
Correctness of Context-Moving Transformations
for Term Rewriting Systems

Koichi Sato, Kentaro Kikuchi, Takahito Aoto, and Yoshihito Toyama

RIEC, Tohoku University
2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan

{ koichi, kentaro, aoto, toyama }@nue.riec.tohoku.ac.jp

Abstract. Proofs by induction are often incompatible with functions in
tail-recursive form as the accumulator changes in the course of unfold-
ing the definitions. Context-moving and context-splitting (Giesl, 2000)
for functional programs transform tail-recursive programs into non tail-
recursive ones which are more suitable for proofs by induction and thus
for verification. In this paper, we formulate context-moving and context-
splitting transformations in the framework of term rewriting systems,
and prove their correctness with respect to both eager evaluation seman-
tics and initial algebra semantics under some conditions on the programs
to be transformed. The conditions for the correctness with respect to ini-
tial algebra semantics can be checked by automated methods for induc-
tive theorem proving developed in the field of term rewriting systems.

Key words: Tail-Recursion, Program Transformation, Term Rewriting
System, Inductive Theorem Proving

1 Introduction

Proofs by induction are fundamental in software verification and thus dealt with
by many automated theorem provers. An inductive theorem of a term rewriting
system (TRS for short) is an equation valid in the initial algebra of the TRS.
Inductive theorems correspond to the equations that can be shown by induction
on the data structures, and various automated methods have been investigated
for proving inductive validity of TRSs [1–3, 7, 9, 10].

Recursive definition is a fundamental tool in various areas. A recursive defi-
nition of a function in which the body of the definition is a recursive call of the
function itself (with different arguments, typically) is called tail-recursive. When
evaluating a function call, if the function definition is given in a tail-recursive
form, the environment of the function call does not need to be kept to deal with
further computations that manipulate the results of its recursive calls. Thus,
programs in which function definitions are given in tail-recursive forms are com-
piled into codes removing extra overheads in function calls. Thus, tail-recursive
programs attain both efficiency and readability. However, proofs by induction are
often incompatible with tail-recursive definitions, as can be seen in the following
example.

Example 1 (tail-recursion and proofs by induction). Let us consider the following
rewrite rules in tail-recursive form computing the addition of natural numbers:

R =
{

Add(0, y)→ y, Add(S(x), y)→ Add(x, S(y))
}

Let us consider proving Add(x, 0)
.
= x by induction on x. In the induction step

where x = S(x′), one needs to show the equation Add(x′, S(0))
.
= S(x′) obtained

by unfolding the equation. However, one cannot apply the induction hypothesis
Add(x′, 0)

.
= x′ to this equation, since the second argument is different.

As the second argument y in the rewrite rules in Example 1, a tail-recursive
definition usually contains a variable called an accumulator which keeps inter-
mediate results of the computation and is passed to the return value at the final
recursive call. By unfolding the definition, the value of the accumulator changes
step by step in the course of the computation; in proofs by induction, this change
of the value makes the application of the induction hypothesis impossible. In this
way, proofs by induction are often incompatible with tail-recursive definitions.
Most methods for proving inductive theorems of TRSs containing tail-recursive
rules (tail-recursive TRSs) suffer a similar difficulty.

On the other hand, “simple” recursive definitions do not suffer such a prob-
lem. For example, a “simple” version of the TRS for addition would be the
following usual definition.

Example 2 (simple recursion and proofs by induction). Let R′ be the following
TRS.

R′ =
{

Add(0, y)→ y, Add(S(x), y)→ S(Add(x, y))
}

Now let us prove the same equation Add(x, 0)
.
= x of Example 1 using R′.

The base step is trivial, and in the induction step, one obtains an equation
S(Add(x′, 0))

.
= S(x′) by unfolding the definition. This time, one can apply the

induction hypothesis Add(x′, 0)
.
= x′, and thus the proof succeeds.

The TRS R′ of Example 2 can be obtained from the TRS R of Example 1
by transforming the rhs of the second rule from Add(x, S(y)) to S(Add(x, y)),
i.e., transforming the rhs of the rewrite rule in such a way that the context
S(�) around the accumulator y is moved outside of the recursive call Add(x, y).
Generalizing such a transformation, J. Giesl [4] proposed context-moving and
context-splitting transformations for a particular form of functional programs
with eager evaluation. These transformations, under some conditions, transform
tail-recursive programs into equivalent “simple” recursive programs more suit-
able for theorem proving employing proofs by induction.

In a previous paper [8], we formulated context-moving and context-splitting
transformations for TRSs, and showed their correctness in the case where input
TRSs are orthogonal. We also proposed an approach for inductive theorem prov-
ing which combines these transformations with rewriting induction [7]. It was
demonstrated by experiments that the approach is effective for proving inductive
theorems of tail-recursive TRSs, compared to other systems based on rewriting
induction [3, 9, 10] (the system of [9] is equipped with lemma generation tech-
niques in [2, 11, 12]).

In the present paper, we focus on the correctness of the context-moving and
context-splitting transformations as formulated in [8] but where input TRSs are
more general than orthogonal. To clarify the difference to the approach in [4],
we also show the correctness of the context-moving transformation where input
and output TRSs are evaluated by a deterministic eager strategy and thus can
be seen as a faithful representation of the functional programs discussed in [4].

