
Disproving Confluence of Term Rewriting

Systems by Interpretation and Ordering

Takahito Aoto

RIEC, Tohoku University,
2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan

aoto@nue.riec.tohoku.ac.jp

Abstract. In order to disprove confluence of term rewriting systems, we
develop new criteria for ensuring non-joinability of terms based on inter-
pretation and ordering. We present some instances of the criteria which
are amenable for automation, and report on an implementation of a con-
fluence disproving procedure based on these instances. The experiments
reveal that our method is successfully applied to automatically disprove
confluence of some term rewriting systems, on which state-of-the-art au-
tomated confluence provers fail. A key idea to make our method effective
is the introduction of usable rules—this allows one to decompose the con-
straint on rewrite rules into smaller components that depend on starting
terms.

Keywords: Confluence, Non-Joinability, Interpretation, Ordering, Term
Rewriting Systems

1 Introduction

Confluence is a property that often turns out to be useful in vast topics of term
rewriting; hence, it is conceived as one of the central properties of term rewrit-
ing (see e.g. [5, 30]). There is conceivably a long history for the development of
techniques for proving confluence of term rewriting systems (TRSs, for short);
see e.g. [5, 30, 31]. Recently, the area of proving confluence of TRSs automatically
also caught an increasing attention. Indeed, recent works on confluence proving
often address also automation of the methods [1, 2, 19, 21, 34]. Furthermore, sev-
eral implementations of confluence provers are emerging [3, 17, 33], and the first
competition on confluence provers (CoCo 2012) has been held last year.

For automated confluence provers, it is also important to disprove confluence
so that they can give up unsuccessful attempts for confluence proving. In con-
trast to many dedicated techniques for proving confluence, however, not many
techniques for disproving confluence are known. A typical approach to disprove
confluence of (non-terminating) TRSs is first to construct a candidate of two
terms that can be reduced from a common term, and then to show that they
are not joinable, i.e. two terms do not have a common reduct. In this scenario,
as well as the selection of the candidates, proving non-joinability of terms is

2 T. Aoto

essential. So far, the only serious approach to prove the non-joinability of terms
is to use approximation by tree automata [9, 12]1, implemented in CSI [33].

In this paper, we give new methods for proving that given two terms s, t
are not joinable. The first method consists in giving an interpretation, e.g. a
mapping from terms to natural numbers, that is preserved by the application of
usable rules and such that the interpretation of s is different from that of t. The
second method consists in giving an ordering > such that s > t, and usable rules
from s are non-decreasing and the usable rules from t are non-increasing. These
methods are implemented using polynomial interpretations and recursive path
orderings—interpretations and orderings that are widely used in the literature
for termination proving. The experiments reveal that our methods can be applied
to automatically disprove confluence of some term rewriting systems, on which
state-of-the-art automated confluence provers fail.

The rest of the paper is organized as follows. In Section 2, we give some basic
definitions and fix some notations to be used in the paper. In Section 3, we give an
abstract non-joinability criterion using interpretation; the criterion is extended
in Section 4 by a notion of usable rules for reachability. In Section 5, we give non-
joinability criteria using ordering in terms of interpretation and rewrite relation;
the latter is extended in Section 6 incorporating the notion of argument filtering
from the area of termination proving. Related works are discussed in Section
7. In Section 8, we report on our implementation and experiments. Section 9
concludes.

2 Preliminaries

The product of two sets A and B is denoted by A×B. We write A2 for A×A,
and more generally, An (for the n-fold product of A) or Πi∈IAi, where I is an
arbitrary index set. A tuple of elements is denoted by 〈a1, . . . , an〉 or 〈ai〉i∈I .
The disjoint union of two sets A and B is denoted by A ⊎ B, and that of all
Ai (i ∈ I) by

⊎

i∈I Ai. The composition of relations R and S is denoted by
R◦S. The reflexive transitive closure of R is denoted by R∗; for a relation→, its
reverse is denoted by ←, the reflexive closure by

=
→ and the reflexive transitive

closure by
∗
→. We write a0 →

n an to denote a0 → a1 → · · · → an and a→≤n b
if a→m b for some m ≤ n. We say an element a is a normal form (w.r.t. →) if
there exists no b such that a→ b. The relation → is well-founded if there exists
no infinite chain a0 → a1 → · · · . A relation is a partial order if it is reflexive,
transitive and antisymmetric, and a quasi-order if it is reflexive and transitive.

We consider arity-fixed function symbols. The arity of function symbol f is
denoted by arity(f). Function symbol f is a constant if arity(f) = 0. The set
of terms over a set F of function symbols and the set V of variables is denoted
by T(F ,V). Terms which are not variables are referred to as non-variable terms
and terms containing no variables are called ground terms. The set of variables
in a term t is denoted by V(t). Let � (called a hole) be a special constant that

1 The technique is investigated in different literature. Applications of the technique
are found also in the literature for termination proving [23, 25].

Disproving Confluence by Interpretation and Ordering 3

is not involved in F . A context is a term in T(F ∪{�},V) that contains exactly
one hole in the term. The term in T(F ,V) obtained by replacing the hole in a
context C with a term t is denoted by C[t]. A context C is empty if C = � and
non-empty otherwise. A term s is said to be a subterm of t if t = C[s] for some
context C. We write s E t to denote that s is a subterm of t. The set of positions
in a term t is denoted by Pos(t). A term t can be identified with a mapping
Pos(t) → F . The root position is denoted by ǫ; thus the root symbol of a term
t is denoted by t(ǫ). The subterm at the position p ∈ Pos(t) is denoted by t|p.
We write C[s]p if C(p) = �.

A substitution is a mapping V → T(F ,V), which is homomorphically ex-
tended to the mapping T(F ,V) → T(F ,V). For any substitution θ and term t,
θ(t) is written as tθ if no confusion arises. Terms s and t are said to be unifiable
if sθ = tθ for some substitution θ. We write Unif(s, t) to denote that the terms
s and t are unifiable.

A rewrite rule l → r is a pair of terms2. A term rewriting system (TRS, for
short) is a set of rewrite rules. For a TRS R, a rewrite step s →R t is given
if s = C[lθ] and t = C[rθ] for some rewrite rule l → r ∈ R, context C and
substitution θ. A relation R on terms is said to be closed under contexts if s R t
implies C[s] R C[t] for any context C, is closed under substitutions if s R t implies
sθ R tθ for any substitution θ. A rewrite relation is a relation on terms that is
closed under contexts and substitutions. Given a TRS R, it is readily checked
that the relation →R = {〈s, t〉 ∈ T(F ,V)2 | s→R t} is a rewrite relation, and is
said to be the rewrite relation of R. If no confusion arises, the subscript of →R

will be omitted. A partial order (quasi-order) is a rewrite partial order (rewrite
quasi-order, respectively) if it is a rewrite relation.

