
Designing a Rewriting Induction Prover with an

Increased Capability of Non-Orientable
Theorems

Takahito Aoto

RIEC, Tohoku University, Japan
aoto@nue.riec.tohoku.ac.jp

Abstract. Rewriting induction (Reddy, 1990) is an automated proof
method for inductive theorems of term rewriting systems. Reasoning by
the rewriting induction is based on the noetherian induction on some
reduction order and the original rewriting induction is not capable of
proving theorems which are not orientable by that reduction order. To
deal with such theorems, Bouhoula (1995) as well as Dershowitz & Reddy
(1993) used the ordered rewriting. However, even using ordered rewriting,
the weak capability of non-orientable theorems is considered one of the
weakness of rewriting induction approach compared to other automated
methods for proving inductive theorems. We present a refined system of
rewriting induction with an increased capability of non-orientable theo-
rems and a capability of disproving incorrect conjectures. Soundness for
proving/disproving are shown and effectiveness of our system is demon-
strated through some examples.

1 Introduction

Properties of programs are often proved by induction on data structures such as
natural numbers or lists. Such properties are called inductive properties of pro-
grams. Inductive properties are indispensable in formal treatments of programs
such as program verification and program transformation. For such applications,
automated reasoning on inductive properties is crucial.

Comparing to the high degree of automation on automated proving of theo-
rems, automated proving of inductive theorems still is considered as a very chal-
lenging problem [15]. Currently best known successful approaches to automated
proving of inductive theorems are explicit induction methods with sophisticated
heuristics [12, 17, 23] or with powerful decision procedures [27]. On the other
hand, in the field of term rewriting, implicit induction methods for equational
theories that automatically perform inductive reasoning based on implicit in-
duction principles have been investigated for many years [5–10, 14, 16, 18, 20, 21,
24–26,29, 31]. Although it is not among the best known successful approaches,
some extensions are known to be competitive [5, 7].

Rewriting induction1 proposed by Reddy [26] is one of such inductive theo-
rem proving methods. Contrasted to inductionless induction [16, 18, 21, 25, 31],
in which some kind of Church-Rosser property is needed, the basis of rewriting
induction is a noetherian induction. The theorem prover SPIKE [6, 9, 10] is the
best known successful induction prover based on a variant of rewriting induction
test set induction.

Many refinements have been introduced for the rewriting induction to in-
crease its power and efficiency of automated theorem proving. The underlying
rewriting mechanism has been replaced by ordered rewriting in [13] so that
rewriting induction can also handle non-orientable equations; not only ordered
rewriting but also relaxed rewriting is used in the SPIKE theorem prover to get
more flexible expansion and simplification rules. Modulo rewriting is also used
to deal with non-orientable theorems [1]. Another refinement is to use simplifi-
cation by conjectures (i.e. equations to prove) [2, 6, 9–11, 13] and a mechanism
for disproving incorrect conjectures [6, 9]. A capability of theories with non-free
constructors is investigated in [7, 8, 19].

Another direction for extension is to make the framework more general. The
SPIKE theorem prover can handle not only equational theories but conditional
ones; moreover, inductive theorems can be given not only in equations but also in
clauses. Further generalization is given in [11] whose underlying logical theory is
replaced with an abstract first-order deductive relation. Stratulat [29] strength-
ens such an abstraction further by a general abstract inference system that can
be used to prove general inductive properties of any first-order deductive rela-
tion. Equations with regular constraints can be also treated in [7, 8]. Needless to
say, such extensions also benefit from the enhancement of the proving power on
the basic rewriting induction system.

It is well-known that an introduction of suitable lemmas often prevents au-
tomated inductive theorem proving from divergence. Thus the techniques to
introduce suitable lemmas automatically in the process of proving have been in-
vestigated [22, 28, 33, 34]. Divergence critic [34] is an automated lemma discovery
method for rewriting induction which finds lemmas from a divergent sequence
of proofs. The SPIKE theorem prover contains a lemma discovery tool based
on the divergence critic. Urso & Kounalis [33] gave a lemma discovery method
Sound Generalization for monomorphic term rewriting systems which is sound,
that is, does not generate incorrect lemmas from correct conjectures. A part of
divergence critic is extend to sound one by Shimazu et.al. [28].

In this paper, we present a refined inference system of rewriting induction
with an increased capability of non-orientable theorems. We also present how the
system is combined with rules for adding sound lemmas and disproving incorrect
conjectures. Soundness of the presented systems is shown and effectiveness is
demonstrated through examples. A part of our inference system is implemented
and we report a preliminary experiment.

1 Originally, it is called “term rewriting induction”. The terminology “rewriting in-
duction” is introduced in [24].

The rest of the paper is organized as follows. After fixing basic notations
(Section 2), we review rewriting induction (Section 3). In Section 4, we present
our basic system of rewriting induction. Then, we incorporate a rule for adding
sound lemmas (Section 5) and rules for disproving incorrect conjectures (Section
6). Section 7 introduces a modification of systems which turns out to be useful
by our preliminary experiment. In Section 8, we compare our system with other
rewriting induction provers. Section 9 concludes.

2 Preliminaries

We introduce notations for term rewriting used in this paper. (For details, see
[3].) The sets of function symbols and variables are denoted by F and V , respec-
tively. The set of terms over F , V is denoted by T(F , V). We use ≡ to denote
the syntactical equality. We write u � t if u is a subterm of t. The root symbol
of a term t is denoted by root(t) and the set of variables in a term t by V (t).

