
Vol. 47 No. SIG 16(PRO 31) IPSJ Transactions on Programming 2006

Regular Paper

Program Transformation by Templates: A Rewriting Framework

○Yuki Chiba,† Takahito Aoto† and Yoshihito Toyama†

We propose a framework in this paper for transforming programs with templates based
on term rewriting. The programs are given by term rewriting systems. We discuss how to
validate the correctness of program transformation within our framework. We introduce a
notion of developed templates and a simple method of constructing such templates without
explicit use of induction. We then show that in any transformation of programs using the
developed templates, their correctness can be verified automatically. The correctness of pro-
gram transformation within our framework is discussed based on operational semantics. We
also present some examples of program transformations in our framework.

1. Introduction

Automatically transforming given programs
to optimize efficiency is one of the most
fascinating techniques for programming lan-
guages12),13). Several techniques for transform-
ing functional programming languages have
been developed2),11),19). Huet and Lang11)

presented a framework of automated program
transformation in which programs are trans-
formed according to a given program transfor-
mation template, where the template consists
of program schemas for input and output pro-
grams, and a set of equations the input (and
output) programs must validate to guarantee
the correctness of transformation. The pro-
grams and program schemas in their framework
are given by second-order simply-typed lambda
terms. They gave a second-order matching
algorithm to verify whether a template could
be applied to an input program. They also
showed how to validate the correctness of pro-
gram transformation using the denotational se-
mantics.

After Huet and Lang’s pioneering work,
Curien et al.7) provided an improved matching
algorithm using top-down matching method.
Yokoyama et al.20) presented sufficient condi-
tions to have at most one solution and a deter-
ministic algorithm to find such a solution. Re-
cently, de Moor and Sittampalam9) presented a
matching algorithm that could also be applied
to third-order matching problems. The pro-
grams in all of these algorithms are represented
by lambda terms and higher-order substitutions

† Research Institute of Electrical Communication, To-
hoku University

☆ Part of this paper was published as a preliminary
version in the proceedings of PPDP’054).

are achieved by the β-reduction of lambda cal-
culus. However, in contrast to this successive
work on matching algorithms, the formal veri-
fication component of the correctness of trans-
formation has been neglected within the frame-
work of program transformation using tem-
plates. Thus, the verification of the correct-
ness of transformation in this framework still
depends on Huet and Lang’s original technique
based on denotational semantics.

We propose a framework of program trans-
formation using templates in this paper based
on term rewriting. In contrast to the existing
work previously mentioned, programs and pro-
gram schemas are given by term rewriting sys-
tems (TRSs for short) and TRS patterns. Thus,
there is little difficulty in discussing the correct-
ness of transformation based on operational se-
mantics.

We introduce the notion of term homomor-
phisms to describe how a TRS pattern matches
a concrete TRS. A key part of our procedure
of TRS transformation using templates— the
TRS pattern matching problem—is solved us-
ing the term pattern matching algorithm4).

To guarantee the correctness of transforma-
tion, we also introduce the notion of developed
templates and a simple method of construct-
ing such templates without explicit use of in-
duction. We then show that in any transfor-
mations of programs using the developed tem-
plates, the correctness of transformation can be
verified automatically.

The rest of the paper is organized as follows.
In Section 2, we recall basic notions in term
rewriting that will be used throughout this pa-
per. In Section 3, we present some motivating
examples of TRS transformations using tem-
plates, and introduce our framework. We dis-

1

2 IPSJ Transactions on Programming 2006

cuss how the correctness of TRS transformation
is validated using templates in Section 4. We
first describe a simple technique to prove the
equality of two TRSs using a manual transfor-
mation from one to the other. We then intro-
duce notions of CS homomorphisms and devel-
oped templates to conduct such a manual trans-
formation at the template level. In Section 5,
we briefly explain RAPT, which implements our
framework. Various other examples executed
by RAPT are given in Section 6. We conclude
with the results in Section 7.

2. Preliminaries

This section introduces notions of term
rewriting systems1),16).

Let F and V be a set of function symbols
and variables, respectively. We assume that
these sets are mutually disjoint. Any func-
tion symbol f ∈ F has its arity (denoted
by arity(f)). We define the set T (F ,V) of
terms like this: (1) V ⊆ T (F , V); and (2)
f(t1, . . . , tn) ⊆ T (F , V) for any f ∈ F such
that arity(f) = n and t1, . . . , tn ∈ T (F ,V). A
term without variables is a ground term. The
set of ground terms is denoted by T (F). A
linear term is a term in which any variable ap-
pears at most once. For any term s, the set
of function symbols and variables in s are de-
noted by F (s) and V (s), respectively. For a
term s = f(s1, . . . , sn), the root symbol of s is
f (denoted by root(s) = f). A substitution θ
is a mapping from V to T (F , V). A substi-
tution θ is extended to a mapping θ̂ over term
T (F , V) like this: (1) θ̂(x) = θ(x) if x ∈ V ,
(2) θ̂(f(s1, . . . , sn)) = f(θ̂(s1), . . . , θ̂(sn)). We
usually identify θ̂ and θ. We denote sθ in-
stead of θ(s). The domain of a substitution
θ (denoted by dom(θ)) is defined by dom(θ)
= {x ∈ V | x 6= θ(x)}. Consider special (in-
dexed) constants ¤i (i ≥ 1) called holes such
that ¤i /∈ F . An (indexed) context C is an el-
ement of T (F ∪ {¤i | i ≥ 1},V). C[s1, . . . , sn]
is the result of C replacing ¤i by s1, . . . , sn