Given a term s, the sets of terms {t ∈ T(F ,V) | s
∗
→ t} and {t ∈ T(F ,V) |

t
∗
→ s} are denoted by [s](

∗
→) and (

∗
→)[s], respectively. Terms s and t are said to

be joinable if [s](
∗
→)∩ [t](

∗
→) 6= ∅, and non-joinable otherwise. We write NJ(s, t)

to denote that the terms s and t are non-joinable. A TRS R is confluent if for
any terms s, t, (

∗
→)[s] ∩ (

∗
→)[t] 6= ∅ implies [s](

∗
→) ∩ [t](

∗
→) 6= ∅. A TRS R is

terminating if →R is well-founded. It is known that confluence of a TRS R is
decidable if R is terminating.

In order to disprove that a (non-terminating) TRS R is confluent, we con-

struct two terms s and t such that (
∗
→)[s] ∩ (

∗
→)[t] 6= ∅ in some way, and then

prove NJ(s, t). In order to check non-joinability of terms, it suffices to check
ground instances of them using fresh constants [33]. From here on, we concen-
trate on the problem of proving non-joinability of ground terms.

3 Proving Non-Joinability by Interpretation

In this section, we give an abstract criterion to prove non-joinability of terms
based on their interpretations in F-algebras. Then we point out why it is not
useful for our purpose—we will fix the problem in the next section.

2 Here, we drop the usual restriction that l /∈ V and V(r) ⊆ V(l); we will deal with
rewrite rules that do not satisfy these restrictions in Section 6.

4 T. Aoto

We first recall some basic terminology on semantics of the equational logic
and fix our notations (see e.g. [5]). An F-algebra A = 〈A, 〈fA〉f∈F 〉 is a pair of
a set A and a tuple of functions fA : An → A for each n-ary function symbol
f ∈ F ; the set A is called the carrier set of the F-algebra A. A valuation on A
is a mapping V → A. The interpretation [[t]]A,σ (which is abbreviated as [[t]]σ for
brevity) of a term t ∈ T(F ,V) w.r.t. a valuation σ on A is recursively defined
by [[x]]σ = σ(x) and [[f(t1, . . . , tn)]]σ = fA([[t1]]σ, . . . , [[tn]]σ). For any substitution
θ and valuation σ, a valuation [[θ]]σ is given by [[θ]]σ(x) = [[θ(x)]]σ. We note
that the interpretation of ground terms is independent of valuation, i.e., for any
ground term t, [[t]]σ = [[t]]ρ holds for any valuations σ, ρ. Hence, w.l.o.g. we drop
valuations to denote the interpretation of ground terms.

The next property is well-known (e.g. [5]).

Lemma 1. Fix an F-algebra A. For any term t, substitution θ and valuation
σ, [[tθ]]σ = [[t]](σ◦[[θ]]σ). ⊓⊔

Using the notion of interpretation of terms in F-algebras, the following cri-
terion for non-joinability of (ground) terms naturally arises.

Theorem 2. Let s, t be ground terms and A = 〈A, 〈fA〉f∈F 〉 an F-algebra such
that A =

⊎

i∈I Ai. Suppose (i) for any valuation σ and l → r ∈ R, if [[l]]σ ∈ Ai

then [[r]]σ ∈ Ai, (ii) for any f ∈ F , a ∈ A and i, j ∈ I, if a ∈ Ai implies
fA(. . . , a, . . .) ∈ Aj, then fA(. . . , b, . . .) ∈ Aj for any b ∈ Ai and (iii) [[s]] ∈ Ai

and [[t]] ∈ Aj with i 6= j. Then NJ(s, t).

Proof. It is straightforward to show by induction on C that for any valuation σ
and l → r ∈ R, [[C[lθ]]]σ ∈ Ai implies [[C[rθ]]]σ ∈ Ai. Thus for any valuation σ,
u→R v and [[u]]σ ∈ Ai imply [[v]]σ ∈ Ai. Suppose that NJ(s, t) does not hold, i.e.

u ∈ [s](
∗
→) ∩ [t](

∗
→) for some u. Then we obtain [[u]]σ ∈ Ai from [[s]]σ ∈ Ai and

[[u]]σ ∈ Aj from [[t]]σ ∈ Aj . This contradicts our assumption that Ai ∩ Aj = ∅.
⊓⊔

Although Theorem 2 may be applied to prove non-joinability of two terms in
general, it is not effective in our setting—in the context of disproving confluence,
one wants to show NJ(s, t) for s, t satisfying (

∗
→)[s]∩ (

∗
→])[t] 6= ∅. For such s, t, if

the conditions (i), (ii) of the theorem are satisfied, then s ∈ Ai ⇔ t ∈ Ai holds,
and hence the condition (iii) never holds.

The trick to apply the idea in our setting is to relax the condition (i) so that
the constraint is applied not to all rules but only to rules usable in the reductions
starting from s or t, which will be explored in the next section.

4 Usable Rules for Reachability

In the literature for proving termination of TRSs, a notion of usable rules is
known to be very useful in the dependency pairs technique [4, 14, 18, 32]. There,
the name ‘usable’ originally comes from the fact that usable rules are rules

Disproving Confluence by Interpretation and Ordering 5

possibly used to connect dependency pairs. Naturally, it is not very suitable for
our purpose, because, in our setting, usable rules are to be the collection of rules
that are possibly used in reductions from an initial term.

To suit our setting, we introduce a notion of usable rules for reachability.
For this, the notion of TCAP [13] (introduced for defining usable rules for
dependency pairs) is helpful. For terms t, TCAP(t) is defined recursively by:
TCAP(x) = x′, TCAP(f(t1, . . . , tn)) = x′ if Unif(f(u1, . . . , un), l) for some
l → r ∈ R, and TCAP(f(t1, . . . , tn)) = f(u1, . . . , un) otherwise, where ui =
TCAP(ti) (1 ≤ i ≤ arity(f)). Here, a new fresh variable is taken for x′ every
time it is used.

Definition 3 (usable rules for reachability). For any TRS R and term s, let
U0(R, s) be the smallest set U0(R, s) ⊆ R satisfying the following conditions: (i)
if l→ r ∈ R with l ∈ V, then l→ r ∈ U0(R, s); (ii) for any l→ r ∈ R and non-
variable subterm f(u1, . . . , un) E s, if Unif(f(TCAP(u1), . . . ,TCAP(un)), l)
then l → r ∈ U0(R, s); (iii) if l′ → r′ ∈ U0(R, s) and l → r ∈ U0(R, r

′),
then l → r ∈ U0(R, s). The set Ur(R, s) of usable rules for reachability w.r.t. a
TRS R and a term s is defined by Ur(R, s) = R if there exists l→ r ∈ U0(R, s)
such that V(r) 6⊆ V(l) and Ur(R, s) = U0(R, s) otherwise.