The sufficient condition of the context-moving transformation for TRSs with
eager evaluation is identical to that of [4]. The condition is based on whether two
terms are evaluated to the same value by the input TRS (cf. Definition 2). How-
ever, this notion does not necessarily coincide with equality in the initial algebra
of the TRS, and so is not an inductive theorem in the traditional sense. Hence,
the condition cannot in general be verified by automated methods for proving
inductive theorems as developed in the field of TRSs. This is an obstacle to im-
plementing our approach to proving inductive theorems of tail-recursive TRSs.

On the other hand, the sufficient conditions of the context-moving and con-
text-splitting transformations in the present paper are precisely equality in the
initial algebra, and so can be checked by an inductive theorem prover. Moreover,
as consequences of the correctness under the conditions, it turns out that the
context-moving and context-splitting transformations preserve equality in the
initial algebra, and the terms in each equivalence class have the same normal
form with respect to rewriting by the TRSs before and after the transformations.

The contributions of the paper are summarized as follows:

– We present proofs of the correctness of the context-moving transformation
for TRSs with respect to both eager evaluation semantics and initial algebra
semantics. Moreover, we provide an example to illustrate the usefulness of
our result in comparison to [4] (i.e., a transformation for a TRS where the
initial algebra semantics differs from the eager evaluation semantics).

– We report on an implementation and experiments of the context-moving and
context-splitting transformations for TRSs including non-orthogonal cases.
This is novel since [4] does not report on any implementation or experiments.

– Proving the correctness with respect to eager evaluation semantics has not
been treated in [8], and our proof of it differs from the one of [4]; we simply
use induction on the length of the evaluation while the proof of [4] depends
on induction on an unusual ordering (denoted �f in [4]).

– In our proof of the correctness with respect to initial algebra semantics, we
do not assume the uniqueness of normal forms nor orthogonality in output
TRSs, in contrast to the proofs of the correctness in [4] and [8]. In the proof
for the context-splitting transformation, we introduce a new translation ()•

between the terms of input and output TRSs besides the translation ()◦

which is the same as one used in [4].

The rest of the paper is organized as follows. Section 2 contains preliminar-
ies. We formulate the context-moving transformation for TRSs and study its
correctness in Section 3. We briefly discuss the context-splitting transformation
for TRSs in Section 4. We report on an implementation and experiments in
Section 5. Section 6 concludes with suggestions for further work.

To save space we omit some of the details in proofs, but a long version of the
paper is available at http://www.nue.riec.tohoku.ac.jp/user/kentaro/.

2 Preliminaries

In this section, we fix notations and notions used in the paper.
The set of terms over function symbols F and variables V is denoted by

T (F ,V). The set of variables (function symbols) occurring in a term t is denoted
by V(t) (resp. F(t)). We abbreviate a sequence of terms t1, t2, . . . , tn as t̄; we
define V(t̄) =

⋃n
i=1 V(ti) and F(t̄) =

⋃n
i=1 F(ti). A term t is ground if V(t) = ∅;

the set of ground terms is denoted by T (F). The root symbol of a term t is
denoted by root(t). A context is a term containing precisely one occurrence of
each special constant �1, . . . ,�n (holes) for some n. A context C is denoted by
C[] if n = 1. If C is a context with n holes then the term obtained by replacing
each �i (1 ≤ i ≤ n) in C with ti is denoted by C[t1, t2, . . . , tn]. A substitution is
a function θ : V → T (F ,V) (we omit the usual condition of substitutions that
they have a finite domain to ease the notation). A substitution θ is ground if
θ : V → T (F); throughout the paper, θg , θ

′
g , etc. denote ground substitutions.

A rewrite rule l → r satisfies l /∈ V and V(l) ⊇ V(r). We assume that
variables in rewrite rules are renamed when necessary. A term rewriting system
(TRS, for short) is a finite set of rewrite rules. We call l → r an R-rule if
l → r ∈ R. The set of defined function symbols of a TRS R is given by D =
{root(l) | l → r ∈ R} and the set of constructor symbols is C = F \ D. Terms
in T (C,V) are constructor terms; terms in T (C) are ground constructor terms.
A TRS R is a constructor TRS if for any rewrite rule f(l1, . . . , ln) → r ∈ R,
each li (1 ≤ i ≤ n) is a constructor term. A ground constructor substitution is
a substitution θ : V → T (C); throughout the paper, θgc , θ

′
gc , etc. denote ground

constructor substitutions.
In this paper, we work with unsorted TRSs for simplicity, but we elaborate

lemmas and definitions so that they can be easily adapted to those in the setting
of (monomorphic) many-sorted TRSs.

3 Context-moving transformation for TRSs

In this section, we formulate the context-moving transformation for TRSs and
prove the correctness of the transformation for some classes of TRSs. In the
context-moving transformation for functional programs in [4], the context oc-
curring around the accumulator variable is moved outside of the recursive calls
in each rule. The context-moving transformation for TRSs follows the same idea.

Definition 1 (context-moving transformation for TRSs). A context-mov-
ing transformation from TRS R to TRS R′ is given as:

R = RA ∪RB ∪RC where RA = {f(l̄i, z)→ f(r̄i, Ci[z]) | 1 ≤ i ≤ m}
RB = {f(l̄j , z)→ Cj [z] | m+ 1 ≤ j ≤ n}
RC = {lk → rk | n+ 1 ≤ k ≤ p}

R′ = R′A ∪RB ∪RC where R′A = {f(l̄i, z)→ Ci[f(r̄i, z)] | 1 ≤ i ≤ m}

Here, RA, R
′
A consist of m recursive f -rules, RB consists of (n−m) non-recursive

f -rules, and RC consists of (p− n) other (non f -)rules. The function symbol f
is the target of the transformation, the contexts C1[], . . . , Cn[] are the mov-
ing contexts, and the variable z is the accumulator. Furthermore, it is required
that the target f and the accumulator z do not appear anywhere else except the
places explicitly indicated, i.e., (i) f /∈ (

⋃m
i=1 F(l̄i, r̄i, Ci))∪ (

⋃n
j=m+1 F(l̄j , Cj))∪

(
⋃p

k=n+1 F(lk, rk)) and (ii) z /∈ (
⋃m

i=1 V(l̄i, r̄i, Ci)) ∪ (
⋃n

j=m+1 V(l̄j , Cj)).