from left to right. C〈s1, . . . , sn〉 is the result
of C replacing ¤i by si for i = 1, . . . , n (in-
dexed replacement). A context C with pre-
cisely one hole is denoted by C[]. The set
of contexts is denoted by T¤(F , V); its sub-
set T (F ∪ {¤i | 1 ≤ i ≤ n}, V) is denoted by
T¤

n (F , V). T¤(F) and T¤
n (F) are defined in

the same way as T (F).
A pair 〈l, r〉 of terms is a rewrite rule if l /∈ V

and V (l) ⊇ V (r). We usually write the rewrite
rule 〈l, r〉 as l → r. A term rewriting sys-
tem (TRS for short) is a set of rewrite rules.
As usual, we always assume that variables in
each rewrite rule are disjoint, although the same
variable name may be used. A term s reduces
to a term t by R (denoted by s →R t) if there
exists a context C[], a substitution θ and a
rewrite rule l → r ∈ R such that s = C[lθ] and
t = C[rθ]. The reflexive transitive closure of
→R is denoted by ∗→R, the transitive closure
by +→R, and the equivalence closure by ∗↔R. A
term s is in normal form when s →R t for no
term t. NF(R) denotes the set of terms in nor-
mal form. An equation is a pair of terms; we
usually write an equation l ≈ r. For a set E
of equations, we write s ↔E t if there exists a
context C[], a substitution θ, and an equation
l ≈ r ∈ E such that s = C[lθ] and t = C[rθ] or
s = C[rθ] and t = C[lθ]. The reflexive transi-
tive closure of ↔E is denoted by ∗↔E .

A rewrite rule l → r is left-linear when l is
linear; a TRS R is left-linear if every rewrite
rule in R is left-linear. We assume that the
set F of function symbols is divided into two
disjoint sets—the set Fd of defined function
symbols and the set Fc of constructor sym-
bols. Elements of T (Fc, V) are called construc-
tor terms. A rewrite rule l → r is a constructor
rule if l = f(l1, . . . , ln) for some f ∈ Fd and
l1, . . . , ln ∈ T (Fc, V). A TRS R is a construc-
tor system (CS for short) if every rewrite rule
is a constructor rule. Without loss of general-
ity, we assume Fd = {root(l) | l → r ∈ R}
for a given TRS R. A TRS R is confluent, or
has the Church-Rosser property, (CR(R)) if, for
any term s, s1, s2, s

∗→R s1 and s
∗→R s2 imply

that there exists a term t such that s1
∗→R t

and s2
∗→R t. Note that CR(R), s, t ∈ NF(R)

and s
∗↔R t imply s = t. A TRS R is strongly

normalizing (SN(R)) if there exists no infinite
reduction s1 →R s2 →R s3 →R · · · .

3. Transformation by templates

This section introduces our framework of pro-
gram transformation in which programs are for-
malized by TRSs. Let us start with some mo-
tivating examples.

Example 3.1 A program that computes
the summation of a list is specified by the
following TRS Rsum, in which the nat-
ural numbers 0, 1, 2, . . . are expressed as
0, s(0), s(s(0)),

Vol. 47 No. SIG 16(PRO 31) Program Transformation by Templates: A Rewriting Framework 3

Rsum

sum([]) → 0
sum(x1:y1) → +(x1, sum(y1))
+(0, x2) → x2

+(s(x3), y3) → s(+(x3, y3))

This Rsum computes the summation of a
list using a recursive call. For instance,
sum(1:(2:(3:(4:(5:[]))) ∗→Rsum +(1, +(2, +(3, +(4,
+(5, sum([])))) ∗→Rsum 15.
Using the well-known transformation from the
recursive form to the iterative (tail-recursive)
form, the following different TRS R′

sum for the
list summation program is obtained:

R′
sum

sum(x4) → sum1(x4, 0)
sum1([], x5) →x5

sum1(x6:y6, z6)→ sum1(y6, +(z6, x6))
+(0, x7) →x7

+(s(x8), y8) → s(+(x8, y8))

R′
sum computes the summation of a list more

efficiently without the recursion. The equality
of the two programs is found using the asso-
ciativity of the function + and the property
+(0, n) = +(n, 0).