Under the usual variable restrictions on rewrite rules, our notion of usable
rules corresponds to the one obtained from the usable rules for innermost termi-
nation [13] by replacing ICAP with TCAP. (Standard) usable rules U(R, s) in
dependency pairs [4] is different from Ur(R, s)—for example, forR = {f(a)→ b},
we have Ur(R, f(b)) = ∅ 6= R = U(R, f(b)). Under the usual restriction of rewrite
rules on variables, it is easy to check Ur(R, s) ⊆ U(R, s).

The following is a key lemma to prove our theorem below.

Lemma 4. Let R be a TRS, l → r ∈ R and s, t terms. If s
∗
→R ◦ →{l→r} t

then l→ r ∈ Ur(R, s).

Proof. The proof consists of proving the following three claims step by step.

1. If s→{l→r} t then l→ r ∈ U0(R, s) (and hence, l→ r ∈ Ur(R, s)).
2. If s→{l→r} t then Ur(R, t) ⊆ Ur(R, s).

3. If s
∗
→R ◦ →{l→r} t then l→ r ∈ Ur(R, s).

1. Suppose s→{l→r} t. If l ∈ V then l→ r ∈ U0(R, s) by definition. Otherwise,
there exists non-variable subterm u E s such that u = f(u1, . . . , un) = lθ
for some substitution θ. Then, as ui = TCAP(ui)θi for some θi, we have
f(TCAP(u1)θ1, . . . ,TCAP(un)θn) = lθ. Because one can assume w.l.o.g.
that V(TCAP(ui))∩V(TCAP(uj)) = ∅ for i 6= j and V(TCAP(ui))∩V(l) =
∅, it follows that f(TCAP(u1), . . . ,TCAP(un)) and l are unifiable, and hence
l→ r ∈ U0(R, s).

2. Since l → r ∈ U0(R, s) by the claim 1, if V(r) 6⊆ V(l) then Ur(R, s) = R ⊇
Ur(R, t). So, suppose V(r) ⊆ V(l). It suffices to show U0(R, t) ⊆ U0(R, s).
We show the claim by induction on the definition of U0(R, t). Suppose

6 T. Aoto

l′ → r′ ∈ U0(R, t). (i) Suppose l
′ ∈ V . Then by definition l′ → r′ ∈ U0(R, s).

(ii) Suppose there exists a non-variable subterm u = f(u1, . . . , un) E t
such that Unif(f(TCAP(u1), . . . ,TCAP(un)), l

′). Let t = C[rθ]. Then ei-
ther (a) u E θ(x) for some x ∈ V(r), (b) u E C, (c) u = vθ for some
non-variable subterm v = f(v1, . . . , vn) E r or (d) u = C ′[rθ] for some non-
empty context C ′ E C. In the cases of (a) and (b), because V(r) ⊆ V(l),
we have u E s = C[lθ] and hence l′ → r′ ∈ U0(R, s) by definition. In the
case of (c), by Unif(f(TCAP(u1), . . . ,TCAP(un)), l

′) and f(u1, . . . , un) =
f(v1, . . . , vn)θ, we have Unif(f(TCAP(v1), . . . ,TCAP(vn)), l

′). Hence be-
cause v = f(v1, . . . , vn) E r, it follows l′ → r′ ∈ U0(R, r). Thus, since
l → r ∈ U0(R, s) by our claim 1, we have l′ → r′ ∈ U0(R, s) by def-
inition. In the case of (d), let C ′ = f(u1, . . . , C̃, . . . , un). Then because
of Unif(f(TCAP(u1), . . . , TCAP(C̃[rθ]), . . . ,TCAP(un)), l

′), it follows that
Unif(f(TCAP(u1), . . . ,TCAP(C̃[x′]), . . . ,TCAP(un)), l

′), and thus we have
Unif(f(TCAP(u1), . . . ,TCAP(C̃[lθ]), . . . ,TCAP(un)), l

′). Thus l′ → r′ ∈
U0(R, s) by definition. (iii) Suppose there exists l′′ → r′′ ∈ U0(R, t) and
l′ → r′ ∈ U0(R, r

′′). Then, by induction hypothesis, l′′ → r′′ ∈ U0(R, s) and
hence l′ → r′ ∈ U0(R, s) by definition.

3. We show the claim by induction on the length k of s
∗
→R t. (B.S.) k = 1. Then

s →{l→r} t and thus l → r ∈ Ur(R, s) by the claim 1. (I.S.) k > 1. Suppose

s →R s′
∗
→R ◦ →{l→r} t. Then by induction hypothesis l → r ∈ Ur(R, s

′).
Since Ur(R, s

′) ⊆ Ur(R, s) by the claim 2, we obtain l→ r ∈ Ur(R, s). ⊓⊔

Now, Theorem 2 in the previous section is refined by replacing “l→ r ∈ R”
with “l→ r ∈ Ur(R, s) ∪ Ur(R, t).”

Theorem 5. Let s, t be ground terms and A = 〈A, 〈fA〉f∈F 〉 an F-algebra such
that A =

⊎

i∈I Ai. Suppose (i) for any valuation σ and l→ r ∈ Ur(R, s)∪Ur(R, t),
if [[l]]σ ∈ Ai then [[r]]σ ∈ Ai, (ii) for any f ∈ F , a ∈ A and i, j ∈ I, if a ∈ Ai

implies fA(. . . , a, . . .) ∈ Aj, then fA(. . . , b, . . .) ∈ Aj for any b ∈ Ai and (iii)
[[s]] ∈ Ai and [[t]] ∈ Aj with i 6= j. Then NJ(s, t).

Proof. Similar to the proof of Theorem 2, using Lemma 4. ⊓⊔

The criterion of Theorem 5, in general, is not amenable for automation, and
one has to use more concrete instances of the theorem such as given below.