Let � be a constant not occurring in F . A context is an element in T(F ∪
{�}, V). The constant � is called a hole. If a context C has n holes in it, we
denote by C[t1, . . . , tn] a term obtained by replacing holes with t1, . . . , tn from
left to right. A mapping σ from V to T(F , V) is called a substitution; we identify
σ and its homomorphic extension. σ(t) is also written as tσ, which is called an
instance of the term t. The domain of σ is defined by dom(σ) = {x ∈ V | xσ 6≡
x}. We denote by mgu(s, t) the most general unifier of terms s, t.

A pair 〈l, r〉 of terms l, r satisfying conditions (1) root(l) ∈ F and (2) V (r) ⊆
V (l) is said to be a rewrite rule. A rewrite rule 〈l, r〉 is denoted by l → r. A
term rewriting system (TRS) is a set of rewrite rules. Let R be a TRS. If there
exist a context C, a substitution σ, and a rewrite rule l → r ∈ R such that
s ≡ C[lσ] and t ≡ C[rσ], we write s →R t. We call s →R t a rewrite step. →R

forms a relation on T(F , V), called the rewrite relation of R. A term t is said
to be normal when there exists no s such that t →R s. An equation l

.
= r is a

pair 〈l, r〉 of terms. When we write l
.
= r, however, we do not distinguish 〈l, r〉

and 〈r, l〉. The rewrite relation of a set E of equations is defined as s ↔E t if
there exist a context C, a substitution σ and an equation l

.
= r ∈ E satisfying

s ≡ C[lσ] and t ≡ C[rσ]. The reflexive closure and reflexive transitive closure of

→R (↔E) are denoted by
=
→R (resp.

=
↔E) and

∗
→R (resp.

∗
↔E). The symmetric

closure of →R is denoted by ↔R. The modulo rewriting relation is defined like
this: ↔R/E =

∗
↔E ◦ →R ◦

∗
↔E , where ◦ denotes the composition of relations.

When s ≡ C[s1, . . . , sn], t ≡ C[t1, . . . , tn], and si →R ti for all i = 1, . . . , n, we
write s →‖Rt.

The set of defined function symbols is given by DR = {root(l) | l → r ∈ R}
and the set of constructor symbols by CR = F \DR. The set of defined symbols
appearing in a term t is denoted by DR(t). When R is obvious from its context,
we omit the subscript R from DR, CR. Terms in T(C, V) are said to be constructor
terms ; a substitution σ such that xσ ∈ T(C, V) for any x ∈ dom(σ) is called a
constructor substitution. A term of the form f(c1, . . . , cn) for some f ∈ D and

c1, . . . , cn ∈ T(C, V) is said to be basic. The set {u � s | ∃f ∈ D. ∃c1, . . . , cn ∈
T(C, V). u ≡ f(c1, . . . , cn)} of basic subterms of s is written as B(s).

A term t is said to be ground if V (t) = ∅. The set of ground terms is denoted
by T(F). If tσ ∈ T(F), tσ is called a ground instance of t. The ground instance
of a rewrite rule, an equation, etc. is defined similarly. A ground substitution
is a substitution σg such that xσg ∈ T(F) for any x ∈ dom(σg). A TRS R is
said to be quasi-reducible if no ground basic term is normal. Without loss of
generality, we assume that tσg is ground (i.e. V (t) ⊆ dom(σg)) when we speak
of an instance tσg of t by a ground substitution σg ; and so for ground instances
of rewrite rules, equations, etc. An inductive theorem of a TRS R is an equation
that is valid on T(F), i.e. s

.
= t is an inductive theorem if sσg

∗
↔R tσg holds for

any ground instance sσg
.
= tσg . We write R `ind E then all equations in E are

inductive theorems of R.
A relation R on T(F , V) is said to be closed under substitutions if s R t

implies sσ R tσ for any substitution σ; closed under contexts if s R t implies
C[s] R C[t] for any context C. A reduction order (reduction quasi-order) is a
well-founded partial order (resp. quasi-order) on T(F , V) that is closed under
substitutions and contexts. For a quasi-order %, we let ≈ = %∩- and � = %\-.
A quasi-order % on T(F , V) is said to be ground-total if sg % tg or sg - tg for
any sg, tg ∈ T(F).

3 Rewriting Induction

Rewriting induction proposed by Reddy [26] is a method to prove inductive
theorems automatically. This section reviews the rewriting induction.

Let R be a TRS and > a reduction order. We list inference rules of rewriting
induction in Fig.1. In the figure, the relation] expresses the disjoint union and
the ternary operation Expd is defined as:

Expdu(s, t) = {C[r]σ
.
= tσ | s ≡ C[u], σ = mgu(u, l), l → r ∈ R, l:basic}

A rewriting induction procedure starts from a pair 〈E0, ∅〉 where E0 is the set of
conjectures to prove. It successively applies the inference rules to a pair 〈E, H〉.
Intuitively, E is a set of equations to be proved and H is a set of induction
hypotheses and theorems already proved. If a derivation eventually reaches the
form 〈∅, H ′〉 then R `ind E0. On the other hand, when none of the rules are
applicable for 〈E, H〉 with E 6= ∅, the procedure reports “failure” and the pro-
cedure may also run forever (“divergence”)—in these cases, rewriting induction
fails to prove R `ind E0. We use ; to denote one step application of an inference
rule possibly with a superscript indicating which inference rule is used.

∗
; is the

reflexive transitive closure of ;.

