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Abstract. Decreasing diagrams technique (van Oostrom, 1994) is a technique that can
be widely applied to prove confluence of rewrite systems. To directly apply the decreasing
diagrams technique to prove confluence of rewrite systems, rule-labelling heuristic has
been proposed by van Oostrom (2008). We show how constraints for ensuring confluence
of term rewriting systems constructed based on the rule-labelling heuristic are encoded
as linear arithmetic constraints suitable for solving the satisfiability of them by external
SMT solvers. We point out an additional constraint omitted in (van Oostrom, 2008)
that is needed to guarantee the soundness of confluence proofs based on the rule-labelling
heuristic extended to deal with non-right-linear rules. We also present several extensions
of the rule-labelling heuristic by which the applicability of the technique is enlarged.

1. Introduction

Confluent term rewriting systems form a basis of flexible computations and effective
deductions for equational reasoning [2, 10]. Thus, confluence is considered to be one of the
most important properties for term rewriting systems (TRSs for short). In contrast to the
termination proof techniques, where automation of the techniques has been actively inves-
tigated, not much attention has been paid to automation of confluence proving. Motivated
by such a situation, Aoto et.al. [1, 15] have started developing a fully-automated confluence
prover ACP.

Decreasing diagrams technique [11] is a technique that can be widely applied to prove
confluence of rewrite systems. Many confluence results are explained and are extended
based on the decreasing diagrams criterion [11, 13, 14]. In [13], rule-labelling heuristic has
been proposed to prove confluence of rewrite systems directly by the decreasing diagrams
technique. In the rule-labelling heuristic, each rewrite step is labeled by the rewrite rule
employed in that rewrite step—then the existence of the suitable ordering on labels ensures
the confluence of the TRSs. In [1, 15], the implementation of decreasing diagrams techniques
in ACP was left as a future work.
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In this paper, we report a method to incorporate the confluence proof by the decreasing
diagrams based on the rule-labelling heuristic into the automated confluence provers such as
the ACP. More precisely, we show how conditions for ensuring confluence of term rewriting
systems constructed based on the rule-labelling heuristic are encoded as linear arithmetic

constraints suitable for solving the satisfiability of them by external SMT solvers (SAT
modulo theories where the linear arithmetic is employed for the underlying theory). Fur-
thermore, we point out an additional condition omitted in [13] that is needed to guarantee
the soundness of confluence proofs based on the rule-labelling heuristic. We also present
several extensions of the rule-labelling heuristic by which the applicability of the technique
is enlarged. All methods are implemented and experiments are reported.

The remainder of the paper is organized as follows. In Sec. 2, we briefly explain notions
and notations used in this paper. In Sec. 3, we explain the decreasing diagrams technique
and present an encoding of confluence criteria based on the basic version of the rule-labelling
heuristic. In Sec. 4, we explain an extension of rule-labelling heuristic for left-linear TRSs.
Here we point out the necessity of an additional condition omitted in [13]. In Sec. 5, we
present the encoding of the criterion explained in Sec. 4 with a natural generalization. In
section 6, we present two further flexibilities that can be added to the heuristic. Sec. 7
reports an implementation and experiments. Sec. 8 concludes.

2. Preliminaries

This section briefly explains notions and notations used in this paper. For omitted
definitions, we refer [2].

Abstract reduction system (ARS for short) A = 〈A, (→i)i∈I〉 consists of a set A and
indexed relations →i over A. For J ⊆ I, →J =

⋃

i∈J→i and →I is abbreviated to → if
no confusion arises. The reverse of → is denoted by ←. The reflexive transitive closure

(reflexive closure, equivalence closure) of → is denoted by
∗
→ (resp.