Henceforth, we will focus on a context-moving transformation from R to R′,
and unless otherwise stated, f, z,RA, Ci, l̄i, . . . are supposed to be those specified
in the definition above.

Example 3 (context-moving transformation). Let R be the following TRS for
multiplication.

R =

{
(a) Mult(S(x), y, z)→ Mult(x, y,Add(y, z)), (b) Mult(0, y, z)→ z
(c) Add(S(x), y)→ S(Add(x, y)), (d) Add(0, y)→ y

}
We apply the context-moving transformation with Mult as the target and z
as the accumulator. The rewrite rules of R are partitioned into RA = {(a)},
RB = {(b)} and Rc = {(c), (d)}, and there are two moving contexts, namely
C1 = Add(y,�) and C2 = �. Thus, by definition, we obtain

R′A =
{

Mult(S(x), y, z)→ Add(y,Mult(x, y, z))
}

Therefore, the following TRS R′ is obtained.

R′ =

{
Mult(S(x), y, z)→ Add(y,Mult(x, y, z)), Mult(0, y, z)→ z
Add(S(x), y)→ S(Add(x, y)), Add(0, y)→ y

}
The rest of this section is devoted to the discussion on the correctness of the

context-moving transformation.

3.1 Correctness of the context-moving transformation with respect
to eager evaluation semantics

First we discuss the correctness with respect to eager evaluation semantics as
considered in [4]. We assume in this subsection that R is a constructor TRS.

An eager rewrite relation
e→R is a binary relation on T (F) given by s

e→R t
iff s = C[lθgc] and t = C[rθgc] for some l → r ∈ R, a context C[] and a
ground constructor substitution θgc . Further, we assume some specific rewrite
strategy (e.g. leftmost(-innermost) with rule priority) so that each rewrite step is
deterministic. A rewrite step by the deterministic strategy (the eager evaluation

strategy) is denoted by s
ev→R t. The reflexive transitive closure of

ev→R is denoted

by
ev→∗R. A ground term t is said to be defined in R if there exists v ∈ T (C) such

that t
ev→∗R v; in that case, |t|evR denotes the length of the reduction sequence

from t to v. We use s
ev≡R t to mean that for any v ∈ T (C), s ev→∗R v if and only

if t
ev→∗R v. Note that

ev≡R is an equivalence relation and if s
ev→∗R t then s

ev≡R t.

The following are basic properties of an eager evaluation strategy, which are
freely used in the rest of this subsection.

Lemma 1. 1. If s
ev≡R t then C[s]

ev≡R C[t].

2. If C[s] is defined in R and s
ev→R t then |C[s]|evR = |C[t]|evR + 1.

3. If C[t] is defined in R then so is t, and moreover |C[t]|evR ≥ |t|evR .

Proof. By induction on C[]. ut

Lemma 2. For any l → r ∈ R and ground substitution θg such that θg(x) is

defined in R for any x ∈ V(l), lθg
ev≡R rθg .

Proof. If lθg or rθg is defined in R, then lθg
ev≡R lθgc

ev≡R rθgc
ev≡R rθg for some

θgc . ut

We require a property concerning the moving contexts C1[], . . . , Cn[] to
guarantee the correctness of the context-moving transformation. This property
is given in a similar way to [4] and is formulated as below.

Definition 2 (commutativity law of moving contexts). Let C1[], . . . , Cn[]
be the moving contexts of an instance of the context-moving transformation. The
commutativity law of moving contexts refers to the following condition:

∀i(1 ≤ i ≤ m).∀j(1 ≤ j ≤ n).∀θgc .Ci[Cj [z]]θgc
ev≡R Cj [Ci[z]]θgc (CCOMev)

Here, we assume that each variable in moving contexts Ci[], Cj [] is renamed so
that their variables do not overlap. By Lemma 1, it is seen that the condition
(CCOMev) is equivalent to the one with θg instead of θgc .

Example 4 (commutativity law of moving contexts). The moving contexts of the
transformation in Example 3 are C1 = Add(y,�) and C2 = � (with m = 1 and
n = 2). As C2 is a trivial context, the commutativity law of moving contexts is

∀θgc .Add(x,Add(y, z))θgc
ev≡R Add(y,Add(x, z))θgc .

Definition 3 (R
ev⇒f

cm R′). We write R
ev⇒f

cm R′ if R′ is obtained from a con-
structor TRS R by the context-moving transformation such that f is the target
and the condition (CCOMev) holds.

The commutativity law of moving contexts is essential for guaranteeing the
simulation of rewrite sequences from ground terms to ground constructor terms
on R by R′ and vice versa. The key property to the simulation is the following
context-moving lemma.

Lemma 3 (context-moving lemma). Suppose R
ev⇒f

cm R′. Let 1 ≤ i ≤ m,
and let θgc be a ground constructor substitution and t̄, u be ground terms.