Example 1 (RI). Let

R =

{

plus(0, y) → y

plus(s(x), y) → s(plus(x, y))

}

,

Expand
〈E] {s .

= t}, H〉
〈E ∪ Expdu(s, t), H ∪ {s → t}〉 u ∈ B(s), s > t

Simplify
〈E] {s .

= t}, H〉
〈E ∪ {s′ .

= t}, H〉 s →R∪H s′

Delete
〈E] {s .

= s}, H〉
〈E, H〉

Fig. 1. Inference rules of RI

E = {plus(plus(x, y), z)
.
= plus(x, plus(y, z))}, > a lexicographic path order based

on the precedence plus > s > 0. The following is a successful derivation of RI:
〈{

plus(plus(x, y), z)
.
= plus(x, plus(y, z)) },

{}〉

;e
RI

〈

{

plus(y0, z)
.
= plus(0, plus(y0, z))

plus(s(plus(x1, y1)), z)
.
= plus(s(x1), plus(y1, z))

}

{

plus(plus(x, y), z) → plus(x, plus(y, z))
}

〉

∗
;

s

RI

〈

{

plus(y0, z)
.
= plus(y0, z)

s(plus(x1, plus(y1, z)))
.
= s(plus(x1, plus(y1, z)))

}

{

plus(plus(x, y), z) → plus(x, plus(y, z))
}

〉

∗
;

d

RI

〈{}

,
{

plus(plus(x, y), z) → plus(x, plus(y, z))
}〉

4 Proving Non-Orientable Theorems

In this section, we present the basic system BRI of our rewriting induction ex-
tended with a capability of proving non-orientable theorems.

The inference rules of BRI are presented in Fig.2. The system is based on a
TRS R and a reduction quasi-order %. Elements of H are rewriting rules, and
those of K are equations l

.
= r such that l 6� r nor r 6� l. K� and K≈ are

instantiations of equations in K whose sides are orientable or equivalent (c.f.
[4]):

K� = {lσ → rσ | l
.
= r ∈ K, lσ � rσ}

K≈ = {lσ = rσ | l
.
= r ∈ K, lσ ≈ rσ}

Expd2 is an operation introduced in [1] that expands not only the larger side of
an equation but both sides of the equation:

Expd2u,v(s, t) =
⋃

{

Expdvσ(tσ, s′) | s′
.
= tσ ∈ Expdu(s, t)

}

Example 2 (Expd2). Let R be as in Example 1, s ≡ plus(x, plus(y, z)), and t ≡
plus(y, plus(x, z)). Then u ≡ plus(y, z) is the only basic subterm of s and v ≡
plus(x, z) is the only basic subterm of t. We have

Expd2u,v(s, t) =

plus(0, z)
.
= plus(0, z),

plus(s(x1), z)
.
= plus(0, s(plus(x1, z))),

plus(s(x2), s(plus(y2, z)))
.
= plus(s(y2), s(plus(x2, z)))

.

Expand
〈E] {s .

= t}, H, K〉
〈E ∪ Expdu(s, t), H ∪ {s → t}, K〉 u ∈ B(s), s � t

Expand2
〈E] {s .

= t}, H, K〉
〈E ∪ Expd2u,v(s, t), H, K ∪ {s .

= t}〉
u ∈ B(s), v ∈ B(t), s 6� t ∧ t 6� s

Simplify
〈E] {s .

= t}, H, K〉
〈E ∪ {s′ .

= t}, H, K〉
s →(R∪H∪K�)/K≈ s′

Simplify-C
〈E] {s .

= t}, H, K〉
〈E ∪ {s′ .

= t}, H, K〉 s
∗↔K≈ ◦ ↔‖E ◦ ∗↔K≈ s′, s % s′ ∨ t % s′

Delete
〈E] {s .

= t}, H, K〉
〈E, H, K〉 s

∗↔K≈ ◦ ↔‖K ◦ ∗↔K≈ t

Fig. 2. Inference rules of BRI

The system BRI is an extension of eRI of [1] and cRI of [2]. Inference rules
Expand2 and Simplify-C are extended (instead, we will impose the ground-
totality of % as we will see) from the corresponding rules of eRI and cRI. The
biggest difference is that, the system includes not only a capability of conjectures
with equivalent sides but also that of conjectures with incomparable sides.

Theorem 1 (soundness of BRI). Let R be a quasi-reducible TRS, E a set of

equations, % a ground-total reduction quasi-order satisfying R ⊆ �. If 〈E, ∅, ∅〉
∗
;BRI

〈∅, H, K〉 for some H, K, then R `ind E.

Proof. Proved based on a method similar to the proofs of [1, 2]. Abstract princi-
ple is designed based on the ground-totality. One also needs the commutativity
of rewrite steps at parallel positions to show the property of sg ↔‖E tg . ut

Example 3 (BRI). Let R be as in Example 1 and

E =
{

plus(x, plus(y, z))
.
= plus(y, plus(x, z))

}

Let % be a multiset path order based on the precedence plus � s � 0. The
following is a successful derivation of BRI:

〈{

plus(x, plus(y, z))
.
= plus(y, plus(x, z))

}

,
{}

,
{}〉

;e2

〈

plus(0, z)
.
= plus(0, z),

plus(s(x1), z)
.
= plus(0, s(plus(x1, z))),

plus(s(x2), s(plus(y2, z)))
.
= plus(s(y2), s(plus(x2, z)))

{}

,
{

plus(x, plus(y, z))
.
= plus(y, plus(x, z))