Example 3.2 Let us consider another ex-
ample of program transformation. A program
that computes the concatenation of a list of lists
is specified by the following TRS Rcat.

Rcat

cat([]) → []
cat(x1:y1) → app(x1, cat(y1))
app([], x2) → x2

app(x3:y3, z3) → x3:app(y3, z3)

For example, we have cat([[1, 2], [3], [4, 5]])
∗→Rcat [1, 2, 3, 4, 5]. Similarly to Example 3.1,
the transformation from the recursive form to
the iterative form gives a more efficient TRS
R′

cat as follows.

R′
cat

cat(x4) → cat1(x4, [])
cat1([], x5) →x5

cat1(x6:y6, z6)→ cat1(y6, app(z6, x6))
app([], x7) →x7

app(x8:y8, z8) →x8:app(y8, z8)

Note that the associativity of the function app
and the property app([], as) = app(as, []) hold.
Thus, the equality of the two programs is shown
similarly.

Example 3.3 One can easily observe that
these two transformations in the previous ex-
amples can be generalized to a more abstract
“transformation template”: the TRS pattern P

P

f(a) → b
f(c(u1, v1)) → g(u1, f(v1))
g(b, u2) → u2

g(d(u3, v3), w3) → d(u3, g(v3, w3))

is transformed to the TRS pattern P ′

P ′

f(u4) → f1(u4, b)
f1(a, u5) → u5

f1(c(u6, v6), w6) → f1(v6, g(w6, u6))
g(b, u7) → u7

g(d(u8, v8), w8) → d(u8, g(v8, w8)).

All the function symbols f, a, b, g, · · · occur-
ring in the TRS patterns P and P ′ are pat-
tern variables. If we match the TRS pattern P
to a concrete TRS R with an instantiation for
these pattern variables, we obtain a more effi-
cient TRS R′ by applying this instantiation to
the pattern P ′. The equality of Rsum and R′

sum

(Rcat and R′
cat) is guaranteed when the instan-

tiation satisfies the following equations, called
a hypothesis:

H
{

g(b, u1) ≈ g(u1, b)
g(g(u2, v2), w2) ≈ g(u2, g(v2, w2)).

We are now going to introduce a formal defi-
nition of a “transformation template”.

Definition 3.4 Let X be a set of pattern
variables (disjoint from F and V) where each
pattern variable p ∈ X has its arity (denoted
by arity(p)). A pattern is a term in T (F ∪
X , V). A TRS pattern P is a set of rewriting
rules over patterns. A hypothesis H is a set
of equations over patterns. A transformation
template (or just template) is a triple 〈P,P ′,H〉
of two TRS patterns P, P ′ and a hypothesis H.
For patterns s, t, we define s →P t, s ↔H t,
etc. similarly for terms.

To achieve program transformation using
templates, we need a mechanism to specify how
a template is applied to a concrete TRS. For
this, we use a variant of the notion of tree ho-
momorphism6)—we call this a term homomor-
phism.

Definition 3.5 Let ϕ be a mapping from
X ∪ V to T¤(X ∪F , V). We say ϕ is a term
homomorphism if the following conditions are
satisfied:
(1) ϕ(p) ∈ T¤

arity(p)(F) for any p ∈
domX (ϕ),

(2) ϕ(x) ∈ V for any x ∈ domV (ϕ),
(3) ϕ is injective on domV (ϕ), i.e., for any

4 IPSJ Transactions on Programming 2006

x, y ∈ domV (ϕ), if x 6= y then ϕ(x) 6=
ϕ(y),

where domX (ϕ) = {p ∈ X | ϕ(p) 6=
p(¤1, . . . ,¤arity(p))} and domV (ϕ) = {x ∈ V |
ϕ(x) 6= x}. A term homomorphism ϕ is ex-
tended to a mapping over T (F ∪X ,V) as fol-
lows:

ϕ(s) =

ϕ(x) if s = x ∈ V
f(ϕ(s1), . . . , ϕ(sn))

if s = f(s1, . . . , sn), f ∈ F
ϕ(p)〈ϕ(s1), . . . , ϕ(sn)〉

if s = p(s1, . . . , sn), p ∈ X .

Note that ϕ(s) is a pattern for any pattern
s and term homomorphism ϕ. For a term
homomorphism ϕ and a rewrite rule l → r
(an equation s ≈ t) over patterns, ϕ(l → r)
(ϕ(s ≈ t)) is defined by ϕ(l) → ϕ(r) (resp.
ϕ(s) ≈ ϕ(t)). For a TRS pattern P and a
hypothesis H, ϕ(P) and ϕ(H) are defined by
ϕ(P) = {ϕ(l → r) | l → r ∈ P} and ϕ(H) =
{ϕ(s ≈ t) | s ≈ t ∈ H}, respectively.

If ϕ(P) = R for some term homomorphism
ϕ, we assume V (P)∩V (R) = ∅ without loss of
generality.