=
→,

∗
↔). We use ◦ for

the composition of relations. We denote a quasi-order by %, its strict part by ≻ and its
equivalence part by ≃. A quasi-order is well-founded if there exists no infinite descending
chain a0 ≻ a1 ≻ · · · . We put ≺m = {i | i ≺ m}, ≃m = {i | i ≃ m} and ≺l,m = {i | i ≺
l}∪{i | i ≺ m}. The lexicographic comparison %lex by two quasi-orders %1 and %2 is given
by 〈a1, a2〉 %lex 〈b1, b2〉 iff either a1 ≻1 b1 or a1 ≃1 b1 and a2 %2 b2.

The sets of function symbols and variables are denoted by F and V . Each function
symbol f is equipped with a natural number arity(f), the arity of f . A constant is a
function symbol with arity 0. We denote by V(t) the set of variables occurring in a term
t. A variable x ∈ V(t) is said to have a linear occurrence in t (or x is linear in t) if there
is only one occurrence of x in t. A term t is linear if all variables in V(t) are linear in t.
A position in a term is denoted by a (possibly empty) sequence of positive integers. The
empty sequence (i.e. the root position) is denoted by ǫ. If p is a position in a term t, the
subterm of t at p is denoted by t/p and we write t[s]p the term obtained from t by replacing
the subterm at p with a term s. A context is a term with a special constant � (called a
hole). A context C with precisely one occurrence of the hole is denoted by C[ ]. We write
C[ ]p if C[ ]/p = �. An instance of t by a substitution σ is written as tσ.

Any rewrite rule l → r satisfies the conditions (1) l /∈ V and (2) V(r) ⊆ V(l). Rewrite
rules are identified modulo variable renaming. A rewrite rule l → r is linear (left-linear,
right-linear) if l and r (l, r, respectively) are linear. A term rewriting system (TRS for
short) is a finite set of rewrite rules. It is linear (left-linear, right-linear) if so are all rules.
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There is a rewrite step s → t if there exist a context C[ ]p, a substitution σ, and a rewrite
rule l → r ∈ R such that s = C[lσ]p and t = C[rσ]p. The subterm occurrence of lσ at p is
the redex occurrence of this rewrite step; the occurrence of l (except variables) in s is called
the redex pattern of this rewrite step. A rewrite sequence of the form s ← u → t is called

a peak ; the one of the form s
∗
→ ◦

∗
← t is a joinable rewrite sequence. Terms s and t are

joinable if s
∗
→ ◦

∗
← t. A TRS R is confluent or Church–Rosser if s

∗
← ◦

∗
→ t implies s and

t are joinable.
Let s, t be terms whose variables are disjoint. The term s overlaps on t (at position

p) when there exists a non-variable subterm u = t/p of t such that u and s are unifiable.
Let l1 → r1 and l2 → r2 be rewrite rules w.l.o.g. whose variables are disjoint. Suppose that
l1 overlaps on l2 at position p. Let σ be the most general unifier of l1 and l2/p. Then the
term l2[l1]σ yields a critical peak l2[r1]σ ← l2[l1]σ → r2σ. The pair 〈l2[r1]σ, r2σ〉 is called
the critical pair obtained by the overlap of l1 → r1 on l2 → r2 at position p. In the case
of self-overlap (i.e. when l1 → r1 and l2 → r2 are identical modulo renaming), we do not
consider the case p = ǫ. The set of critical pairs obtained by an overlap of l1 → r1 on
l2 → r2 is denoted by CP(l1 → r1, l2 → r2). The set of critical pairs in a TRS R is denoted
by CP(R).

3. Confluence by decreasing diagrams based on rule-labelling heuristic

An ARS A = 〈A, (→i)i∈I〉 is locally decreasing w.r.t. a well-founded quasi-order % if

for any s ←l ◦ →m t there exists s
∗
→≺l ◦

=
→≃m ◦

∗
→≺l,m ◦

∗
←≺l,m ◦

=
←≃l ◦

∗
←≺m t [11]. In

this paper, we use the following variant of decreasing diagrams criterion.

Proposition 3.1 (decreasing diagrams criterion [11]). An ARS A = 〈A, (→i)i∈I〉 is con-

fluent if A is locally decreasing w.r.t. a well-founded quasi-order order %.