1. If Ciθgc [f(t̄, u)]
ev→∗R v ∈ T (C) then f(t̄, Ciθgc [u])

ev→∗R v.

2. If f(t̄, Ciθgc [u])
ev→∗R′ v ∈ T (C) then Ciθgc [f(t̄, u)]

ev→∗R′ v.

Proof. 1. If Ciθgc [f(t̄, u)]
ev→∗R v ∈ T (C) then f(t̄, u) is defined in R. The claim

is proved by induction on |f(t̄, u)|evR .
2. By induction on |f(t̄, Ciθgc [u])|evR′ . ut

We are now ready to prove the correctness of the context-moving transfor-
mation with respect to eager evaluation semantics.

Theorem 1 (correctness of context-moving transformation). Let R be

a constructor TRS. Suppose R
ev⇒f

cm R′. For any ground term s and ground

constructor term v, s
ev→∗R v if and only if s

ev→∗R′ v.

Proof. By induction on the length of the evaluation, using Lemma 3. ut

Remark 1. The proof of the “only if”-part of Theorem 1 given in [4] is based on
the converse of Lemma 3.1. For those proofs, induction on an unusual ordering
�f is used. In contrast, our proof is based on Lemma 3.2, and it suffices to use
induction on the length of the evaluation.

3.2 Correctness of the context-moving transformation with respect
to initial algebra semantics

The correctness theorem in the previous subsection depends on the condition
(CCOMev), which involves a notion of evaluation and does not necessarily corre-
spond to equality in the initial algebra. In this subsection, we show the correct-
ness of the context-moving transformation based on a condition that precisely
corresponds to equality in the initial algebra.

First we introduce some standard definitions in term rewriting. A rewrite
relation →R is a binary relation on T (F ,V) given by s →R t iff s = C[lθ]
and t = C[rθ] for some l → r ∈ R, a context C[] and a substitution θ. The

reflexive transitive closure of →R is denoted by
∗→R. If a unique normal form of

t exists, then the normal form of t is denoted by t↓R. For each substitution θ,
the substitution θ↓R is defined by θ↓R(x) = (θ(x))↓R, provided that (θ(x))↓R is
defined for any x ∈ V. We use θg\f to denote a ground substitution such that f
does not appear in its range. A TRS R is sufficiently complete if ∀s ∈ T (F).∃v ∈
T (C). s ∗→R v holds [6]; R is ground confluent if

∗←R ◦
∗→R ⊆

∗→R ◦
∗←R on

T (F). We assume in this subsection that R is a sufficiently complete and ground
confluent TRS.1

Now we introduce a property on the moving contexts C1[], . . . , Cn[] to guar-
antee the correctness with respect to semantics considered in this subsection.

Definition 4 (commutativity law of moving contexts). Let C1[], . . . , Cn[]
be the moving contexts of an instance of the context-moving transformation. The
commutativity law of moving contexts refers to the following condition:

∀i(1 ≤ i ≤ m).∀j(1 ≤ j ≤ n).∀θg .Ci[Cj [z]]θg↓R = Cj [Ci[z]]θg↓R (CCOM)

1 In the case of many-sorted TRSs, we assume sufficient completeness only for the sort
of return values of the target f of the context-moving transformation, meaning that
any ground term of that sort can be rewritten to a constructor term. Cf. Example 6.

Here, we assume that each variable in moving contexts Ci[], Cj [] is renamed so
that their variables do not overlap.

In contrast to the condition (CCOMev) in Definition 2, the above condition
(CCOM) precisely corresponds to equations that are valid in the initial algebra
of the input TRS R, i.e. inductive theorems of R, and so may be checked by an
inductive theorem prover. (For an actual implementation, see Section 5.)

Definition 5 (R ⇒f
cm R′). We write R ⇒f

cm R′ if R′ is obtained from a suffi-
ciently complete and ground confluent TRS R by the context-moving transfor-
mation such that f is the target and the condition (CCOM) holds.

The condition (CCOM) is essential for guaranteeing the simulation of rewrite
sequences from ground terms to ground constructor terms on R by R′. We first
show the simulation of rewrite sequences of the form f(x̄, z)θg\f

∗→R v (Lemma 4)
and then generalize it to an arbitrary case (Lemma 5).

Lemma 4. Suppose R ⇒f
cm R′. For any ground substitution θg\f and ground

constructor term v, if f(x̄, z)θg\f
∗→R v then f(x̄, z)θg\f

∗→R′ v.

Proof. Suppose f(x̄, z)θg\f
∗→R v. By the form of the rewrite rules in R, we know

that any rewrite sequence α of R from f(x̄, z)θg\f to v has the following form:

α : f(x̄, z)θg\f = f(l̄i1θ1, u1)→RA
f(r̄i1θ1, Ci1θ1[u1])

∗→RC
f(l̄i2θ2, u2)→RA

f(r̄i2θ2, Ci2θ1[u2])
...

∗→RC
f(l̄inθn, un)→RB

Cinθn[un]
∗→RC

v

Here θ1, . . . , θn are ground substitutions such that f does not appear in their
ranges. Note that rewrite rules of RA, RB applicable to any term f(t̄, u) (at root
position) are completely specified by t̄ regardless of u. Hence, in the rewrite
sequence α, the applications of RA, RB-rules are not affected even if one post-
pones the applications of RC-rules to ui’s. Thus, one can obtain the next rewrite
sequence β from α, by distinguishing the applications of RC-rules to the last
argument of f and those to the rest, and postponing the former:

β : f(x̄, z)θg\f = f(l̄i1θ1, u1)→RA
f(r̄i1θ1, Ci1θ1[u1])

∗→RC
f(l̄i2θ2, Ci1θ1[u1])→RA

f(r̄i2θ2, Ci2θ2[Ci1θ1[u1]])
...