Corollary 6. Let A be an F-algebra and s, t be ground terms. Suppose (i) [[l]]σ =
[[r]]σ for any valuation σ and l→ r ∈ Ur(R, s)∪Ur(R, t) and (ii) [[s]] 6= [[t]]. Then
NJ(s, t). ⊓⊔

Proof. Take the carrier set A itself as the index set and the singleton set {a} as
Aa for each a ∈ A. ⊓⊔

Corollary 7. Let s, t be ground terms and A an F-algebra whose carrier set
is a set of integers. Suppose there exists an integer k ≥ 2 such that (i) for any
valuation σ and l → r ∈ Ur(R, s) ∪ Ur(R, t), [[l]]σ ≡ [[r]]σ (mod k) and (ii)
[[s]] 6≡ [[t]] (mod k). Then NJ(s, t). ⊓⊔

Disproving Confluence by Interpretation and Ordering 7

Proof. Take I = {0, 1, . . . , k− 1} and Ai = {n ∈ A | n mod k = i} for each i ∈ I
and use Theorem 2. ⊓⊔

One way to automate non-joinability check using (instances of) Corollar-
ies 6 and 7 is to use linear polynomial interpretations [5]: Take the set of
integers as the carrier set, and for each n-ary function symbol f ∈ F , let
fA(x1, . . . , xn) = af,0 + af,1x1 + · · · + af,nxn where af,0, . . . , af,n are selected
from a finite range of integers. Then the criteria of Corollaries 6 and 7 can be
encoded as constraint solving problems assigning suitable values for each af,i
(f ∈ F , 0 ≤ i ≤ arity(f)). Indeed, this kind of constraint solving for polyno-
mial interpretations is commonly used in termination tools, and its automation
techniques are widely known (e.g. [7, 14]).

In following examples, non-confluence is shown using these corollaries.

Example 8. Let

R =

{

(1) a→ h(c), (2) a→ h(f(c))
(3) h(x)→ h(h(x)), (4) f(x)→ f(g(x))

}

.

Let s = h(c) and t = h(f(c)). As a ∈ (
∗
→)[s]∩(

∗
→)[t], it suffices to show NJ(s, t) to

disprove the confluence ofR. We have Ur(R, s)∪Ur(R, t) = {(3), (4)}. Take an F-
algebra A = 〈{0, 1}, 〈fA〉f∈F 〉 as a

A = cA = 0, fA(n) = 1−n, hA(n) = gA(n) =
n. Then for any valuation σ, we have [[h(x)]]σ = σ(x) = [[h(h(x))]]σ and [[f(x)]]σ =
1 − σ(x) = [[f(g(x))]]σ; thus, [[l]]σ = [[r]]σ for each l → r ∈ Ur(R, s) ∪ Ur(R, t).
Thus [[s]] = [[h(c)]] = 0 6= 1 = [[t]] = [[h(f(c))]]. Therefore, NJ(s, t) by Corollary 6.

Example 9. Let

R =

{

(1) a→ f(c), (2) a→ h(c)
(3) f(x)→ h(g(x)), (4) h(x)→ f(g(x))

}

.

Let s = f(c) and t = h(c). We have Ur(R, s) ∪ Ur(R, t) = {(3), (4)}. Take an
F-algebra A = 〈N, 〈fA〉f∈F 〉 as aA = cA = 0, gA(n) = n + 1, fA(n) = n,
hA(n) = n + 1. Then [[f(x)]]σ − [[h(g(x))]]σ = σ(x) − (σ(x) + 2) = −2 and
[[h(x)]]σ − [[f(g(x))]]σ = (σ(x) + 1)− (σ(x) + 1) = 0. Take k = 2. Then [[f(x)]]σ ≡
[[h(g(x))]]σ (mod k) and [[h(x)]]σ ≡ [[f(g(x))]]σ (mod k) for any valuation σ. Fur-
thermore, since we have [[s]] = [[f(c)]] = 0 and [[t]] = [[h(c)]] = 1, [[s]] 6≡ [[t]] (mod k).
Hence, NJ(s, t) by Corollary 7.

5 Proving Non-Joinability by Ordering

In Corollary 7, we considered the case that the carrier set is a set of integers. In
such a case, another obvious choice to obtain a partition of the carrier set is to
divide it as A = {n ∈ A | n < k}⊎{n ∈ A | k ≤ n} for some k. We first formulate
this idea in a more abstract setting, using the notion of ordered F-algebra [35].

An ordered F-algebra A = 〈A,≤, 〈fA〉f∈F 〉 is a triple of a set A, a partial
order ≤ on it and a tuple of functions fA : An → A for each n-ary function

8 T. Aoto

symbol f ∈ F . We use < to denote strict part of ≤, i.e. < = ≤ \ ≥. An ordered
F-algebra A = 〈A,≤, 〈fA〉f∈F 〉 is said to be weakly monotone if a ≤ b implies
fA(. . . , a, . . .) ≤ fA(. . . , b, . . .) for any a, b ∈ A and f ∈ F . Interpretations of
terms on ordered F-algebras are defined in the same way as on F-algebras.

Theorem 10. Let A be a weakly monotone ordered F-algebra and s, t be ground
terms. Suppose (i) [[l]]σ ≤ [[r]]σ for any valuation σ and any l → r ∈ Ur(R, s),
(ii) [[l]]σ ≥ [[r]]σ for any valuation σ and any l→ r ∈ Ur(R, t) and (iii) [[s]] > [[t]].
Then NJ(s, t).

Proof. By weak monotonicity, for any valuation σ, u →Ur(R,s) v implies [[u]]σ ≤
[[v]]σ and u→Ur(R,t) v implies [[u]]σ ≥ [[v]]σ. Hence the claim follows. ⊓⊔

Remark that well-foundedness of the ordering is not necessary, in contrast to
orderings used in termination proving.

We now consider the case that term algebras are taken as F-algebras, and
formulate the theorem in a more general way using the notion of rewrite relation.
For this, the following notion is useful.

Definition 11 (discrimination pair). A pair 〈&,≻〉 of two relations & and
≻ is said to be a discrimination pair if (i) & is a rewrite relation, (ii) ≻ is a
irreflexive relation and (iii) & ◦ ≻ ⊆ ≻ and ≻ ◦& ⊆ ≻.

Remark that neither transitivity, well-foundedness nor closure under substi-
tutions and contexts is needed for the relation ≻, unlike a similar notion used
in the termination proving, called reduction pair [24]. Note also that in the con-
dition (iii), both of & ◦ ≻ ⊆ ≻ and ≻ ◦ & ⊆ ≻ are requested—this is again
contrasted with the reduction pair where either &◦≻ ⊆ ≻ or ≻◦& ⊆ ≻ suffices;
both conditions will be required in the proof of the theorem given below.

Clearly, for any rewrite quasi-order &, the pair 〈&,& \.〉 forms a discrimi-
nation pair.

Theorem 12. Let R be a TRS and s, t ground terms. Suppose there exists a
discrimination pair 〈&,≻〉 such that Ur(R, s) ⊆ ., Ur(R, t) ⊆ & and s ≻ t.
Then NJ(s, t).

Proof. Since & is a rewrite relation, it follows that u→{l→r} v implies u . v for
any l → r ∈ Ur(R, s), and u →{l→r} v implies u & v for any l → r ∈ Ur(R, t).