In [13], rule-labelling heuristic is introduced to apply the decreasing diagrams criterion
to directly prove confluence of TRSs. To use the decreasing diagrams criterion, each rewrite
step needs to be equipped with a label—in the rule-labelling heuristic, the rewrite rule
employed in the rewrite step is used as the label of each rewrite step. As in [13], let us
suppose that each rewrite rule is numbered from 1 to |R| and that each rewrite rule is
identified with its number (i : l → r ∈ R indicates that i is the number of l → r). We say
a peak s ←i u →j t is locally decreasing w.r.t. % if there is a rewrite sequence of the form

s
∗
→≺i ◦

=
→≃j ◦

∗
→≺i,j ◦

∗
←≺i,j ◦

=
←≃i ◦

∗
←≺j t.

Proposition 3.2 (confluence by rule-labelling heuristic [13]). A linear TRS R is confluent

if there exists a quasi-order % on R such that any critical peak of R is locally decreasing

w.r.t. %.

Note that well-founded of % follows from the finiteness of the set R. Based on this
proposition, a (basic) confluence proof of TRS R by decreasing diagrams based on rule-
labelling is conducted as follows.

Step 1 Check (left- and right-)linearity.

Step 2 Find a joinable rewrite sequence s
∗
→ v

∗
← t for every critical pairs 〈s, t〉 ∈ CP(i, j).

Step 3 Check whether there exists a quasi-order % on R such that s
∗
→ v

∗
← t (obtained

in the step 2) has the form s
∗
→≺i ◦

=
→≃j ◦

∗
→≺i,j ◦

∗
←≺i,j ◦

=
←≃i ◦

∗
←≺j t for every

critical pairs 〈s, t〉 ∈ CP(i, j).
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Computation of the step 1 is easy. Automation of the step 2 is partially achieved by

imposing a maximum length on rewrite steps s
∗
→ v

∗
← t. The only non-trivial part is the

step 3. We show that the step 3 can be solved by reducing the problem into the satisfiability
of an arithmetic constraint.

First, let us illustrate by an example how the requirement on the quasi-order - is

specified. Since the requirements on s
∗
→ v and v

∗
← t are symmetric, we concentrate on the

s
∗
→ v part. Suppose that we have a joinable rewrite sequence s →x1 ◦ →x2 ◦ →x3 v

∗
← t

for 〈s, t〉 ∈ CP(i, j). The requirement is that →x1 ◦ →x2 ◦ →x3 has the form
∗
→≺i ◦

=
→≃j

◦
∗
→≺i,j . We can think of five possibilities depending on where the rewrite step equivalent

to j (virtually) appears:

(i) x1, x2, x3 ∈ ≺i, j (i.e. the rewrite step equivalent to j is placed before →x1 step)
(ii) x1 ≃ j and x2, x3 ∈ ≺i, j (i.e. the rewrite step equivalent to j is →x1 step)
(iii) x1 ≺ i, x2 ≃ j and x3 ∈ ≺i, j (i.e. the rewrite step equivalent to j is →x2 step)
(iv) x1, x2 ≺ i, x3 ≃ j (i.e. the rewrite step equivalent to j is →x3 step)
(v) x1, x2, x3 ≺ i (i.e. the rewrite step equivalent to j is placed after →x3 step)

The last possibility is redundant because of the first one; thus four possibilities remain.
Since xk ∈ ≺i, j equals to (xk ≺ i) ∨ (xk ≺ j), we obtain the following requirement on the
quasi-order -.

(x1 ≺ i ∨ x1 ≺ j) ∧ (x2 ≺ i ∨ x2 ≺ j) ∧ (x3 ≺ i ∨ x3 ≺ j) from the case (i)
∨ (x1 ≃ j) ∧ (x2 ≺ i ∨ x2 ≺ j) ∧ (x3 ≺ i ∨ x3 ≺ j) from the case (ii)
∨ (x1 ≺ i) ∧ (x2 ≃ j) ∧ (x3 ≺ i ∨ x3 ≺ j) from the case (iii)
∨ (x1 ≺ i) ∧ (x2 ≺ i) ∧ (x3 ≃ j) from the case (iv)

In describing the requirement for the general case, the following assumption is assumed.