We are now going to demonstrate that any
term homomorphism preserves reduction. This
property of term homomorphisms is proved in
a straightforward manner using the injectivity
of term homomorphisms. To show this, we ex-
tend term homomorphisms ϕ for substitution
θ like this: ϕ(θ)(x) = ϕ(θ(ϕ−1(x))), where
ϕ−1(x) = y if y ∈ domV (ϕ), and ϕ(y) = x;
ϕ−1(x) = x otherwise. Note that since term
homomorphism ϕ is injective on domV (ϕ), one
can uniquely define the mapping ϕ−1.

Lemma 3.6 Let t be a pattern, θ a substi-
tution, and ϕ a term homomorphism such that
V (t) ⊆ domV (ϕ). Then, ϕ(tθ) = ϕ(t)ϕ(θ).

(Proof) The proof proceeds by induction on
t.
(1) t = x ∈ V .

Let ϕ(x) = y. Then,
ϕ(xθ) = ϕ(θ(ϕ−1(y)))

= ϕ(θ)(y)
= ϕ(x)ϕ(θ).

(2) t = f(t1, . . . , tn) with f ∈ F .
Then,

ϕ(tθ) = ϕ(f(t1θ, . . . , tnθ))
= f(ϕ(t1θ), . . . , ϕ(tnθ))
= f(ϕ(t1)ϕ(θ), . . . , ϕ(tn)ϕ(θ))

= f(ϕ(t1), . . . , ϕ(tn))ϕ(θ)
= ϕ(f(t1, . . . , tn))ϕ(θ)
= ϕ(t)ϕ(θ).

(3) t = p(t1, . . . , tn) with p ∈ X .
Then,

ϕ(tθ)
= ϕ(p(t1, . . . , tn)θ)
= ϕ(p(t1θ, . . . , tnθ))
= ϕ(p)〈ϕ(t1θ), . . . , ϕ(tnθ)〉
= ϕ(p)〈ϕ(t1)ϕ(θ), . . . , ϕ(tn)ϕ(θ)〉
= (ϕ(p)〈ϕ(t1), . . . , ϕ(tn)〉)ϕ(θ)
= (ϕ(p(t1, . . . , tn))ϕ(θ)
= ϕ(t)ϕ(θ).

(Note that V (ϕ(p)) = ∅.) ¤
Lemma 3.7 Let t be a pattern, C[] a con-

text, and ϕ a term homomorphism. Then,
ϕ(C[t]) = ϕ(C)[ϕ(t), . . . , ϕ(t)].

(Proof) The proof proceeds by induction on
the size of C[].
(1) C[] = ¤.

Trivial.
(2) C[] = f(s1, . . . , C

′[], . . . , sn) with f ∈
F . Then,

ϕ(f(s1, . . . , C
′[t], . . . , sn))

= f(ϕ(s1), . . . , ϕ(C ′[t]), . . . , ϕ(sn)))
= f(ϕ(s1), . . . , ϕ(C ′)[ϕ(t), . . . , ϕ(t)],

. . . , ϕ(sn)))
= f(ϕ(s1), . . . , ϕ(C ′), . . . , ϕ(sn))

[ϕ(t), . . . , ϕ(t)]
= ϕ(C)[ϕ(t), . . . , ϕ(t)]

(3) C[] = p(s1, . . . , sn) with si = C ′[] and
p ∈ X .
Then,

ϕ(p(s1, . . . , C
′[t], . . . , sn))

= ϕ(p)〈ϕ(s1), . . . , ϕ(C ′[t]), . . . , ϕ(sn)〉
= ϕ(p)〈ϕ(s1), . . . ,

ϕ(C ′)[ϕ(t), . . . , ϕ(t)], . . . , ϕ(sn)〉
= (ϕ(p)〈ϕ(s1), . . . , ϕ(C ′), . . . , ϕ(sn)〉)

[ϕ(t), . . . , ϕ(t)]
= ϕ(p(s1, . . . , C

′, . . . , sn))
[ϕ(t), . . . , ϕ(t)]

= ϕ(C)[ϕ(t), . . . , ϕ(t)].
¤

Proposition 3.8 Let P be a TRS pattern,
R a TRS, H a hypothesis, E a set of equations,
and ϕ a term homomorphism such that ϕ(P) =
R (ϕ(H) = E). If s →P t (s ↔H t), then we
have ϕ(s) →R ϕ(t) (resp. ϕ(s) ↔E ϕ(t)).