Suppose u ∈ [s](
∗
→) ∩ [t](

∗
→). Let s = s0 → s1 → · · · → sn = u. Then, by

Lemma 4, s = s0 →li1→ri1
s1 →li2→ri2

· · · →lin→rin
sn = u with lij → rij ∈

Ur(R, s) for all j = 1, . . . , n. Thus s . · · · . u. Since t ≺ s . · · · . u, we obtain
t ≺ u by the property & ◦ ≻ ⊆ ≻ of the discrimination pair. Similarly, from
t→ · · · → u, we obtain t & · · · & u. By u ≻ t & · · · & u, we obtain u ≻ u by the
property ≻◦& ⊆ ≻ of the discrimination pair. This contradicts our assumption
that ≻ is irreflexive. ⊓⊔

In terms of interpretations, Theorem 12 amounts to taking term algebras as
F-algebras, while Theorem 10 allows to take any F-algebra. On the other hand,
in terms of discrimination pairs, Theorem 10 amounts to taking a discrimination
pair of the form 〈&,& \.〉. Hence Theorem 10 is not subsumed by Theorem 12
and vice versa.

Disproving Confluence by Interpretation and Ordering 9

6 Argument Filtering for Non-Joinability

The criterion of Theorem 12 has a typical style used in criteria for termination
proving. Therefore, similarly to the termination proving case, a discrimination
pair can be obtained using various path orders combined with argument fil-
tering. For dependency pairs, usable rules can be considered after performing
argument filtering [14] and this sometimes decreases usable rules that need to
be considered. In this section, we show that such an extension is possible also
for non-joinability proving.

An argument filtering [4] is a mapping π : F → (List(N+) ∪ N
+) such that

π(f) ∈ {[i1, . . . , ik] | 1 ≤ i1 < · · · < ik ≤ arity(f)} ∪ {i | 1 ≤ i ≤ arity(f)}.
Here, N

+ denotes the set of positive integers and List(N+) the set of lists
of positive integers. The application of the argument filtering π to terms is
recursively defined as xπ = x for x ∈ V, f(t1, . . . , tn)

π = f(tπi1 , . . . , t
π
ik
) if

π(f) = [i1, . . . , ik], f(t1, . . . , tn)
π = tπi if π(f) = i. Hence tπ ∈ T(Fπ,V) where

Fπ = {f ∈ F | π(f) ∈ List(N+)} with arity(f) = |π(f)|. For a TRS R, we put
Rπ = {lπ → rπ | l→ r ∈ R}. For substitution θ, we put θπ(x) = θ(x)π.

The following properties of the argument filtering are well-known (e.g. [4]).

Lemma 13. (1) (sθ)π = sπθπ. (2) s→{l→r} t implies sπ
=
→{lπ→rπ} tπ.

Theorem 14. Let R be a TRS and s, t ground terms. Suppose there exist a dis-
crimination pair 〈&,≻〉 and an argument filtering π such that Ur(Ur(R, s)

π, sπ) ⊆
., Ur(Ur(R, t)

π, tπ) ⊆ & and sπ ≻ tπ. Then NJ(s, t).

Proof. Suppose u ∈ [s](
∗
→) ∩ [t](

∗
→). Let s = s0 →{l1→r1} · · · →{ln→rn} sn =

u. Then by Lemma 4, li → ri ∈ Ur(R, s) for all i = 1, . . . , n. Then sπ =
sπ0

=
→{lπ

1
→rπ

1
} sπ1

=
→{lπ

2
→rπ

2
} · · ·

=
→{lπn→rπn} sπn = uπ by Lemma 13 where lπi → rπi ∈

Ur(R, s)
π for all i = 1, . . . , n. Then by Lemma 4, lπij → rπij ∈ Ur(Ur(R, s)

π, sπ).
Hence tπ ≺ sπ . sπ1 . · · · . uπ. Thus, by the definition of the discrimination
pair, tπ ≺ uπ. Similarly, we have tπ & · · · & uπ. Hence uπ ≻ tπ & · · · & uπ, and
uπ ≻ uπ. This contradicts ≻ is irreflexive. ⊓⊔

If one takes an argument filtering π such that π(f) = [1, 2, . . . , arity(f)] for
all f ∈ F , then we have π(t) = t for any term t. Thus, Theorem 14 subsumes
Theorem 12.

Some readers may wonder whether Theorem 14 can be obtained from Theo-
rem 12 by taking the discrimination pair 〈&′,≻′〉 defined by s &′ t iff sπ & tπ and
s ≻′ t iff sπ ≻ tπ for some discrimination pair 〈&,≻〉. Indeed, it can be shown
that the discrimination pair 〈&′,≻′〉 given like this is again a discrimination pair.
However, the direct application of Theorem 12 only yields Ur(R, t) in the place of
Ur(Ur(R, t)

π, tπ) in Theorem 14. Since the inclusion Ur(Ur(R, t)
π, tπ) ⊆ Ur(R, t)

may be proper, Theorem 14 is not subsumed by Theorem 12.

Example 15. Let

R =

{

(1) c→ f(c, d), (2) c→ h(c, d)
(3) f(x, y)→ h(g(y), x), (4) h(x, y)→ f(g(y), x)

}

.

10 T. Aoto

Theorem 5 (⊇ 2)

Corollary 6 Corollary 7 Theorem 10 Theorem 12

Theorem 14

automation

Fig. 1. Relations of theorems and corollaries

Let s = h(f(c, d), d) and t = f(c, d). First consider to apply Theorem 12. Then
we need to solve the following constraint:

{

h(f(c, d), d) ≻ f(c, d), c ≃ f(c, d), c ≃ h(c, d)
f(x, y) ≃ h(g(y), x), h(x, y) ≃ f(g(y), x)

}

.

This constraint can not be satisfied using a discrimination pair 〈&rpo,&rpo\.rpo〉
based on recursive path orders. Next, we consider applying Theorem 14. For this,
take an argument filtering π as π(g) = 1, π(f) = [2] and π(h) = [1]. Then we
have Ur(Ur(R, s)

π, sπ) = {(3)π, (4)π} and Ur(Ur(R, t)
π, tπ) = {(3)π, (4)π}. Then

we need to solve the following constraint:

{

h(f(d)) ≻ f(d), f(y) ≃ h(y), h(x) ≃ f(x)
}

.

Then the constraint is satisfied by a discrimination pair 〈&rpo,&rpo \ .rpo〉,
where &rpo is the recursive path order based on the precedence f ≃ h. Thus
NJ(s, t) by Theorem 14.

In Figure 1, we summarize relations of theorems and corollaries presented
in the paper. The dotted line at the middle of the figure indicates that criteria
below this line are suitable for automation.