Below, each rewrite sequence is supposed to be assigned by a sequence of labels as s
∗
→i1···ik t

for s→i1 ◦ · · · ◦ →ik t.

Assumption 3.3. We assume that there exists a joinable rewrite sequence s
∗
→σ ◦

∗
←ρ t

for each critical pair 〈s, t〉 ∈ CP(i, j). Given labelling of rewrite steps, the sequences σ and

ρ of labels are denoted by JL(s, t) and JR(s, t), respectively.

Definition 3.4. We define Ldd(i, j, x1 · · ·xn) and LDD(R) as follows.

Ldd(i, j, x1 · · ·xn) = (
∧

1≤l≤n((xl ≺ i) ∨ (xl ≺ j))) ∨
∨

1≤k≤n

[

(
∧

1≤l<k(xl ≺ i)) ∧ (xk ≃ j) ∧ (
∧

k<l≤n((xl ≺ i) ∨ (xl ≺ j)))
]

LDD(R) =
∧

i,j∈R

∧

〈s,t〉∈CP(i,j)

(

Ldd(i, j, JL(s, t)) ∧ Ldd(j, i, JR(s, t))
)

Theorem 3.5. A linear TRS R is confluent if there exists a quasi-order % on R that

satisfies LDD(R).

We next explain how the existence problem of a quasi-order% onR that satisfy LDD(R)
is reduced to the satisfiability problem of an arithmetic constraint. The idea is to specify the
quasi-order % by the assignment of natural number weights, that is, i ≻ j iff the rule i has
the weight strictly larger than that of j. Here, note that sinceR is finite and the requirement
is a monotone formula, it suffices to consider the total quasi-order. Suppose non-negative
integer variables w1, . . . , w|R| are to be assigned by the weight of the rules 1, . . . , |R| ∈ R.
Then the requirement LDD(R) of % is translated to an arithmetic constraint [[LDD]](R)
over the indeterminates w1, . . . , w|R| and the existence problem of a quasi-order % satisfying
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LDD(R) is reduced to the existence problem of a suitable assignment on indeterminates
w1, . . . , w|R| which satisfies [[LDD]](R).

Definition 3.6. An arithmetic constraint [[LDD]](R) is defined as follows.

[[Ldd]](i, j, x1 · · ·xn) = (
∧

1≤l≤n((wxl < wi) ∨ (wxl < wj))) ∨
∨

1≤k≤n

[

(
∧

1≤l<k(wxl < wi)) ∧ (wxk = wj) ∧ (
∧

k<l≤n((wxl < wi) ∨ (wxl < wj)))
]

[[LDD]](R) =
∧

i,j∈R

∧

〈s,t〉∈CP(i,j)

(

[[Ldd]](i, j, JL(s, t)) ∧ [[Ldd]](j, i, JR(s, t))
)

Theorem 3.7. A linear TRS R is confluent if [[LDD]](R) is satisfiable.

Since constrains [[LDD]](R) is a boolean combination of linear arithmetic formulas (ev-
ery monomial contains only one variable), the satisfiability of [[LDD]](R) is efficiently checked
by an external SMT (SAT modulo theories) solver where the linear arithmetic is employed
for the underlying theory.

4. Rule-labelling heuristic capable of non-right-linear rules

As explained in [13], the rule-labelling heuristic is not applicable to non-linear TRSs,
but by adding some additional information to labels, the technique can be extended to han-
dle (possibly non-right-linear) left-linear TRSs. To explain this extension, let us replicate a
situation from Example 20 of [13]. Suppose i : f(x)→ h(x, x) ∈ R. To apply the decreasing
diagrams criterion (Proposition 3.1), one has to impose the local decreasingness for peaks
arising from nested overlaps of the same rewrite rule i such as:

f(C[f(a)])

f(C[h(a, a)])

h(C[f(a)], C[f(a)])

h(C[h(a, a)], C[f(a)])

h(C[h(a, a)], C[h(a, a)])

i

i

i

ii

This peak, however, is not locally decreasing as→i ◦ →i does not have the form
∗
→≺i ◦

=
→≃i

◦
∗
→≺i,i. Hence the rule-labelling heuristic fails.