∗→RC
f(l̄inθn, Cin−1θn−1[· · ·Ci1θ1[u1] · · ·])

→RB
Cinθn[Cin−1

θn−1[· · ·Ci1θ1[u1] · · ·]] ∗→RC
v

Next we construct a rewrite sequence γ of R′ from β (of R). It is easy to ob-
serve in the definition of context-moving transformation that for any i and θ,
f(l̄i, z)θ →RA

f(r̄i, Ci[z])θ implies f(l̄i, z)θ →R′A
Ci[f(r̄i, z)]θ. Thus, by moving

out the contexts Cijθj [] in each RA-step, we obtain the corresponding R′A-step.

Then the next rewrite sequence γ is obtained from β.

γ : f(x̄, z)θg\f = f(l̄i1θ1, u1)→R′A
Ci1θ1[f(r̄i1θ1, u1)]

∗→RC
Ci1θ1[f(l̄i2θ2, u1)]→R′A

Ci1θ1[Ci2θ2[f(r̄i2θ2, u1)]]
...

∗→RC
Ci1θ1[· · ·Cin−1

θn−1[f(l̄inθn, u1)] · · ·]
→RB

Ci1θ1[· · ·Cin−1θn−1[Cinθn[u1]] · · ·]

Since R is ground confluent, so is RC . Thus, by the condition (CCOM) and
f /∈ F(Ci1θ1[· · ·Cin−1

θn−1[Cinθn[u1]] · · ·]), it follows

v = Cinθn[Cin−1
θn−1[· · ·Ci1θ1[u1] · · ·]]↓RC

= Ci1θ1[· · ·Cin−1
θn−1[Cinθn[u1]] · · ·]↓RC

Hence, we obtain f(x̄, z)θg\f
∗→R′ Ci1θ1[· · ·Cin−1

θn−1[Cinθn[u1]] · · ·] ∗→RC
v. ut

Lemma 5. Suppose R⇒f
cm R′. For any ground term s and ground constructor

term v, if s
∗→R v then s

∗→R′ v.

Proof. By induction on the number of occurrences of f in s, using Lemma 4. ut

In contrast to the proof in the previous subsection, a key ingredient of the
proof of the correctness here is preservation of two properties of R: sufficient com-
pleteness and ground confluence. The former is a direct consequence of Lemma 5.

Lemma 6. Suppose R⇒f
cm R′. Then R′ is sufficiently complete.

Proof. It follows by Lemma 5 from the sufficient completeness of R. ut

To show preservation of ground confluence, we need the simulation of rewrite
sequences from ground terms to ground constructor terms on R′ by R, that is,
the converse of Lemma 5. To this end, we first prove the following lemma, where
we use again the forms of rewrite rules in R and R′ and the condition (CCOM).

Lemma 7. Suppose R ⇒f
cm R′. For any ground terms s, s′ and ground con-

structor term v, if s
∗→R v and s→R′ s

′ then s′
∗→R v.

Proof. If s →RB∪RC
s′, then s →R s′ by RB ∪ RC ⊆ R, and hence the claim

follows immediately by the ground confluence of R. It remains to prove the case
s →R′A

s′. Then one has s = C[f(l̄i1θ1, u)] and s′ = C[Ci1θ1[f(r̄i1θ1, u)]], and

thus, s = C[f(l̄i1θ1, u)]→RA
C[f(r̄i1θ1, Ci1θ1[u])]. Furthermore, since s

∗→R v, it

follows from the ground confluence of R that C[f(r̄i1θ1, Ci1θ1[u])]
∗→R v. Thus,

s = C[f(l̄i1θ1, u)] →RA
C[f(r̄i1θ1, Ci1θ1[u])]

∗→R v. Now, as in the proof of
Lemma 4, this rewrite sequence looks like:

α : s = C[f(l̄i1θ1, u)]→RA
C[f(r̄i1θ1, Ci1θ1[u])]

∗→RC
C[f(l̄i2θ2, Ci1θ1[u])]→RA

C[f(r̄i2θ2, Ci2θ2[Ci1θ1[u]])]
...

∗→RC
C[f(l̄inθn, Cin−1

θn−1[· · ·Ci1θ1[u] · · ·])]
→RB

C[Cinθn[Cin−1
θn−1[· · ·Ci1θ1[u] · · ·]]] ∗→R v

Consider the next rewrite sequence β obtained from α by replacing the first
RA-step with an R′A-step:

β : s = C[f(l̄i1θ1, u)]→R′A
C[Ci1θ1[f(r̄i1θ1, u)]]

∗→RC
C[Ci1θ1[f(l̄i2θ2, u)]]→RA

C[Ci1θ1[f(r̄i2θ2, Ci2θ2[u])]]
∗→RC

C[Ci1θ1[f(l̄i3θ3, Ci2θ2[u])]]→RA
C[Ci1θ1[f(r̄i3θ3, Ci3θ3[Ci2θ2[u]])]]

...
∗→RC

C[Ci1θ1[f(l̄inθn, Cin−1
θn−1[· · ·Ci2θ2[u] · · ·])]]

→RB
C[Ci1θ1[Cinθn[Cin−1

θn−1[· · ·Ci2θ2[u] · · ·]]]]

Then, by the condition (CCOM) and ground confluence of R, we have

v = C[Cinθn[Cin−1
θn−1[· · ·Ci1θ1[u] · · ·]]]↓R

= C[Ci1θ1[Cinθn[Cin−1
θn−1[· · ·Ci2θ2[u] · · ·]]]]↓R

Since s′ = C[Ci1θ1[f(r̄i1θ1, u)]]
∗→R C[Ci1θ1[Cinθn[Cin−1

θn−1[· · ·Ci2θ2[u] · · ·]]]]
(in β), we conclude s′

∗→R v. ut

The rewrite step s→R′ s
′ in the above lemma can be generalized to s

∗→R′ s
′.