7 Related Works

Non-Joinability Check in Confluence Provers We now review methods for prov-
ing non-joinability employed in the state-of-the-art confluence provers ACP [3],
CSI [33] and Saigawa [17] that participated in the 1st Confluence Competition
(CoCo 2012). Obviously, if the termination proof of the input TRS succeeds, the
well-known criterion that confluence coincides with joinability of all critical pairs
(Knuth-Bendix criterion [22]) can be used to prove non-confluence. Below we de-
scribe other approaches employed by these provers for proving non-confluence
and non-joinability.

ACP basically uses the following three conditions to show non-joinability.

Disproving Confluence by Interpretation and Ordering 11

ACP(1) Fix some n > 0. Check [s](
∗
→) = [s](→≤n) and [t](

∗
→) = [t](→≤n). If

it is the case and [s](→≤n) ∩ [t](→≤n) = ∅ then conclude NJ(s, t).
ACP(2) Check s(ǫ) 6= t(ǫ). If it is the case, check (by an approximation) that

∀s′ ∈ [s](
∗
→). s(ǫ) = s′(ǫ) and ∀t′ ∈ [t](

∗
→). t(ǫ) = t′(ǫ) hold. If they hold,

conclude NJ(s, t).
ACP(3) If s(ǫ) = t(ǫ) /∈ {l(ǫ) | l → r ∈ R}, then check NJ(s|i, t|i) holds for

some i. If it is the case, conclude NJ(s, t). This is used in conjunction with
ACP(1) and ACP(2).

CSI uses the following two conditions to show non-joinability [33].

CSI(1) If TCAP(s) and TCAP(t) are not unifiable, then conclude NJ(s, t).
CSI(2) Use the approximation technique based on tree automata: Try to con-

struct tree automata As and At such that [s](
∗
→) ⊆ L(As) and [t](

∗
→) ⊆

L(At) (using the method in [23]). If they succeed, then check L(As)∩L(At) =
∅. If it is the case, then conclude NJ(s, t).

Saigawa uses CSI(1) above and the following extension of the Knuth-Bendix
criterion [21] to disprove confluence.

Saigawa(1) Suppose S is confluent, R is terminating relative to S, and R is
not strongly overlapping on R and vice versa. Then R∪S is confluent iff all
S-critical pairs of R is joinable by R∪ S-rewrite steps.

Apparently the approach presented in the paper is very different from those
employed already in these confluence provers, and the criteria given in the paper
are not subsumed by any of the techniques employed in these confluence provers3.

Decidable Classes Besides Knuth-Bendix criterion saying that confluence is de-
cidable for terminating TRSs [22], decision procedures for deciding confluence
of the TRSs in some classes of TRSs have been investigated.

One of the most basic such classes is the class of ground TRSs [8, 26]. For
ground TRSs a polynomial time algorithm for deciding confluence is known [6,
10]. Such a decision procedure is implemented in CSI [33].

Other well-known such classes include the class of shallow right-linear TRSs
[15], the class of right-ground TRSs [16, 20] and the class of monadic right-linear
TRSs [28]. (The former two classes include the class of ground TRSs.) To the
best of our knowledge, however, no implementations of the decision procedures
other than the one mentioned above have been reported.

The criteria presented in this paper are free of syntactic restrictions on rewrite
rules characterizing such classes. In particular, Examples 8, 9 and 15 are neither
shallow, right-ground nor monadic; hence, they do not belong to any classes
mentioned above for which confluence is decidable.

3 Meanwhile, new versions of tools have been released, and CoCo 2013 have been held.
The methods described in the present paper have been incorporated to the latest
version of ACP.

12 T. Aoto

8 Implementations and Experiments

Implementations The following instances of presented criteria have been imple-
mented. The implementation is built on ACP. The language used in the imple-
mentation is the functional programming language SML/NJ [29].

Cor. 7 (k = 2, 3) Corollary 7 applied for the polynomial interpretation with
linear polynomials, i.e. fA has the form a0,f + af,1x1 + · · · + an,fxn for
each function symbol f of arity n. In case k = 2, we check whether [[l]]σ −
[[r]]σ is even for all rewrite rules l → r ∈ Ur(R, s) ∪ Ur(R, t) and whether
[[s]]− [[t]] is odd. We encode these constraints in boolean formulas and check
the constraints by an external SAT solver (or SMT solver). We deal with
integer variables of the range between 0 and 15 that are encoded by four
bits. Thus the constraint that an integer variable x = (b3 b2 b1 b0)10 is even
is encoded by b̄0 (i.e. b0 equals false). The condition that a monomial ax
(a ∈ Z) is even is encoded by true if a is even and by “x is even” otherwise.
The condition that a polynomial a0 + a1x1 + · · · + anxn is even is encoded
recursively by the disjunct of both of the monomial a0 and the polynomial
a1x1+· · ·+anxn are even and both are odd, recursively. Finally, the condition
that meta polynomial Φ = ϕo+ϕ1X1+· · ·+ϕnXn where ϕi are polynomials,
is even is encoded by all polynomials ϕo, . . . , ϕn are even and Φ is odd is
encoded by the constant part ϕ0 is odd and polynomials ϕ1, . . . , ϕn are even.
The case k = 3 is more complicated but encoding is again straightforward.
For example, (b3 b2 b1 b0)10 ≡ (c3 c2 c1 c0)10 (mod 3) can be encoded by
(b3 ∧ b2 ∧ b1 ∧ b0) ∨ ((b3 ⊗ b1) ∧ (b2 ⊗ b0)) ∨ (b̄3 ∧ b̄2 ∧ b̄1 ∧ b̄0).

Th. 10 (poly) Theorem 10 applied for polynomial interpretation with linear
polynomials. Similar to the case Cor. 7 (k = 2, 3), we encode the constraints
in boolean formulas and check the constraints by an external SAT solver.
We also deal with integer variables of the range between 0 and 15 which
are encoded by four bits. To ensure the weak monotonicity, we restrict all
coefficients of fA = af,0 + af,1x1 + · · ·+ af,nxn to be non-negative. Our im-
plementation tries two possible applications of the Theorem to show NJ(s, t),
namely that (1) [[s]] > [[t]], [[l]]σ ≥ [[r]]σ for l → r ∈ Ur(R, t) and [[l]]σ ≤ [[r]]σ
for l → r ∈ Ur(R, s), and (2) [[t]] > [[s]], [[l]]σ ≥ [[r]]σ for l → r ∈ Ur(R, s) and
[[l]]σ ≤ [[r]]σ for l→ r ∈ Ur(R, t). Because of our bounds on integer variables,
it may be the case that only one of (1) or (2) works and the other doesn’t.