(Proof) Suppose s →P t. Then, there exists
a context C[], a substitution θ, and a rewrite
rule pattern l → r ∈ P such that s = C[lθ]
and r = C[rθ]. Also, V (l), V (r) ⊆ dom(ϕ) by

Vol. 47 No. SIG 16(PRO 31) Program Transformation by Templates: A Rewriting Framework 5

V (P) ∩ V (R). Then,
ϕ(s) = ϕ(C[lθ])

= ϕ(C)[ϕ(lθ), . . . , ϕ(lθ)]
(by Lemma 3.7)

= ϕ(C)[ϕ(l)ϕ(θ), . . . , ϕ(l)ϕ(θ)]
(by Lemma 3.6)

∗→R ϕ(C)[ϕ(r)ϕ(θ), . . . , ϕ(r)ϕ(θ)]
= ϕ(C)[ϕ(rθ), . . . , ϕ(rθ)]

(by Lemma 3.6)
= ϕ(C[rθ])(by Lemma 3.7)
= ϕ(t).

It can be shown that s ↔H t implies ϕ(s) ↔E
ϕ(t) in a similar way. ¤

The TRS transformation by a template is de-
fined as follows.

Definition 3.9 Let 〈P,P ′,H〉 be a tem-
plate. A TRS R is transformed into R′ by
〈P,P ′,H〉 if there exists a term homomorphism
ϕ such that R = ϕ(P) ∪ Rcom and R′ =
ϕ(P ′) ∪Rcom for some TRS Rcom.

Note that the hypothesis H is not used in the
definition of the transformation, but it will be
needed later when we discuss the correctness of
the transformation.

Example 3.10 Let Rsum, R′
sum be the

TRSs in Example 3.1, and 〈P,P ′,H〉 the tem-
plate given in Example 3.3. Then, the following
term homomorphism ϕ satisfies Rsum = ϕ(P)
and R′

sum = ϕ(P ′).

ϕ =

f 7→sum(¤1), u1 7→x1, u6 7→x6,
g 7→+(¤1,¤2), v1 7→y1, v6 7→y6,
f1 7→sum1(¤1, ¤2), u2 7→x2, w6 7→z6,
a 7→[], v3 7→x3, u7 7→x7,
b 7→0, w3 7→y3, v8 7→y8,
c 7→¤1:¤2, u4 7→x4, w8 7→z8

d 7→s(¤2), u5 7→x5,

Thus, the TRS Rsum is transformed into R′
sum

by 〈P,P ′,H〉 where Rcom = ∅.
Example 3.11 Let Rcat, R′

cat be the TRSs
in Example 3.2, and 〈P,P ′,H〉 the template
given in Example 3.3. Then, the following term
homomorphism ϕ satisfies Rcat = ϕ(P) and
R′

cat = ϕ(P ′).

ϕ =

f 7→cat(¤1), u1 7→x1, u6 7→x6,
g 7→app(¤1, ¤2), v1 7→y1, v6 7→y6,
f1 7→cat1(¤1,¤2), u2 7→x2, w6 7→z6,
a 7→[], v3 7→y3, u7 7→x7,
b 7→[], u3 7→x3, u8 7→x8,
c 7→¤1:¤2, w3 7→z3, v8 7→y8,
d 7→¤1:¤2, u4 7→x4, w8 7→z8

u5 7→x5,

Thus, the TRS Rcat is transformed into R′
cat

by 〈P,P ′,H〉 where Rcom = ∅.
Readers can easily observe from these exam-

ples that Rsum and Rcat are respectively trans-
formed into R′

sum and R′
cat in the same way. A

question naturally arises from this observation:
does the template guarantee the correctness of
all the transformations done by that template?
In the next section, we will discuss the criteria
for the templates for the correct transformation
and try to give a definite answer to this ques-
tion.

4. Correctness of the templates

This section discusses how the correctness of
program transformation using templates is val-
idated, i.e., when the equivalence of the input
and output programs of program transforma-
tions are guaranteed. Intuitively, a program
transformation from one program to another is
correct if these programs compute the same an-
swer for any input data. In term rewriting, this
notion is formalized in the following way.

Definition 4.1 Let G be a set of function
symbols such that Fc ⊆ G ⊆ F . Two TRSs,
R and R′, are said to be equivalent for G (no-
tation, R 'G R′), if for any ground term s ∈
T (G) and ground constructor term t ∈ T (Fc),
s

∗→R t iff s
∗→R′ t holds.

At this juncture, we need to make a short
remark about the definition of the equivalence
of TRSs. In a program transformation from R
to R′, one cannot generally expect s

∗→R t iff
s

∗→R′ t for all ground terms s ∈ T (F) and
ground constructor term t ∈ T (Fc). This is
because one TRS may use some subfunctions
that the other may not have. This is why the
equivalence of TRSs is defined with respect to
a set G of function symbols. Intuitively, the
functions in G are those originally required to
compute by the TRSs in comparison.