}

〉

∗
;s ∗

;d

〈
{

s(plus(x2, s(plus(y2, z))))
.
= s(plus(y2, s(plus(x2, z))))

}

{}

,
{

plus(x, plus(y, z))
.
= plus(y, plus(x, z))

}

〉

;e2

〈

s(plus(0, s(z)))
.
= s(plus(0, s(z)))

s(plus(s(x3), s(z)))
.
= s(plus(0, s(s(plus(x3, z)))))

s(plus(s(x3), s(s(plus(y3, z)))))
.
= s(plus(s(y3), s(s(plus(x3, z)))))

{}

,

{

s(plus(x2, s(plus(y2, z))))
.
= s(plus(y2, s(plus(x2, z))))

plus(x, plus(y, z))
.
= plus(y, plus(x, z))

}

〉

∗
;s ∗

;d

〈

{

s(s(plus(x3, s(z))))
.
= s(s(s(plus(x3, z))))

s(s(plus(x3, s(s(plus(y3, z))))))
.
= s(s(plus(y3, s(s(plus(x3, z))))))

}

{}

,

{

s(plus(x2, s(plus(y2, z))))
.
= s(plus(y2, s(plus(x2, z))))

plus(x, plus(y, z))
.
= plus(y, plus(x, z))

}

〉

;e1

〈

s(s(s(z)))
.
= s(s(s(plus(0, z))))

s(s(s(plus(x4, s(z)))))
.
= s(s(s(plus(s(x4), z))))

s(s(plus(x3, s(s(plus(y3, z))))))
.
= s(s(plus(y3, s(s(plus(x3, z))))))

{

s(s(plus(x3, s(z)))) → s(s(s(plus(x3, z))))
}

{

s(plus(x2, s(plus(y2, z))))
.
= s(plus(y2, s(plus(x2, z))))

plus(x, plus(y, z))
.
= plus(y, plus(x, z))

}

〉

∗
;s ∗

;d

〈

{}

,
{

s(s(plus(x3, s(z)))) → s(s(s(plus(x3, z))))
}

{

s(plus(x2, s(plus(y2, z))))
.
= s(plus(y2, s(plus(x2, z))))

plus(x, plus(y, z))
.
= plus(y, plus(x, z))

}

〉

We note that the system eRI [1] is not capable of this proof, because the conjec-
ture plus(x, plus(y, z))

.
= plus(y, plus(x, z)) has incomparable sides.

5 Adding Sound Lemmas

It is well-known that an introduction of suitable lemmas often prevents auto-
mated inductive theorem proving from divergence. Thus it is very helpful for the
success of derivations to add a suitable lemma automatically in the process of
proving.

Divergence critic [34] is an automated lemma discovery method for rewriting
induction which finds lemmas from a divergent sequence of proofs. The SPIKE
theorem prover contains a lemma discovery tool based on the divergence critic.
However, the divergence critic may introduce a lemma that is not an inductive
theorem. This fact complicates the design of a rewriting induction prover with
an automated introduction of lemmas.

Another approach is to add only lemmas that are guaranteed to be induc-
tive theorems (when the initial conjectures are inductive theorems). Urso &
Kounalis [33] gave a lemma discovery method called Sound Generalization for
monomorphic TRSs which is sound, that is, does not generate incorrect lemmas
from inductive theorems. A part of divergence critic is extend to sound one by
Shimazu et.al. [28].

We incorporate an inference rule for adding sound lemmas (Fig.3). We de-
note by BRIL the obtained system.

Lemma
〈E, H, K〉

〈E ∪ L, H, K〉 R `ind E =⇒ R `ind L

Fig. 3. Additional inference rules of BRIL

Theorem 2 (soundness of BRIL). Let R be a quasi-reducible TRS, E a set of

equations, % a ground-total reduction quasi-order satisfying R ⊆ �. If 〈E, ∅, ∅〉
∗
;BRIL

〈∅, H, K〉 for some H, K, then R `ind E.

Proof. The case for the application of Lemma inference rule is safely incorpo-
rated into the proof of Theorem 1 without modifying the abstract principle.

ut

Example 4 (BRIL). Let R and E be as follows:

R =

plus(0, y) → y

plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(x), y) → plus(y, times(x, y))

E =
{

times(x, s(y))
.
= plus(x, times(x, y))

}

Then R is monomorphic. Let % be a multiset path order based on the precedence
plus � s � 0. The following is a successful derivation of BRIL using the Lemma
inference with the sound generalization [33].

〈{

times(x, s(y))
.
= plus(x, times(x, y))

}

,
{}

,
{}〉

;e

〈

{

0
.
= plus(0, times(0, y))

plus(s(y), times(x1, s(y)))
.
= plus(s(x1), times(s(x1), y))

}

{

times(x, s(y)) → plus(x, times(x, y))
}

,
{}

〉

∗
;s ∗

;d

〈
{

plus(y, plus(x1, times(x1, y)))
.
= plus(x1, plus(y, times(x1, y)))

}

{

times(x, s(y)) → plus(x, times(x, y))
}

,
{}

〉

;l;sc

〈

{

plus(x1, plus(y, times(x1, y)))
.
= plus(x1, plus(y, times(x1, y)))

plus(y, plus(x1, z)))
.
= plus(x1, plus(y, z))

}

{

times(x, s(y)) → plus(x, times(x, y))
}

,
{}

〉

∗
;

〈

{}

,

{

s(s(plus(x3, s(z)))) → s(s(s(plus(x3, z))))
times(x, s(y)) → plus(x, times(x, y))

}

{

s(plus(x2, s(plus(y2, z))))
.
= s(plus(y2, s(plus(x2, z))))

plus(y, plus(x1, z))
.
= plus(x1, plus(y, z))

}

〉

In the derivation, the generalization from the equation plus(y, plus(x1, times(x1, y)))
.
= plus(x1, plus(y, times(x1, y))) to plus(y, plus(x1, z)))

.
= plus(x1, plus(y, z)) is ob-

tained by the sound generalization.