An idea to solve this situation is to extend the label i to 〈m, i〉 where m is the number of
occurrences of f on the path from the redex to the root and use the lexicographic comparison
(denoted by %lex) in which the first component is compared with the usual ordering ≥ on
natural numbers [13]. Then we have labeled rewrite steps f(C[f(a)]) →〈n+1,i〉 f(C[h(a, a)])
and h(C[f(a)], C[f(a)]) →〈n,i〉 h(C[h(a, a)], C[f(a)]) →〈n,i〉 h(C[h(a, a)], C[f(a)]), provided
that the context C[ ] has n-occurrences of f on the path from the hole to the root. Then,
by 〈n+ 1, i〉 ≻lex 〈n, i〉, the local decreasingness of the peak is ensured.

Although it is not mentioned in [13], one should note that this extended heuristic does
not work if there is a rewrite rule such as j : g(x) → f(x) in R whose rewrite step may
increase the number of occurrences of f above a redex. For example, a critical peak below
arising from the nested overlap of redex patterns is not locally decreasing:
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g(C[s])

g(C[s′]) f(C[s])

f(C[s′])

〈n, k〉 〈n, j〉

〈n+ 1, k〉〈n, j〉

as 〈n+ 1, k〉 ≻lex 〈n, k〉 and 〈n+ 1, k〉 ≻lex 〈n, j〉.
To avoid such a situation, one needs to impose an additional condition: for any contexts

Cl[ ], Cr[ ] and x ∈ V such that Cl[x]→ Cr[x] ∈ R,

- ♯fCl[ ] ≥ ♯fCr[ ] if x is linear in Cr[x], and
- ♯fCl[ ] > ♯fCr[ ] if x is not linear in Cr[x]

where ♯f C[ ] denotes the number of occurrences of the function symbol f along the path
from the hole to the root in the context C[ ].

5. A generalization of rule-labelling heuristic for left-linear TRSs

In this section, we extend the encoding presented in Sec. 3 to the rule-labelling heuristic
for left-linear TRSs explained in Sec. 4 under the following natural generalization:

(1) Not only f but some subset G of function symbols can be designated for counting
occurrences (on the path from the redex to the root).

(2) More generally, the counting of occurrences can be generalized to the summation of
weights of ≥ 0 assigned for each function symbol’s occurrences.

The summation of weights is formalized by a notion of the weight of context.

Definition 5.1. Let C[ ] be a context and w : F → N be a function where N is the set of
natural numbers. The weight ♯C[ ] of a context C[ ] is defined as follows.

♯C[ ] =

{

0 if C[ ] = �

w(f) + ♯C̃[ ] if C[ ] = f(. . . , C̃[ ], . . .)

To encode the weight ♯C[ ], we introduce a non-negative integer variable zf for each
f ∈ F to be assigned by w(f). Then ♯C[ ] is encoded by a polynomial [[♯C[ ]]] whose definition
is obtained by replacing w(f) by zf in the definition of ♯C[ ]. Thus the label of each rewrite
step is encoded by 〈ϕ, x〉 where x ∈ {1, . . . , |R|} and ϕ is a polynomial over indeterminate
(zf )f∈F . We assume that JL(s, t) and JR(s, t) are updated accordingly. The set CP2(i, j)
of critical pairs equipped with the weight of peak rewrite steps is given like this: CP2(i, j)
= {

〈

〈[[♯lj [ ]pσ]], s〉, 〈0, t〉
〉

| s = lj [ri]pσ ← lj [li]pσ = ljσ → rjσ = t, 〈s, t〉 ∈ CP(i, j)}.