Example 4.2 Let us consider Rsum and
R′

sum in Example 3.1. Then, sum1([], s(0)) →R′
sum

s(0) ∈ T (Fc), but sum1([], s(0)) is in a nor-
mal form of Rsum, because Rsum has no rewrite
rules for sum1. Thus, Rsum 6'G R′

sum for any
G containing sum1. Rather, we should con-
sider the equivalence of these TRSs by setting
G = {sum, +, :, [], s, 0}; indeed, in that case we
can prove Rsum 'G R′

sum.
Although whether two TRSs are equivalent

cannot generally be decided, it is known that
two TRSs are equivalent when there exists

6 IPSJ Transactions on Programming 2006

an equivalent transformation from one to the
other18) for some restricted class of TRSs. Let
us now simplify and improve this technique for
our framework.

For a set G of function symbols, we speak
of a TRS R (or a set E of equations) over G
when all rewrite rules (resp. equations) consist
of terms in T (G , V).

Definition 4.3 Let R0 be a left-linear CS
over F0 and E be a set of equations over
F0. An equivalent transformation sequence un-
der E is a sequence R0, . . . ,Rn of TRSs (over
F0, . . . ,Fn, respectively) such that Rk+1 is ob-
tained from Rk by applying one of the following
inference rules:
(I) Introduction

Rk+1 = Rk ∪ {f(x1, . . . , xn) → r}
provided that f(x1, . . . , xn) → r is a left-
linear constructor rewrite rule such that
f /∈ Fk and r ∈ T (Fk, V). We put
Fk+1 = Fk ∪ {f}.

(A) Addition
Rk+1 = Rk ∪ {l → r}

provided l
∗↔Rk∪E r holds.

(E) Elimination
Rk+1 = Rk \ {l → r}

When this is the case, we write Rk ⇒ Rk+1.
(In the Addition and Elimination rules, Fk+1

can be any set of function symbols such that
Fk+1 ⊆ Fk provided that Rk+1 is a TRS over
Fk+1.) The reflexive transitive closure of ⇒ is
denoted by ∗⇒. We indicate the rule of ⇒ by
⇒
I

, ⇒
A

, or ⇒
E

. Finally, we say there exists an
equivalent transformation from R to R′ under
E when there exits an equivalent transformation
sequence R ∗⇒

I
· ∗⇒

A
· ∗⇒

E
R′ under E .

To state the criteria for the equivalence of
TRSs based on equivalence transformation, we
introduce some standard notions related to
proving the inductive theorem proving in what
follows.

Suppose Fc ⊆ G ⊆ F . A TRS R is
sufficiently complete for G (SC(R,G)) when
for any ground term s ∈ T (G) there exists
t ∈ T (Fc) such that s

∗→R t. A substitu-
tion θ is ground on G if θ(x) ∈ T (G) for any
x ∈ dom(θ). An equation s ≈ t is an inductive
consequence of R for G (R, G `ind s ≈ t) when
for any ground substitution θg on G such that
V (s)∪V (t) ⊆ dom(θg), sθg

∗↔R tθg holds. For
a set E of equations, we write R, G `ind E when
R, G `ind s ≈ t for any s ≈ t ∈ E .

Theorem 4.4 Let G and G ′ be sets of func-
tion symbols such that Fc ⊆ G ,G ′ ⊆ F . Let
R be a left-linear CS over G , E a set of equa-
tions over G , and R′ a TRS over G ′. Suppose
that R, G `ind E and there exists an equiv-
alent transformation from R to R′ under E .
Then, CR(R) ∧ SC(R,G) ∧ SC(R′, G ′) imply
R 'G∩G ′ R′.

(Proof) Suppose R ∗⇒
I

RI
∗⇒
A

RA
∗⇒
E

R′. We
first show some properties of RI . Let R0 = R
and Ri ⇒

I
Ri ∪ {f(x1, . . . , xn) → r} = Ri+1.

Then, SC(Ri, Fi) implies SC(Ri+1, Fi ∪ {f})
by the definition of the Introduction rule. Thus,
by our assumption SC(R, G), it easily follows
by induction on the length of R ∗⇒

I
Ri that

SC(Ri, Fi) for all i such that R ∗⇒
I

Ri. Thus,
we may assume w.l.o.g. SC(RI ,F), because we
may ignore any function symbols not appear-
ing even in RI . It is clear that R ⊆ RI by
the definition of the Introduction rule. Also,
from CR(R0) and the fact that each introduced
rewrite rule f(x1, . . . , xn) → r at i + 1 is left-
linear and non-overlapping with left-linear TRS
Ri, it follows that CR(RI) using the commuta-
tivity of TRSs17),18). Thus, for RI , we have (1)
SC(RI ,F), (2) R ⊆ RI , and (3) CR(RI). We
next show that ∗↔R = ∗↔R′ on T (G ∩ G ′).
(1) ∗↔R = ∗↔RI on T (G). (i.e., for any

s, t ∈ T (G), s
∗↔R t iff s

∗↔RI
t.)

(⊆) Trivial. (⊇) Suppose that s
∗↔RI t

where s, t ∈ T (G). By SC(R,G), there
exist ground constructor terms s′, t′ ∈
T (Fc) such that s

∗→R s′ and t
∗→R

t′. From R ⊆ RI , we have s
∗→RI

s′

and t
∗→RI

t′. Thus, by CR(RI) and
T (Fc) ⊆ NF(RI), s′ = t′ holds. This
means s

∗→R s′ = t′
∗←R t.