6 Disproving Incorrect Conjectures

Rewriting induction with inference rules for disproving incorrect conjectures has
been introduced in [6, 9]. Usefulness of a mechanism for detecting incorrect con-
jectures is clear.

Our system BRIL is extended to the system BRILD with inference rules for
disproving incorrect conjectures as in Fig.4.

Decompose
〈E] {f(s1, . . . , sn)

.
= f(t1, . . . , tn)}, H, K〉

〈E ∪ {si
.
= ti | 1 ≤ i ≤ n}, H, K〉

f ∈ C
Disproof1

〈E] {s .
= x}, H, K〉
⊥ x ∈ V \ V (s)

Disproof2

〈E] {f(s1, . . . , sn)
.
= x}, H, K〉

⊥ f ∈ C, x ∈ V

Disproof3

〈E] {f(s1, . . . , sm)
.
= g(t1, . . . , tn)}, H, K〉
⊥ f 6= g, f, g ∈ C

Fig. 4. Additional inference rules of BRILD

The next lemma follows easily from the definition.

Lemma 1. Let R be a quasi-reducible TRS. Then (1) R `ind s
.
= t implies

R `ind Expdu(s, t) for any u ∈ B(s). (2) R `ind s
.
= t implies R `ind

Expd2u,v(s, t) for any u ∈ B(s) and v ∈ B(t).

Theorem 3 (soundness of BRILD). Let R be a quasi-reducible confluent TRS,
E a set of equations, % a ground-total reduction quasi-order satisfying R ⊆ �.

(1) 〈E, ∅, ∅〉
∗
;BRILD 〈∅, H, K〉 for some H, K, then R `ind E. (2) 〈E, ∅, ∅〉

∗
;BRILD

⊥ then R 6`ind E.

Proof. (1) Since R is confluent, R `ind f(s1, . . . , sn)
.
= f(t1, . . . , tn) iff R `ind

si
.
= ti for all 1 ≤ i ≤ n. Thus, any successful derivation can be modified in such

a way that all inferences of Decompose rule are replaced by those of Lemma rule
and Simplify-C rule. Then the claim follows from Theorem 2. (2) It can be

shown by induction on the length of 〈E, H, K〉
∗
;BRILD ⊥ that R `ind H ∪ K

implies R 6`ind E, using Lemma 1. ut

7 Expanding Quasi-Basic Subterms

In this section, we present a small modification of our system which turned out
to be useful for proving some additional theorems in our preliminary experiment.

Definition 1 (quasi-basic). A term u is quasi-basic w.r.t. a TRS R if (1)
root(u) ∈ D and (2) for any l → r ∈ R such that l is basic, cap(u) is unifiable
with l then there exists σ = mgu(cap(u), l) such that σ does not instantiate
any variable in V (cap(u)) \ V (u). Here, cap(f(u1, . . . , un)) (f ∈ D) is a term
f(ũ1, . . . , ũn) where ũi is obtained from ui by replacing maximal subterms with
defined root symbol by fresh variables. The set of quasi-basic subterms of s is
denoted by QB(s).

Example 5 (quasi-basic). Quasi-basic subterms of plus(x, plus(y, z)) (w.r.t. the
TRS R in Example 1) are plus(y, z) and plus(x, plus(y, z)).

We now extend the notions of Expdu(s, t) and Expd2u,v(s, t) for basic sub-
terms u, v to those for quasi-basic subterms u, v. For u ∈ QB(s) and v ∈ QB(t),
Expdu(s, t) and Expd2u,v(s, t) are defined like this:

Expdu(s, t) = {C[r]σ
.
= tσ | s ≡ C[u], σ = mgu(u, l), l → r ∈ R, l:basic}

Expd2u,v(s, t) =
⋃

{

Expdvσ(tσ, s′) | s′
.
= tσ ∈ Expdu(s, t)

}

.

This definition generalizes those for basic terms. From the definition of quasi-
basic term it follows that if v is a quasi-basic term and l is a basic lhs of a
rewrite rule unifiable with v and σ = mgu(v, l) then xσ ∈ T(C, V) for any
x ∈ dom(σ)∩V (v). Then the well-definedness of Expd2u,v(s, t) follows from the
next lemma.

Lemma 2. Let v ∈ QB(t) and σ a constructor substitution. Then vσ ∈ QB(tσ).

Since B(s) ⊆ QB(s) for any term s, the following rules are more flexible than
Expand and Expand2 rules and sometimes more useful to prove theorems.

Expand ′

〈E] {s
.
= t}, H, K〉

〈E ∪ Expdu(s, t), H ∪ {s → t}, K〉
u ∈ QB(s), s � t

Expand2 ′

〈E] {s
.
= t}, H, K〉

〈E ∪ Expd2u,v(s, t), H, K ∪ {s
.
= t}〉

u ∈ QB(s), v ∈ QB(t),
s 6� t ∧ t 6� s

The systems obtain by replacing Expand and Expand2 rules in BRI/BRIL/BRILD
by Expand ′ and Expand2 ′ rules are denoted by BRI′/BRIL′/BRILD′. The sound-
ness of these systems are obtained by using the following lemma.