Definition 5.2. Arithmetic constraints [[LDD2]](R) and [[CND]](R) are defined as follows.

〈ϕ, i〉 ≺lex 〈ρ, j〉 = (ϕ < ρ ∨ (ϕ = ρ ∧ wi < wj)) 〈ϕ, i〉 ≃lex 〈ρ, j〉 = (ϕ = ρ ∧ wi < wj)

[[Ldd2]](~ϕ, ~ψ, ~ρ1 · · · ~ρn) = (
∧

1≤l≤n((~ρl ≺lex ~ϕ) ∨ (~ρl ≺lex
~ψ))) ∨

∨

1≤k≤n

[

(
∧

1≤l<k(~ρl ≺lex ~ϕ)) ∧ (~ρk ≃lex
~ψ) ∧ (

∧

k<l≤n((~ρl ≺lex ~ϕ) ∨ (~ρl ≺lex
~ψ)))

]

[[LDD2]](R) =
∧

i,j∈R

∧

〈〈ϕ,s〉,〈ψ,t〉〉∈CP2(i,j)

(

[[Ldd2]](〈ϕ, i〉, 〈ψ, j〉, JL(s, t))

∧[[Ldd2]](〈ψ, j〉, 〈ϕ, i〉, JR(s, t))
)
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[[CND]](R) =
∧

{[[♯Cl[ ]]] ≥ [[♯Cr[ ]]] | Cl[x]→ Cr[x] ∈ R, x /∈ V(Cr[ ])}
∧

∧

{[[♯Cl[ ]]] > [[♯Cr[ ]]] | Cl[x]→ Cr[x] ∈ R, x ∈ V(Cr[ ])}

We here explain the constraint [[CND]](R) by an example.

Example 5.3. Let R =
{

f(g(x), y)→ h(x, f(x, y))
}

. Then the condition for variable y
which is linear in the right-hand side (rhs for short) of the rule is encoded like this:

(1) zf ≥ zh + zf (for Cl[ ] = f(g(x),�), Cr[ ] = h(x, f(x,�))).

The condition for variable x which is non-linear in rhs of the rule is encoded like this:

(2) zf + zg > zh (for Cl[ ] = f(g(�), y), Cr[ ] = h(�, f(x, y))),
(3) zf + zg > zh + zf (for Cl[ ] = f(g(�), y), Cr[ ] = h(x, f(�, y))).

Therefore [[CND]](R) = (1) ∧ (2) ∧ (3).

Theorem 5.4. A left-linear TRS R is confluent if [[LDD2]](R)∧ [[CND]](R) is satisfiable.

Example 5.5. The following TRS R1 is from [4] (Example 20 of [14]).

R1 =

{

(1) g(a) → f(g(a)) (3) a → b (5) h(x, y) → c

(2) g(b) → c (4) f(x) → h(x, x)

}

There is a (unique) critical peak of R: g(b) ←〈zg,w3〉 g(a) →〈0,w1〉 f(g(a)), which is joinable
as g(b) →〈0,w2〉 c ←〈0,w5〉 h(g(a), g(a)) ←〈0,w4〉 f(g(a)). By solving the constraint, a solution
zf = wi = 1 (i ∈ {1, 3, 5}), zf = w2 = w4 = 0 (f ∈ {a, b, c, g, h}) is obtained.

Example 5.6. Let R1 be the TRS given in Example 5.5 and R2 = R1 ∪ {g(x)→ f(f(x))}.
The weight assignment in Example 5.5 does not work for R2 because of [[CND]](R2). In fact,
the generated constraint [[LDD2]](R2)∧ [[CND]](R2) is not satisfiable if we limit zf ∈ {0, 1}.
By solving the constraint, a solution zf = wi = 1 (i ∈ {1, 5, 6}), zg = w2 = 2, w3 = 3, zf =
w5 = 0 (f ∈ {a, b, c, g, h}) is obtained. Thus one concludes R2 is confluent. This example
demonstrates that our generalization from counting of function symbol’s occurrences to
summation of weight properly extends the applicability of the rule-labelling heuristic.