(2) ∗↔RI
= ∗↔RA

on T (F). (i.e., for any
s, t ∈ T (F), s

∗↔RI
t iff s

∗↔RA
t.)

(⊆) Trivial. (⊇) Suppose that s ↔E t
where s, t ∈ T (F). By the definition
of ↔E , there exist a context C[], a
ground substitution θg, and an equation
l ≈ r ∈ E or r ≈ l ∈ E such that s =
C[lθg] and t = C[rθg]. By SC(RI , F),
there exists a ground substitution θc

g such
that θg(x) ∗→RI θc

g(x) ∈ T (Fc) for any
x ∈ dom(θg). Then, C[lθg]

∗→RI
C[lθc

g]
and C[rθg]

∗→RI
C[rθc

g] hold. Now, since
lθc

g, rθ
c
g ∈ T (G), we have lθc

g
∗↔R rθc

g

Vol. 47 No. SIG 16(PRO 31) Program Transformation by Templates: A Rewriting Framework 7

by our assumption R, G `ind E . Thus,
by R ⊆ RI , C[lθc

g]
∗↔RI

C[rθc
g] holds.

Hence, ∗↔RI
⊇ ↔E on F . It is easy

to see by the definition of the Addition
rule that ∗↔RA = ∗↔E∪RI on T (F , V).
Hence, ∗↔RA

⊆ ∗↔E∪RI
⊆ ∗↔RI

on T (F).

(3) ∗↔RI = ∗↔R′ on T (G ′) (i.e., for any s, t ∈
T (G ′), s

∗↔RI
t iff s

∗↔R′ t.)
(⊇) It easily follows from item 2 and
the definition of the Elimination rule.
(⊆) Suppose that s

∗↔RI t where s, t ∈
T (G ′). From SC(R′, G ′), there exist
ground constructor terms s′, t′ ∈ T (Fc)
such that s

∗→R′ s′ and t
∗→R′ t′. As

we have already shown ∗↔RI ⊇ ∗↔R′ on
T (G ′), it follows that s′

∗↔RI
s

∗↔RI

t
∗↔RI t′. From CR(RI) and T (Fc) ⊆

NF(RI), s′ = t′ holds. This means
s

∗→R′ s′ = t′
∗←R′ t.

From 1, 3, and T (G∩G ′) ⊆ T (G), T (F), T (G ′),
it follows that ∗↔R = ∗↔R′ on T (G ∩ G ′). Fi-
nally, we show R 'G∩G ′ R′. Suppose s ∈
T (G ∩ G ′), t ∈ T (Fc), and s

∗→R t. From
SC(R′, G ′), there exists a constructor term t′ ∈
T (Fc) such that s

∗→R′ t′. By ∗↔R = ∗↔R′ on
T (G ∩ G ′) and Fc ⊆ G ∩ G ′, we have t

∗↔R t′.
Then, by CR(R) and T (Fc) ⊆ NF(R), it fol-
lows t = t′. Hence, s

∗→R′ t′ = t. Conversely,
suppose s ∈ T (G ∩G ′), t ∈ T (Fc), and s

∗→R′ t.
From SC(R,G), there exists a constructor term
t′ ∈ T (Fc) such that s

∗→R t′. By ∗↔R = ∗↔R′

on T (G ∩G ′) and Fc ⊆ G ∩G ′, we have t
∗↔R t′.

Then, by CR(R) and T (Fc) ⊆ NF(R), it fol-
lows t = t′. Hence, s

∗→R t′ = t. ¤
Example 4.5 Let Rsum, R′

sum be the TRSs
in Example 3.1. Let E be the following set of
equations.

E
{

+(0, x) ≈ +(x, 0)
+(+(x, y), z) ≈ +(x,+(y, z))

Note that any equation in E is an inductive con-
sequence of Rsum for G = {sum, +, :, [], s, 0},
i.e., R, G `ind E .
We now demonstrate an equivalent transforma-
tion from Rsum to R′

sum under E . Let R0 =
Rsum.
(1) Let R1 = R0 ∪ {sum1(x, y) →

+(y, sum(x))}. Clearly, R0 ⇒ R1 by the
Introduction rule.

(2) Let R2 = R1 ∪ {sum(x) → sum1(x, 0)}.

Here, we have

sum(x) ←R1 +(0, sum(x))
←R1 sum1(x, 0)

Thus, R1 ⇒ R2 by the Addition rule.
(3) Let R3 = R2∪{sum1([], x) → x}. Then,

we have

sum1([], x) →R2 +(x, sum([]))
→R2 +(x, 0)
↔E +(0, x)
→R2 x

Thus, R2 ⇒ R3 by the Addition rule.