Lemma 8. Suppose R ⇒f
cm R′. For any ground terms s, s′ and ground con-

structor term v, if s
∗→R v and s

∗→R′ s
′ then s′

∗→R v.

Now we can prove the converse of Lemma 5.

Lemma 9. Suppose R⇒f
cm R′. For any ground term s and ground constructor

term v, if s
∗→R′ v then s

∗→R v.

Proof. By sufficient completeness of R, there exists a ground constructor term
v′ such that s

∗→R v′. By Lemma 8, we have v
∗→R v′, and thus v = v′ as v is a

constructor term. Hence, s
∗→R v. ut

Now we arrive at the preservation of ground confluence.

Lemma 10. Suppose R⇒f
cm R′. Then R′ is ground confluent.

Proof. Let t be a ground term and suppose that t
∗→R′ t1 and t

∗→R′ t2. Since
R′ is sufficiently complete by Lemma 6, there exist ground constructor terms
v1, v2 such that t1

∗→R′ v1 and t2
∗→R′ v2. By Lemma 9, we have t

∗→R v1 and
t
∗→R v2. Then by ground confluence of R, we obtain v1 = v2. Hence R′ is ground

confluent. ut

We are now ready to show the main theorem of this subsection, which implies
that the context-moving transformation preserves equality in the initial algebra
and the terms in each equivalence class have the same normal form by R and R′.

Theorem 2 (correctness of context-moving transformation). Let R be a
sufficiently complete and ground confluent TRS. Suppose R ⇒f

cm R′. Then for
any ground term s, s↓R = s↓R′ .

Proof. By sufficient completeness and ground confluence of R and R′, s↓R and
s↓R′ are unique constructor ground terms. By Lemma 5, we have s

∗→R′ s↓R.
Thus, s↓R = s↓R′ . ut

Example 5 (context-moving transformation for non-orthogonal system). Let R
be the following non-orthogonal TRS for a list calculation.

R =

(a) Minlist(Cons(x, xs), z)→ Minlist(xs,Min(x, z))
(b) Minlist(Nil , z)→ z
(c) Min(S(x), S(y))→ S(Min(x, y))
(d) Min(0, y)→ 0, (e) Min(x, 0)→ 0

where we assume that it is many-sorted with sorts Nat and NatList in an ap-
propriate way. We apply the context-moving transformation with Minlist as the
target and z as the accumulator. We have RC = {(c), (d), (e)} and there are two
moving contexts, namely C1 = Min(x,�) and C2 = �. Then we have

∀θg .Min(x,Min(y, z))θg↓R = Min(y,Min(x, z))θg↓R

and thus, R⇒Minlist
cm R′, where

R′ = {Minlist(Cons(x, xs), z)→ Min(x,Minlist(xs, z))} ∪ {(b)–(e)}

Example 6. In this example, we use a many-sorted TRS R with sorts Nat and
NatStream, where “:” of sort Nat × NatStream → NatStream is the only con-
structor symbol for terms of sort NatStream.

R =

(a) Sum(S(x), α, z)→ Sum(x,Tl(α),Add(Hd(α), z))
(b) Sum(0, α, z)→ z
(c) Hd(x : α)→ x, (d) Tl(x : α)→ α
(e) Inc → 0 : Succ(Inc), (f) Succ(x : α)→ S(x) : Succ(α)
(g) Add(S(x), y)→ S(Add(x, y)), (h) Add(0, y)→ y

Here we have sufficient completeness for sort Nat , which is the sort of return
values of the target Sum. Then, all the arguments for the correctness of the
context-moving transformation follows for terms of sort Nat .2 We have RC =
{(c)–(h)} and there are two moving contexts, namely C1 = Add(Hd(α),�) and
C2 = �. Then we have

∀θg .Add(Hd(α),Add(Hd(β), z))θg↓R = Add(Hd(β),Add(Hd(α), z))θg↓R

Thus, we obtain R⇒Sum
cm R′, where

R′ = {Sum(S(x), α, z)→ Add(Hd(α),Sum(x,Tl(α), z))} ∪ {(b)–(h)}

Note here that, for terms of sort Nat , normal forms may not be reached by the
eager evaluation strategy because of the rule for Inc.

2 For terms of sort NatStream, we do not seek the correctness of the context-moving
transformation in the style of Theorem 2.

4 Context-splitting transformation for TRSs

In this section, we formulate the context-splitting transformation for TRSs and
prove the correctness of the transformation. In the context-splitting transforma-
tion for functional programs in [4], the context occurring around the accumulator
variable is required to be split into a “common” part and an “own” part, where
the “common” part needs to be common to all f -rules. Then, in each rule, the
context is moved outside of the recursive calls, moving its own part and remov-
ing the accumulator. Furthermore, the target f is replaced with a new function
symbol f ′, obtained by removing the accumulator argument of f . The context-
splitting transformation for TRSs follows the same idea.