6. Adding further flexibilities to the rule-labelling heuristic

In this section, we add two further flexibilities to the rule-labelling heuristic.

6.1. Adding flexibility on the lexicographic comparison

In the previous section (and also in [13]) the label 〈♯C[ ], i〉 is compared in such a way
that first on the weight ♯C[ ] and then on the weight of the rule i. It is easy to see, however,
that comparing the components in the reverse order can be used either.

Example 6.1. Let

R3 =

{

(1) c → f(a) (3) a → g(a) (5) f(x) → h(x, x)
(2) c → f(b) (4) b → g(g(a))

}

.

First note that in R3 zf > zh need to be satisfied by the rule (5). Consider the critical peak
f(a) ←〈0,w1〉 c →〈0,w2〉 f(b) and a joinable rewrite sequence f(a) →〈zf ,w3〉 f(g(a)) →〈zf+zg,w3〉

f(g(g(a))) ←〈zf ,w4〉 f(b) for it. As zf is positive, there is no chance to satisfy local decreas-
ingness condition if the comparison by 〈♯C[ ], i〉 is used. On the other hand, if one uses the
comparison by 〈i, ♯C[ ]〉, a suitable assignment is found.
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Another workaround here is to consider another joinable rewrite sequence with auxiliary

(duplicating) rewrite steps by the rule (5): f(a) → h(a, a)
∗
→ ◦

∗
← h(b, b) ← f(b). For this,

however, it is required to search a joinable rewrite sequence with non-minimal length.

Benefit from both ways of comparison is obtained easy—it suffices to prepare new
integer variables w′

1, . . . , w
′
|R| and change the encoding 〈wi, ϕ〉 to 〈wi, ϕ, w

′
i〉, where the

third component is used to encode the secondary quasi-order on rules compared after the
comparison of the context weight ϕ.

6.2. Adding flexibility on the weight function

It is also easy to see that the weight function ♯ for the context can be changed in such
a way that the counted weight on an occurrence of the same function symbol is changed
according to the argument position containing the hole.

Definition 6.2. Let C[ ] be a context and w : FN → N be a function, where FN = {〈f, i〉 |
f ∈ F , 1 ≤ i ≤ arity(f)}. The weight ♯′C[ ] of the context C[ ] is defined as follows.

♯′C[ ] =

{

0 if C[ ] = �

w(f, i) + ♯′C̃[ ] if C[ ] = f(. . . , C̃[], . . .) and C[ ]/i = C̃[ ]

To encode the weight ♯′C[ ], non-negative integer variables (zf,i)〈f,i〉∈FN
are introduced.

Using the weight function ♯′ rather than ♯ is sometimes advantageous as witnessed in the
following example.

Example 6.3. Let

R4 =

{

(1) f(f(x, y), z) → f(x, f(y, z)) (3) f(x, 1) → f(1, x)
(2) f(1, x) → x

}

.

For a critical peak f(f(w, f(x, y)), z)) ←〈zf,1,w1〉 f(f(f(w, x), y), z) →〈0,w1〉 f(f(w, x), f(y, z))),

there is a joinable rewrite sequence f(f(w, f(x, y)), z)) →〈0,w1〉 f(w, f(f(x, y), z)) →〈zf,2,w1〉

f(w, f(x, f(y, z))) ←〈0,w1〉 f(f(w, x), f(y, z))). It is readily convinced that the diagram can
not be made locally decreasing unless we distinguish zf,1 and zf,2.

7. Implementation and experiments

All techniques described in this paper have been implemented. The implementation is
written in SML/NJ1 and built upon the confluence prover ACP. We have used Yices2 [3] as
an external SMT solver. In searching of a joinable rewrite sequence of critical pairs, the
following heuristics are employed: (i) set the maximum number of rewrite steps to 5. (ii)
joinability is tested from reducts obtained in smaller steps (all joinable sequences obtained
in the smallest step are considered but not any others with larger steps.)