Th. 14 (rpo) Theorem 14 applied for recursive path order with argument fil-
tering. Similar to the cases Cor. 7 (k = 2, 3) and Th. 10 (poly), we encode the
constraints in boolean formulas and check the constraints by an external SAT
solver. Let S = Ur(R, s). We approximate the set of usable rules Ur(S

π, sπ) by
Ûr(S

π, sπ) where Ûr is given by Ûr(R
′, s′) = U(R′, s′) ∪ {l → r ∈ R′ | l ∈ V}

and U returns the set of usable rules for dependency pairs [4]. The soundness
of the approximation follows from Ur(R

′, s′) ∩ % ⊆ Ûr(R
′, s′) ∩ % for well-

founded rewrite quasi-order %. Here, S is computed before the encoding and
the constraint Ûr(S

π, sπ) ⊆ % is encoded in a similar way as the encoding of
termination criteria using dependency pairs [14]. Currently, we don’t know

Disproving Confluence by Interpretation and Ordering 13

whether a direct encoding of Ur(S
π, sπ) is possible. Finally, as in the case

for Th. 10 (poly), our implementation tries two possible applications of the
Theorem (the sπ ≻ tπ version and the tπ ≻ sπ version).

Selecting candidates for the non-joinability test For all these implementations,
candidates for the non-joinability test are generated from the input TRS R like
this: (1) first compute the one-step unfolding R′ of R [27] and then (2) compute
critical pairs of R ∪ R′, and finally, (3) all critical pairs are sorted w.r.t. term
size and at most 100 critical pairs are considered as candidates.

Apparently, various ways to compute candidates for the non-joinability test
are possible. Note that considering just reducts of critical pairs of R for candi-
dates is not enough for proving non-confluence [11].

Here we explain very roughly which candidates for the non-joinability test
are considered in the state-of-the-art confluence provers. According to [33], CSI
considers candidates from the set C =

⋃

〈s1,t1〉
{〈s, t〉 | s1 →

≤m s, t1 →
≤n t}

where 〈s1, t1〉 ranges over those satisfying s1 = C[r1σ]p ← C[l1σ]p = C[l2σ]q →
C[r2σ]q = t1 with l1 → r1, l2 → r2 ∈ R, p 6 q and p ∈ Pos(C[l2]q). ACP
uses similar candidates, with (probably very) different heuristics for choosing
C, p, q,m, n and choices of the candidates from C. Saigawa considers, for testing
CSI(1), candidates from the set

⋃

〈−,v,−〉{〈s, t〉 | v →
≤n s, v →≤n t, s 6= t} where

〈−, v,−〉 ranges over critical peaks of R∪R−1.

Experiments Experiments have been performed on our implementation and the
state-of-the-art confluence provers ACP (ver. 0.31), CSI (ver. 0.2) and Saigawa
(ver. 1.4). Each test is performed on a PC with one 2.50GHz CPU and 4G mem-
ory; the timeout is set to 60 seconds. We have tested a collection of 23 new exam-
ples which includes Examples 8, 9, 15 developed in the course of experiments,
and a collection of 35 examples from the 1st Confluence Competition (CoCo
2012) that were not proved to be confluent by any of participating provers.

A summary of the experiments is shown in Table 1. Each column shows
success(X) or failure(×) of confluence disproving on Examples 8, 9 and 15, the
numbers of examples from the collections that are successfully proved to be
non-confluent and of those that timeout (except CSI, for which one can not
distinguish timeout and failure), and the total time in seconds. The column
below all shows the result for the combination of the four instances. Note that
ACP, CSI and Saigawa consume considerable time for proving confluence while
our implementation concentrates on disproving confluence.

All provers ACP, CSI and Saigawa fail on Examples 8, 9 and 15. Both of
Cor. 7 (k = 2) and Cor. 7 (k = 3) succeed on Examples 8 and 9. Th. 10 (poly)
succeeds on Example 8. Th. 14 (rpo) succeed on Examples 8 and 15. Hence,
incomparability of Cor. 7 and Th. 14 (rpo) is observed.

In the experiments on the collection of 23 new examples, the following are
observed: Th. 14 (rpo) succeeds most. Cor. 7 (k = 2) and Cor. 7 (k = 3) succeed
on the same examples. The examples handled by Th. 10 (poly) are also handled
by Th. 14 (rpo) and also by Cor. 7. Examples handled by any of the provers ACP,
CSI and Saigawa are also handled by all.

14 T. Aoto

Table 1. Summary of experiments

ACP CSI Saigawa Cor. 7 Cor. 7 Th. 10 Th. 14 all
(k = 2) (k = 3) (poly) (rpo)

Example 8 × × × X X X X X

Example 9 × × × X X × × X

Example 15 × × × × × × X X

23 examples (success) 9 12 3 16 16 14 19 21
23 examples (timeout) 0 – 1 0 3 0 0 1
23 examples (time in sec.) 2 2107 228 25 293 206 26 84

35 examples (success) 18 21 17 17 16 17 17 16
35 examples (timeout) 1 – 6 5 8 3 1 9
35 examples (time in sec.) 71 485 482 318 562 446 106 761

In the experiments on the collection of 35 examples from CoCo 2012, the
following are observed. All instances succeed on the same examples, except for
Cor. 7 (k = 3), in which one timeouts. The numbers of examples on which ACP,
CSI and Saigawa succeed but all fails are 4, 5, 3, respectively. There is one ex-
ample (Cops Problem 15) which is proved by our implementation but by none
of the provers. Unfortunately, the success on this example is not due to our new
technique—this difference arises by the way one computes the candidates for
non-joinability test.

Example 16 (Cops Problem 15). Let

R =

(1) f(x, f(y, z))→ f(f(x, y), f(x, z))
(2) f(f(x, y), z)→ f(f(x, z), f(y, z))
(3) f(f(x, y), f(y, z))→ y

.

Let s = f(a, a) and t = a. Note s, t ∈ [f(f(a, a), f(a, a))](
∗
→). Then s, t are normal

forms and hence it is easy to see that NJ(s, t).

Finally, the running time is observed like this: Th. 14 (rpo) < Cor. 7 (k = 2)
≪ Th. 10 (poly) ≪ Cor. 7 (k = 3).

All details of the experiments are available on the webpage: http://www.
nue.riec.tohoku.ac.jp/tools/acp/experiments/frocos13/all.html.

9 Conclusion

We have presented sufficient criteria of non-joinability of terms that can be used
to disprove confluence of TRSs. Our criteria are based on interpretation and
ordering, and are using new notions of usable rules and discrimination pairs.
The combination of arguments filtering and our notion of usable rules have been
also considered. We have given some concrete instances of our criteria which
are amenable for automation—implementations of these instances have been

Disproving Confluence by Interpretation and Ordering 15

described and experiments have been reported. Experiments have shown that
the presented methods can automatically disprove confluence of TRSs, on which
state-of-the-art automated confluence provers fail.