Definition 6 (context-splitting transformation for TRSs). The context-
splitting transformation from TRS R to TRS R′ is given as:

R = RA ∪RB ∪RC where RA = {f(l̄i, z)→ f(q̄i, Ci[z]) | 1 ≤ i ≤ m}
RB = {f(l̄j , z)→ Cj [z] | m+ 1 ≤ j ≤ n}
RC = {lk → rk | n+ 1 ≤ k ≤ p}

For each i (1 ≤ i ≤ n), it is required that either Ci[] = C[ri,�] or Ci[] = �.

R′ = R′A ∪R′B ∪RC where R′A = {f ′(l̄i)→ C ′i[f
′(q̄i)] | 1 ≤ i ≤ m}

R′B = {f ′(l̄j)→ r′j | m+ 1 ≤ j ≤ n}

Here, for each i (1 ≤ i ≤ m) and j (m + 1 ≤ j ≤ n), the context C ′i[] and the
term r′j are given like this:

C ′i[] =

{
C[�, ri] if Ci[] = C[ri,�]
� if Ci[] = �

r′j =

{
rj if Cj [] = C[rj ,�]
e if Cj [] = �

The function symbol f is the target of the transformation, the variable z is the
accumulator, the context C is the common context, and the term e is the unit.
Here, the common context C should be a ground context such that f /∈ F(C)
and the unit e should be a ground constructor term. Furthermore, it is required
that the target f and the accumulator z do not appear anywhere else except the
places explicitly indicated.

Example 7 (context-splitting transformation). Let R be the following TRS for
list concatenation. Here we assume that it is many-sorted in an appropriate way.

R =

{
(a) Cat(LCons(x, xs), z)→ Cat(xs,App(z, x)), (b) Cat(LNil , z)→ z
(c) App(Cons(x, xs), y)→ Cons(x,App(xs, y)), (d) App(Nil , y)→ y

}
We apply the context-splitting transformation with Cat as the target and z as
the accumulator. The TRS R is partitioned like this: RA = {(a)}, RB = {(b)}
and RC = {(c), (d)}. We remark that the common context is C = App(�2,�1)
and we have C1[] = App(�, x) and C2[] = �. The unit is e = Nil . We construct
R′A, R

′
B from RA, RB as follows:

R′A =
{

Cat ′(LCons(x, xs))→ App(x,Cat ′(xs))
}

R′B =
{

Cat ′(LNil)→ Nil
}

Thus, we obtain R′ = R′A ∪R′B ∪ {(c), (d)}.

4.1 Correctness of the context-splitting transformation with respect
to initial algebra semantics

In the context-moving transformation, the commutativity laws of moving con-
texts played an important role. In the context-splitting transformation, we re-
quire two conditions instead: “associativity law of common context” and “unit
law of common context”; they are defined again following [4] but in the forms
that correspond to equality in the initial algebra as (CCOM) in Definition 4.

Definition 7 (associativity law of common context). Let C be the com-
mon context of an instance of the context-splitting transformation. The asso-
ciativity law of common context for the transformation refers to the following
condition:

∀θg .C[C[x, y], z]θg↓R = C[x,C[y, z]]θg↓R (CASSOC)

Definition 8 (unit law of common context). Let C be the common context
and e be the unit of an instance of the context-splitting transformation. The unit
law of common context for the transformation refers to the following condition:

∀θg .C[x, e]θg↓R = C[e, x]θg↓R = θg(x) (CUNIT)

Definition 9 (R ⇒f
cs R

′). We write R ⇒f
cs R

′ if R′ is obtained from a suf-
ficiently complete and ground confluent TRS R by the context-splitting trans-
formation such that f is the target and the conditions (CASSOC) and (CUNIT)
hold.

Definition 10 (translations ()◦, ()•). Let C be the common context and e be
the unit of an instance of the context-splitting transformation. We recursively
define the term t◦ ∈ T (F ′,V) for each term t ∈ T (F ,V) and the term t• ∈
T (F ,V) for each term t ∈ T (F ′,V) as follows:

t◦ =

C[f ′(t̄◦), u◦] if t = f(t̄, u)
g(t̄◦) if t = g(t̄), g 6= f
t if t ∈ V

t• =

f(t̄•, e) if t = f ′(t̄)
g(t̄•) if t = g(t̄), g 6= f ′

t if t ∈ V

Here, for each sequence t̄ = t1, . . . , tn, we let t̄? = t?1, . . . , t
?
n for ? ∈ {◦, •}.

We first show two kinds of simulation of rewrite sequences from ground terms
to ground constructor terms on R by R′.

Lemma 11. Suppose R⇒f
cs R

′. For any ground term s and ground constructor

term v, (i) if s
∗→R v then s◦

∗→R′ v and (ii) if s•
∗→R v then s

∗→R′ v.

Using Lemma 11, we can show the correctness of the context-splitting trans-
formation. As in the case of the context-moving transformation, a key ingredient
of the proof is preservation of sufficient completeness and ground confluence.

Lemma 12. Suppose R⇒f
cs R

′. Then R′ is sufficiently complete.

Lemma 13. Suppose R⇒f
cs R

′. Then R′ is ground confluent.

Theorem 3 (correctness of context-splitting transformation). Let R be
a sufficiently complete and ground confluent TRS. Suppose R⇒f

cs R
′. Then for

any ground term s, s↓R = s◦↓R′ .

