

editors, Programming of Future Generation Computers II, pages 393–407. North-
Holland, Amsterdam, 1988.

17. Y. Toyama. Confluent term rewriting systems (invited talk). In Proc. of RTA 2005,
volume 3467 of LNCS, page 1. Springer-Verlag, 2005. Slides are available from
http://www.nue.riec.tohoku.ac.jp/user/toyama/slides/toyama-RTA05.pdf.

18. Y. Toyama and M. Oyamaguchi. Conditional linearization of non-duplicating term
rewriting systems. IEICE Trans. Information and Systems, E84-D(5):439–447,
2001.

19. V. van Oostrom. Confluence by decreasing diagrams. Theoretical Computer Sci-

ence, 126(2):259–280, 1994.
20. V. van Oostrom. Developing developments. Theoretical Computer Science,

175(1):159–181, 1997.
21. V. van Oostrom. Confluence by decreasing diagrams: converted. In Proc. of RTA

2008, volume 5117 of LNCS, pages 306–320. Springer-Verlag, 2008.
22. J. Yoshida, T. Aoto, and Y. Toyama. Automating confluence check of term rewrit-

ing systems. Computer Software, to appear. In Japanese.
23. H. Zantema. Termination of term rewriting: interpretation and type elimination.

Journal of Symbolic Computation, 17:23–50, 1994.

10