We have tested various versions of rule-labelling heuristic described in this paper. The
summary of experiments is described in Table 1. (1)–(5) are results of confluence proofs by
decreasing diagrams based on the rule-labelling heuristics. We have also presented results
of other confluence proving techniques for left-linear TRSs for comparison. The columns
below the title Ri show success (X) or failure (×) of the proof attempts to TRSs R1–R4

1http://www.smlnj.org/
2http://yices.csl.sri.com/
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R1 R2 R3 R4 Col.(msec)
Decreasing diagrams technique based on rule-labelling
(1) basic version (Thm. 3.7) × × × × 35 (200)
(2) counting designated function symbol’s occurrences X × × × 41 (486)
(3) with context weight (Thm. 5.4) X X × × 41 (481)
(4) (3) + extended comparison (Subsect. 6.1) X X X × 41 (795)
(5) (4) + extended context weight (Subsect. 6.2) X X X X 42 (692)

Other techniques for left-linear TRSs
development closed TRSs [12] × × × × 16 (52)
linear strongly closed TRSs [6] × × × × 24 (52)
criterion by parallel critical pairs [9] × × × × 31 (58)
criterion by simultaneous critical pairs [7] × × × × 36 (91)
upside-parallel-closed/outside-closed TRSs [8] × × × × 19 (53)

All techniques X X X X 48 (593)
All techniques except the decreasing diagrams technique × × × × 40 (84)

Table 1: A summary of experiments

in the present paper. The columns below the title Col. show the number of success tested
on a 106 collection of TRSs taken from various confluence-related papers and running time
(msec.). All experiments have been performed on a FreeBSD platform of a PC equipped
with 1.2GHz CPU and 1GB memory.

While other five techniques for left-linear TRSs proves 16–36 examples, the decreas-
ing diagrams technique based on rule-labelling proves 45 examples (R1 is contained in the
collection). Thus the comparison experimentally reveals the virtue of decreasing diagrams
technique based on rule-labelling. The very basic version of the decreasing diagrams tech-
nique based on rule-labelling for linear TRSs already proves nearly 80% of the examples that
can be proved with other extensions. Results on TRSs R2–R4 show that the refinements
presented in the paper improve the applicability of the technique. The running time for
decreasing diagrams technique based on rule-labelling is about 7–14 times larger than other
five techniques. Since 34 examples are proved both in the decreasing diagrams technique
based on rule-labelling and in the combination of other five techniques, it is better to try
the other five techniques before the decreasing diagrams technique based on rule-labelling.

A new version of the confluence prover ACP involving all the techniques presented in
the paper and the details of all experiments can be found on the webpage3 of ACP.

8. Conclusion

We have described a method to automate confluence proofs by the decreasing diagrams
based on the rule-labelling heuristic. We have shown an encoding of the confluence criterion
into that of a linear arithmetic problem suitable for solving by external SMT solvers. An
additional condition which need to be considered to guarantee the soundness of the technique
(omitted in the original description of the heuristic [13]) and several generalizations of
the heuristic which enlarge the applicability of the technique have been described. The
presented technique has been implemented and the experiments show the advantage of
incorporating the technique into automated confluence provers.

3http://www.nue.riec.tohoku.ac.jp/tools/acp/
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Automation of decreasing diagram technique based on rule-labelling heuristic for linear
TRSs has been obtained in [5] independently. Automation of the extended heuristic for left-
linear TRSs, however, has not been explored in their paper. Instead, they are developing a
new technique based on relative termination there.

In [13], another technique called self-duplication heuristic is described to deal with
rule-labelling for (possibly non-right-linear) left-linear TRSs. In self-duplication heuristic,
instead of counting function symbols’ occurrences, parallel rewrite steps are considered
to make critical peaks arising form nested overlaps of the non-right-linear rules locally
decreasing. Automation of the decreasing diagrams technique with self-duplication heuristic
remains as a future work.
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