5 Automating the context-moving and context-splitting
transformations

In this section, we report on an implementation and experiments of the context-
moving and context-splitting transformations for TRSs presented in this paper.
A key feature of our implementation is to employ inductive theorem proving to
verify the commutative law of moving contexts, etc. to guarantee the correctness
of the transformations.

An equation s
.
= t is an inductive theorem of a TRS R (R |=ind s

.
= t) if

sθg
∗↔R tθg for any ground substitution θg . It is known that these equations

coincide with the equations that are valid in the initial algebra of R. The next
lemma follows immediately from the definition.

Lemma 14. Let R be a sufficiently complete and ground confluent TRS. Then
R |=ind s

.
= t iff for any ground substitution θg , sθg↓R = tθg↓R.

Thus, the commutative law of moving contexts and the associative and unit
laws of common context, in the forms of (CCOM) in Definition 4, (CASSOC)
in Definition 7 and (CUNIT) in Definition 8, are guaranteed if one succeeds in
proving the following conditions (C), (A) and (U), respectively.

(C) ∀i(1 ≤ i ≤ m)∀j(1 ≤ j ≤ n).R |=ind Ci[Cj [z]]
.
= Cj [Ci[z]]

(A) R |=ind C[C[x, y], z]
.
= C[x,C[y, z]]

(U) R |=ind C[x, e]
.
= x, R |=ind C[e, x]

.
= x

Here, C1, . . . , Cm are the moving contexts, C is the common context, and e is
the unit of the transformation.

We have implemented a TRS transformation procedure with the context-
moving and context-splitting transformations using Standard ML of New Jersey.
We employed rewriting induction [7] for proving conditions (C), (A) and (U).
Since one generally needs to deal with non-orientable equations for proving the
condition (C), we have used rewriting induction for non-orientable equations [1].

We have tested context-moving transformations, context-splitting transfor-
mations, and their combinations. Among 21 examples, the context-moving trans-
formations succeeded at 15 examples and the context-splitting transformations
succeeded at 10 examples. There are 6 examples which succeeded in both of the
transformations. Failure of 3 examples in context-moving transformations and 4
in context-splitting transformations are due to failure of rewriting induction.

All details of the experiments are available on the webpage http://www.

nue.riec.tohoku.ac.jp/tools/experiments/lopstr15/.

6 Conclusion

We have presented proofs of the correctness of context-moving and context-
splitting transformations for TRSs. First we gave a proof of the correctness of
the context-moving transformation with respect to eager evaluation semantics as

considered in [4]. Then we gave proofs of the correctness of the context-moving
and context-splitting transformations with respect to initial algebra semantics,
where the conditions of the transformations precisely correspond to equality in
the initial algebra and so can be checked by an inductive theorem prover.

The context-moving transformation for TRSs with eager evaluation as well as
the transformations in [4] allows input programs where a term may not be evalu-
ated to a ground constructor term either because it is not terminating under the
evaluation strategy or because evaluation gets stuck at a non-constructor term.
To deal with such programs in general (i.e., to prove their properties and to check
the conditions for the correctness of the transformations), one needs methods
for induction proofs with partial functions as studied in [5]. Also, the correctness
of the transformations for programs with other evaluation strategies, e.g. lazy
evaluation, is to be investigated. These problems and their implementation are
left as future work.

Acknowledgements. We are grateful to the anonymous referees for valuable
comments. This research was supported by JSPS KAKENHI Grant Numbers
25330004, 25280025 and 15K00003.

References

1. T. Aoto. Designing a rewriting induction prover with an increased capability of
non-orientable equations. In Proc. of 1st SCSS, volume 08-08 of RISC Technical
Report, pages 1–15, 2008.

2. T. Aoto. Sound lemma generation for proving inductive validity of equations. In
Proc. of 28th FSTTCS, volume 2 of LIPIcs, pages 13–24. Schloss Dagstuhl, 2008.

3. A. Bouhoula, E. Kounalis, and M. Rusinowitch. Automated mathematical induc-
tion. Journal of Logic and Computation, 5(5):631–668, 1995.

4. J. Giesl. Context-moving transformations for function verification. In Proc. of 9th
LOPSTR, volume 1817 of LNCS, pages 293–312. Springer-Verlag, 2000.

5. J. Giesl. Induction proofs with partial functions. Journal of Automated Reasoning,
26(1):1–49, 2001.

6. D. Kapur, P. Narendran, and H. Zhang. On sufficient-completeness and related
properties of term rewriting systems. Acta Informatica, 24(4):395–415, 1987.

7. U. S. Reddy. Term rewriting induction. In Proc. of 10th CADE, volume 449 of
LNAI, pages 162–177. Springer-Verlag, 1990.

8. K. Sato, K. Kikuchi, T. Aoto, and Y. Toyama. Automated inductive theorem prov-
ing using transformations of term rewriting systems. JSSST Computer Software,
32(1):179–193, 2015. In Japanese.

9. S. Shimazu, T. Aoto, and Y. Toyama. Automated lemma generation for rewrit-
ing induction with disproof. JSSST Computer Software, 26(2):41–55, 2009. In
Japanese.

10. S. Stratulat. A general framework to build contextual cover set induction provers.
Journal of Symbolic Computation, 32:403–445, 2001.

11. P. Urso and E. Kounalis. Sound generalizations in mathematical induction. The-
oretical Computer Science, 323:443–471, 2004.

12. T. Walsh. A divergence critic for inductive proof. Journal of Artificial Intelligence
Research, 4:209–235, 1996.