Lemma 3. Let R be a quasi-reducible TRS and u a quasi-basic term. For any
ground constructor substitution σg, uσg is reducible.

8 Related Works

In this section, we compare our inference system and other closely related rewrit-
ing induction provers SPIKE and NICE.

SPIKE2 is a well-known rewriting induction (test set induction) prover. The
scope of SPIKE is much broader than ours—it can handle not only equational
theories but conditional ones, conjectures can be given not only in equations
but also in clauses. A disproving mechanism is also included in the system. The
mechanisms of SPIKE for proving non-orientable theorem includes the ordered
rewriting and relaxed rewriting [6, 9, 10]. Apart from the original version, recently
the new version3 has became available. The new version of SPIKE is based on
’Descente Infinie’ induction [5, 29] and an extended mechanism for dealing with
non-orientable theorems has been incorporated [30]. We denote by SPIKE/B and
SPIKE/S for the original version and new version of SPIKE respectively.

The most notable difference between SPIKE and BRILD′ is the capability of
non-orientable theorems by Expand2 rule. The inference rule of simplification by
conjecture (Simplify-C) is essentially from [2] and we refer [2] for the compari-
son to simplification rules of SPIKE. The inference rule for disproving incorrect
conjectures of SPIKE is as follows ([9, 10]):

〈E ∪ {C}, H〉

⊥
C : quasi-inconsistent

We refer [10] for the definition of quasi-inconsistency (which is too complex to
present here). The Decompose inference rule is from [10] and the Disproof1-3
inference rules are from [28]. Our inference rules for disproving incorrect con-
jectures are simplified by making use of the fact that the underlying TRSs are
limited to quasi-reducible TRSs.

NICE4 is a rewriting induction prover that incorporates two extensions for
monomorphic TRSs—namely, term partition techniques [32] and a sound gener-
alization technique [33]. The proofs by rewriting induction with these two new
mechanisms run independently. We denote by NICEP and NICEG the proof with
the term partition and the proof with the sound generalization. We also note that
NICE is capable of conditional theories. NICE does not have a special mechanism
for proving non-orientable theorems but the underlying rewriting is performed
by the ordered rewriting. It does not incorpolates mechanisms for disproving
incorrect conjectures nor simplification by conjectures.

In Tab.1 we list the result of an experiment performed by SPIKE, NICE, and
our preliminary implementation of BRILD′. Our implementation incorporates the
sound generalization same as NICEG to add lemmas automatically. A check in
each column indicates the success of proof; all successful proofs of BRILD′ are per-
formed at most 7 (expansion) steps. Some additional conjectures needed to prove
times(x, y)

.
= times(y, x) and sum(app(xs, ys))

.
= sum(app(ys, xs)) in the system

iRI [1] turn out to be unnecessary in BRILD′. The system BRILD′ can prove non-
orientable inductive theorems which have not been capable in other rewriting
induction provers. We have also tested equational examples from Dream Cor-

2 http://www.loria.fr/equipes/cassis/softwares/spike/
3 http://lita.sciences.univ-metz.fr/~stratula/
4 http://www-sop.inria.fr/coprin/urso/

(many-sorted) conjectures SPIKE/B NICEP NICEG SPIKE/S BRILD′

plus(x, y)
.
= plus(y, x)

√ × √ √ √

plus(x, plus(y, z))
.
= plus(y, plus(x, z))

√ × √ √ √

times(x, s(y))
.
= plus(x, times(x, y)) × × × × √

times(x, plus(y, z))
.
= plus(times(x, y), times(x, z))

× × × × ×
8

<

:

plus(x, y)
.
= plus(y, x)

times(x, plus(y, z))
.
= plus(times(x, y), times(x, z))

9

=

;

× × × × √

times(x, y)
.
= times(y, x) × × × × √

sum(app(xs, ys))
.
= sum(app(ys, xs)) × × × × √

Table 1. Comparison of BRILD′ and rewriting induction provers

pus5; our implementation proves 51 out of 69 examples with 1 sec. timeout for
each, while the RI proves 33 examples. In the Appendix, we present a proof
of {plus(x, y)

.
= plus(y, x), times(x, plus(y, z))

.
= plus(times(x, y), times(x, z))}

scripted from the output of our preliminary implementation. It can be seen
that the proof uses the Expand2 rule many times.

9 Conclusion

We have presented a rewriting induction system BRILD′ with an increased ca-
pability of proving non-orientable theorems and that of disproving incorrect
theorems. The system is intended to amenable for automation and a part of the
system is implemented. Soundness of the system for proving and disproving are
shown. It was demonstrated through some examples that our inference system
enables simple rewriting induction proofs for some theorems which have not been
provable in known rewriting induction provers. A comparison with other rewrit-
ing induction provers shows that our approach is useful to enlarge the scope
of inductive theorems which can be proved automatically based on rewriting
induction. Further implementation and experiments remain as our future work.

Acknowledgments

Thanks are due to anonymous referees for comments and suggestions. This work
was partially supported by a grant from JSPS, No. 20500002.

References

1. T. Aoto. Dealing with non-orientable equations in rewriting induction. In Proc.
of the 17th International Conference on Rewriting Techniques and Applications,
volume 4098 of LNCS, pages 242–256. Springer-Verlag, 2006.