Since our criteria are parametrized by F-algebras or orderings, other concrete
instances of our criteria can be possibly used. We note that all of our instances
are highly non-optimal, i.e. they do not use the full strength of discrimination
pairs; for example, they are all well-founded although this is not required for
discrimination pairs. Future work would involve exploring other possibilities to
obtain effective interpretations and orderings.

Acknowledgements

Thanks are due to anonymous referees for many valuable comments. This work
was partially supported by a grant from JSPS No. 23500002.

References

1. Aoto, T.: Automated confluence proof by decreasing diagrams based on rule-
labelling. In: Proc. of 21st RTA. LIPIcs, vol. 6, pp. 7–16. Schloss Dagstuhl (2010)

2. Aoto, T., Toyama, Y.: A reduction-preserving completion for proving confluence
of non-terminating term rewriting systems. Logical Methods in Computer Science
1(31), 1–29 (2012)

3. Aoto, T., Yoshida, Y., Toyama, Y.: Proving confluence of term rewriting systems
automatically. In: Proc. of 20th RTA. LNCS, vol. 5595, pp. 93–102. Springer-Verlag
(2009)

4. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theo-
retical Computer Science 236(1–2), 133–178 (2000)

5. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press
(1998)

6. Comon, H., Godoy, G., Nieuwenhuis, R., Tiwari, A.: The confluence of ground
term rewrite systems is decidable in polynomial time. In: Proc. of 42nd LICS. pp.
263–297. IEEE Computer Society Press (2001)

7. Contejean, E., Marché, C., Tomás, A.P., Urbain, X.: Mechanically proving ter-
mination using polynomial interpretation. Journal of Automated Reasoning 34,
325–363 (2005)

8. Dauchet, M., Heuillard, T., Lescanne, P., Tison, S.: Decidability of the confluence
of finite ground term rewrite systems and of other related term rewrite systems.
Information and Computation 88, 187–201 (1990)

9. Durand, I., Middeldorp, A.: Decidable call by need computations in term rewriting.
In: Proc. of 14th CADE. LNAI, vol. 1249, pp. 4–18. Springer-Verlag (1997)

10. Felgenhauer, B.: Deciding confluence of ground term rewrite systems in cubic time.
In: Proc. of 23rd RTA. LIPIcs, vol. 15, pp. 165–175. Schloss Dagstuhl (2012)

11. Felgenhauer, B.: A proof order for decreasing diagrams. In: Proc. of 1st IWC. pp.
9–15 (2012)

12. Genet, T.: Decidable approximations of sets of descendants and sets of normal
forms. In: Proc. of 9th RTA. LNCS, vol. 1379, pp. 151–165. Springer-Verlag (1998)

16 T. Aoto

13. Giesl, J., Thiemann, R., Schneider-Kamp, P.: Proving and disproving termination
of higher-order functions. In: Proc. of 5th FroCoS. vol. 3717, pp. 216–231. Springer-
Verlag (2005)

14. Giesl, J., Thiemann, R., Schneider-Kamp, P.: Mechanizing and improving depen-
dency pairs. Journal of Automated Reasoning 37(3), 155–203 (2006)

15. Godoy, G., Tiwari, A.: Confluence of shallow right-linear rewrite systems. In: Proc.
of 14th CSL. LNCS, vol. 3634, pp. 541–556. Springer-Verlag (2005)

16. Godoy, G., Tiwari, A., Verma, R.: Characterizing confluence by rewrite closure and
right ground term rewriting systems. Applicable Algebra in Engineering, Commu-
nication and Computing 15, 13–36 (2004)

17. Hirokawa, N., Klein, D.: Saigawa: A confluence tool. In: Proc. of 1st IWC. p. 49
(2012)

18. Hirokawa, N., Middeldorp, A.: Tyrolean termination tool: Techniques and features.
Information and Computation 205(4), 474–511 (2007)

19. Hirokawa, N., Middeldorp, A.: Decreasing diagrams and relative termination. Jour-
nal of Automated Reasoning 47(4), 481–501 (2011)

20. Kaiser, L.: Confluence of right ground term rewriting system is decidable. In: Proc.
of 8th FoSSaCS. LNCS, vol. 3441, pp. 470–489. Springer-Verlag (2005)

21. Klein, D., Hirokawa, N.: Confluence of non-left-linear TRSs via relative termina-
tion. In: Proc. of 18th LPAR. LNCS, vol. 7180, pp. 258–2012. Springer-Verlag
(2012)

22. Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. In: Leech,
J. (ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon
Press (1970)

23. Korp, M., Middeldorp, A.: Match-bounds revisited. Information and Computation
207(11), 1259–1283 (2009)

24. Kusakari, K., Nakamura, M., Toyama, Y.: Argument filtering transformation. In:
Proc. of 1st PPDP. vol. 1702, pp. 47–61. Springer-Verlag (1999)

25. Middeldorp, A.: Approximating dependency graphs using tree automata tech-
niques. In: Proc. of 1st IJCAR. LNAI, vol. 2083, pp. 593–610. Springer-Verlag
(2001)

26. Oyamaguchi, M.: The Church-Rosser property for ground term rewriting systems
is decidable. Theoretical Computer Science 49, 43–79 (1987)

27. Payet, É.: Loop detection in term rewriting using eliminating unfoldings. Theoret-
ical Computer Science 403, 307–327 (2008)

28. Salomaa, K.: Decidability of confluence and termination of monadic term rewriting
systems. In: Proc. of 4th RTA. LNCS, vol. 488, pp. 275–286. Springer-Verlag (1991)

29. Standard ML of New Jersey, http://www.sml.org/
30. Terese: Term Rewriting Systems. Cambridge University Press (2003)
31. Toyama, Y.: Confluent term rewriting systems (invited talk). In: Proc. of 16th

RTA. LNCS, vol. 3467, p. 1. Springer-Verlag (2005), slides are available from
http://www.nue.riec.tohoku.ac.jp/user/toyama/slides/toyama-RTA05.pdf

32. Urbain, X.: Modular & incremental automated termination proofs. Journal of Au-
tomated Reasoning 32, 315–355 (2004)

33. Zankl, H., Felgenhauer, B., Middeldorp, A.: CSI – A confluence tool. In: Proc. of
23rd CADE. LNAI, vol. 6803, pp. 499–505. Springer-Verlag (2011)

34. Zankl, H., Felgenhauer, B., Middeldorp, A.: Labelings for decreasing diagrams. In:
Proc. of 22nd RTA. LIPIcs, vol. 10, pp. 377–392. Schloss Dagstuhl (2011)

35. Zantema, H.: Termination of term rewriting by semantic labelling. Fundamenta
Informaticae 24, 89–105 (1995)