5 http://dream.inf.ed.ac.uk/dc/lib.html

2. T. Aoto. Soundness of rewriting induction based on an abstract principle. IPSJ
Transactions on Programming, 49(SIG 1 (PRO 35)):28–38, 2008.

3. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

4. L. Bachmair, N. Dershowitz, and D. A. Plaisted. Completion without failure. In
Resolution of Equations in Algebraic Structures, volume 2, pages 1–30. Academic
Press, 1989.

5. G. Barthe and S. Stratulat. Validation of the JavaCard Platform with implicit
induction techniques. In Proc. of the 14th International Conference on Rewrit-
ing Techniques and Applications, volume 2706 of LNCS, pages 337–351. Springer-
Verlag, 2003.

6. A. Bouhoula. Automated theorem proving by test set induction. Journal of Sym-
bolic Computation, 23:47–77, 1997.

7. A. Bouhoula and F. Jacquemard. Automated induction with constrained tree
automata. In Proc. of the 4th International Joint Conference on Automated Rea-
soning. Springer-Verlag, to appear.

8. A. Bouhoula and J.-P. Jouannaud. Automata-driven automated induction. Infor-
mation and Computation, 169(1):1–22, 2001.

9. A. Bouhoula, E. Kounalis, and M. Rusinowitch. Automated mathematical induc-
tion. Journal of Logic and Computation, 5(5):631–668, 1995.

10. A. Bouhoula and M. Rusinowitch. Implicit induction in conditional theories. Jour-
nal of Automated Reasoning, 14:189–235, 1995.

11. R. Bronsard, U. S. Reddy, and R. W. Hasker. Induction using term orders. Journal
of Automated Reasoning, 16:3–37, 1996.

12. A. Bundy, D. Basin, D. Hutter, and A. Ireland. Rippling: Meta-Level Guidance for
Mathematical Reasoning. Cambridge University Press, 2005.

13. N. Dershowitz and U. S. Reddy. Deductive and inductive synthesis of equational
programs. Journal of Symbolic Computation, 15:467–494, 1993.

14. S. Falke and D. Kapur. Inductive decidability using implicit induction. In Proc. of
the 13th International Conference on Logic for Programming, Artificial Intelligence
and Reasoning, volume 4246 of LNAI, pages 45–59. Springer-Verlag, 2006.

15. B. Gramlich. Strategic issues, problems and challenges in inductive theorem prov-
ing. Electronic Notes in Theoretical Computer Science, 125:5–43, 2005.

16. G. Huet and J.-M. Hullot. Proof by induction in equational theories with con-
structors. Journal of Computer and System Sciences, 25(2):239–266, 1982.

17. D. Hutter and C. Sengler. INKA: The next generation. In Proc. of the 13th
International Conference on Automated Deduction, pages 288–292, 1996.

18. J.-P. Jouannaud and E. Kounalis. Automatic proofs by induction in theories with-
out constructors. Information and Computation, 82:1–33, 1989.

19. D. Kapur. Constructors can be partial, too. In Automated reasoning and its
applications: essays in honor of Larry Wos, pages 177–210. MIT Press, 1997.

20. D. Kapur, J. Giesl, and M. Subramaniam. Induction and decision procedures. Re-
vista de la real academia de ciencas (RACSAM) Serie A: Matematicas, 98(1):154–
180, 2004.

21. D. Kapur, P. Narendran, and H. Zhang. Automating inductionless induction using
test sets. Journal of Symbolic Computation, 11(1–2):81–111, 1991.

22. D. Kapur and M. Subramaniam. Lemma discovery in automating induction. In
Proc. of the 13th International Conference on Automated Deduction, volume 1104
of LNCS, pages 538–552. Springer-Verlag, 1996.

23. M. Kaufmann, P. Manolios, and J. S. Moore. Computer-Aided Reasoning: ACL2
Case Studies. Kluwer Academic Publishers, 2000.

24. H. Koike and Y. Toyama. Inductionless induction and rewriting induction. Com-
puter Software, 17(6):1–12, 2000. In Japanese.

25. D. R. Musser. On proving inductive properties of abstract data types. In Proc. of
the 7th Annual ACM Symposium on Principles of Programming Languages, pages
154–162. ACM Press, 1980.

26. U. S. Reddy. Term rewriting induction. In Proc. of the 10th International Con-
ference on Automated Deduction, volume 449 of LNAI, pages 162–177. Springer-
Verlag, 1990.

27. N. Shankar, S. Owre, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS Prover
Guide. Computer Science Laboratory, SRI International, Menlo Park, CA, Sept.
1999.

28. S. Shimazu, T. Aoto, and Y. Toyama. Automated lemma generation for rewrit-
ing induction with disproof. In The 8th JSSST Workshop on Programming and
Programming Languages, pages 75–89, 2006. In Japanese.

29. S. Stratulat. A general framework to build contextual cover set induction provers.
Journal of Symbolic Computation, 32:403–445, 2001.

30. S. Stratulat. Combining rewriting with explicit induction to reason on non-
orientable equalities. In Proc. of the 19th International Conference on Rewriting
Techniques and Applications, LNCS, to appear.

31. Y. Toyama. How to prove equivalence of term rewriting systems without induction.
Theoretical Computer Science, 90(2):369–390, 1991.

32. P. Urso and E. Kounalis. Term partition for mathematical induction. In Proc.
of the 14th International Conference on Rewriting Techniques and Applications,
volume 2706 of LNCS, pages 352–366, 2003.

33. P. Urso and E. Kounalis. Sound generalizations in mathematical induction. The-
oretical Computer Science, 323:443–471, 2004.

34. T. Walsh. A divergence critic for inductive proof. Journal of Artificial Intelligence
Research, 4:209–235, 1996.

A A Proof for {+(x, y)
.
= +(y, x), ∗(x, +(y, z))

.
=

+(∗(x, y), ∗(x, z))}

SPECIFICATION:

[Nat]
[* : Nat*Nat=>Nat,
+ : Nat*Nat=>Nat,

s : Nat=>Nat,
0 : Nat]

[+(0,y) -> y,
+(s(x),y) -> s(+(x,y)),

*(0,j) -> 0,
(s(i),j) -> +(j,(i,j))]

(Monomorphic)

reflective positions: s/1
downward positions: +/2

upward positions: +/1
down-contextual positions:
up-contextual positions: */1

[+(y,x) = +(x,y),
(x,+(y,z)) = +((x,y),*(x,z))]

Start the rewriting induction with
[+(y,x) = +(x,y),

(x,+(y,z)) = +((x,y),*(x,z))]
[+(0,y) -> y,
+(s(x),y) -> s(+(x,y)),

*(0,j) -> 0,

(s(i),j) -> +(j,(i,j))]
Expand2 the equation +(y,x) = +(x,y) at e(L) and e(R).

[0 = 0,
s(+(x2,0)) = s(x2),
s(x) = s(+(x,0)),

s(+(x2,s(x))) = s(+(x,s(x2)))]
Simplify & Delete.

es:
[*(x,+(y,z)) = +(*(x,y),*(x,z))]

hs:

[]
ks:

[+(y,x) = +(x,y)]
Expand the L of the equation *(x,+(y,z)) = +(*(x,y),*(x,z)) at e

[0 = +(*(0,y),*(0,z)),
+(+(y,z),*(i4,+(y,z))) = +(*(s(i4),y),*(s(i4),z))]

Try SG to +(+(y,z),+(*(i4,y),*(i4,z))) = +(+(y,*(i4,y)),+(z,*(i4,z)))

Adding New Lemma (SG): +(+(x5,z),+(*(i4,y),x6)) = +(+(x5,*(i4,y)),+(z,x6))
Simplify & Delete.

es:
[+(+(x5,z),+(*(i4,y),x6)) = +(+(x5,*(i4,y)),+(z,x6))]

hs:
[*(x,+(y,z)) -> +(*(x,y),*(x,z))]

ks:

[+(y,x) = +(x,y)]
Expand2 the equation +(+(x5,z),+(*(i4,y),x6)) = +(+(x5,*(i4,y)),+(z,x6)) at 1(L) and 1(R).

[+(y7,+(*(i4,y),x6)) = +(*(i4,y),+(y7,x6)),
+(s(+(x10,y10)),+(*(i4,y),x6)) = +(s(+(x10,*(i4,y))),+(y10,x6))]

Simplify & Delete.

es:
[+(y7,+(*(i4,y),x6)) = +(*(i4,y),+(y7,x6))]

hs:
[*(x,+(y,z)) -> +(*(x,y),*(x,z))]

ks:
[+(+(x5,z),+(*(i4,y),x6)) = +(+(x5,*(i4,y)),+(z,x6)),
+(y,x) = +(x,y)]

Expand2 the equation +(y7,+(*(i4,y),x6)) = +(*(i4,y),+(y7,x6)) at e(L) and 1(R).
[+(*(0,j4),x) = +(0,+(0,x)),

s(+(x6,+(*(0,j4),x))) = +(0,+(s(x6),x)),
+(*(s(i5),j5),x) = +(+(j5,*(i5,j5)),+(0,x)),
s(+(x7,+(*(s(i5),j5),x))) = +(+(j5,*(i5,j5)),+(s(x7),x))]

Simplify & Delete.
es:

[+(x7,+(+(j5,*(i5,j5)),x)) = +(+(x,x7),+(j5,*(i5,j5)))]
hs:

[*(x,+(y,z)) -> +(*(x,y),*(x,z))]
ks:

[+(y7,+(*(i4,y),x6)) = +(*(i4,y),+(y7,x6)),

+(+(x5,z),+(*(i4,y),x6)) = +(+(x5,*(i4,y)),+(z,x6)),
+(y,x) = +(x,y)]

Expand2 the equation +(x7,+(+(j5,*(i5,j5)),x)) = +(+(x,x7),+(j5,*(i5,j5)))
at e(L) and 1(R).
[+(+(j,*(i,j)),0) = +(0,+(j,*(i,j))),

s(+(x5,+(+(j,*(i,j)),0))) = +(s(x5),+(j,*(i,j))),
+(+(j,*(i,j)),s(x4)) = +(s(+(x4,0)),+(j,*(i,j))),

s(+(x6,+(+(j,*(i,j)),s(x4)))) = +(s(+(x4,s(x6))),+(j,*(i,j)))]
Simplify & Delete.

es:
[]

hs:

[*(x,+(y,z)) -> +(*(x,y),*(x,z))]
ks:

[+(x7,+(+(j5,*(i5,j5)),x)) = +(+(x,x7),+(j5,*(i5,j5))),
+(y7,+(*(i4,y),x6)) = +(*(i4,y),+(y7,x6)),
+(+(x5,z),+(*(i4,y),x6)) = +(+(x5,*(i4,y)),+(z,x6)),

+(y,x) = +(x,y)]
Success