(4) Let R4 = R3 ∪ {sum1(x:y, z) →
sum1(y, +(z, x))}. Then, we have

sum1(x:y, z) →R3 +(z, sum(x:y))
→R3 +(z, +(x, sum(y)))
↔E +(+(z, x), sum(y))
←R3 sum1(y, +(z, x))

Thus, R3 ⇒ R4 by the Addition rule.

(5) Finally, applying the Elimination rule
three times to R4, we obtain R′

sum.

Thus, there exists an equivalent transformation
from Rsum to R′

sum under E . It is easily shown
that Rsum is confluent and sufficiently complete
for G and that R′

sum is sufficiently complete for
G ∪ {sum1}. Therefore, from Theorem 4.4, it
follows that Rsum 'G R′

sum.
For the TRS transformation in Example 3.2,

it is easily observed that the correctness of the
transformation can be proved exactly in the
same way. Thus, one may naturally expect that
such manual transformations can be conducted
at the template level. A naive method of prov-
ing the correctness of a template 〈P,P ′,H〉 is to
find an equivalent transformation from P to P ′

under H similar to TRSs. This naive method,
however, does not work because P ∗⇒ P ′ un-
der H does not imply ϕ(P) ∗⇒ ϕ(P ′) under
ϕ(H) in general. For example, suppose P =
{p(x) → a(b)} and P ′ = P∪{q(x) → b}. Then,
P ⇒

I
P ′. However, ϕ(P) 6⇒

I
ϕ(P ′) when ϕ =

{p 7→ f(¤1), q 7→ f(¤1), a 7→ 0, b 7→ 1}. The key
idea in the proof of Theorem 4.4 is the preser-
vation of the Church-Rosser property under the
Introduction rule. In the example above, ϕ(P ′)
does not have the Church-Rosser property even
though P ′ does. Thus, in order to preserve the
correctness of each step, in particular the In-
troduction step in equivalence transformation,

8 IPSJ Transactions on Programming 2006

some restrictions on the term homomorphism
ϕ are necessary. This leads us to the notion of
CS homomorphisms.

Similar to the set F of function symbols, we
assume that the set X of pattern variables is
divided into two disjoint sets—the set Xd of
defined pattern variables and Xc of constructor
pattern variables. All the notions concerning
constructor TRSs are then naturally extended
to TRS patterns.

Definition 4.6 A term homomorphism ϕ is
a CS homomorphism if for any defined pattern
variable p, ϕ(p) = f(¤i1 , . . . ,¤in) for some
defined function symbol f and mutually dis-
tinct indexes i1, . . . , in, and (2) root(ϕ(p)) =
root(ϕ(q)) implies p = q for any defined pat-
tern variables p and q.

We now propose inference rules to develop a
template for correct transformations. Once a
template is obtained with these inference rules
then the correctness of all the TRS transfor-
mations obtained by this template are verified
automatically.

Definition 4.7 Let P0 be a left-linear CS
pattern over X0 and H a set of equations over
X0. An equivalent transformation sequence un-
der H is a sequence P0, . . . ,Pn of CS patterns
(over X0, . . . ,Xn, respectively) such that Pk+1

is obtained from Pk by applying one of the fol-
lowing inference rules:
(I) Introduction

Pk+1 = Pk ∪ {p(x1, . . . , xn) → r}
provided that p(x1, . . . , xn) → r is a left-
linear rewrite rule such that p ∈ Xd \Xk

and r ∈ T (Xk∩Xd,V). We put Xk+1 =
Xk ∪ {p}.

(A) Addition
Pk+1 = Pk ∪ {l → r}

provided l
∗↔Pk∪H r holds.

(E) Elimination
Pk+1 = Pk \ {l → r}

(In Addition and Elimination rules, Xk+1 can
be any set of pattern variables such that
Xk+1 ⊆ Xk provided that Pk+1 is a TRS pat-
tern over Xk+1.) Similar to the equivalence
transformation of TRSs, we say there exists an
equivalent transformation from P to P ′ under
H when there exits an equivalent transforma-
tion sequence P ∗⇒

I
· ∗⇒

A
· ∗⇒

E
P ′ under H.

Definition 4.8 A template 〈P,P ′,H〉 is
developed if there exists an equivalent transfor-

mation from P to P ′ under H.
Definition 4.9 Let G be a set of function

symbols such that Fc ⊆ G ⊆ F and R a left-
linear CS over G . Then, R is transformed into
a TRS R′ w.r.t. G by a template 〈P,P ′,H〉
if there exists a CS homomorphism ϕ such
that R = ϕ(P) ∪ Rcom, R′ = ϕ(P ′) ∪ Rcom,
R, G `ind ϕ(H), and root(ϕ(p)) 6∈ Fd(Rcom)
for any p ∈ Xd \ Xd(P).

To give criteria for the correctness of the TRS
transformation with the developed templates,
we now prepare a couple of lemmas.

Lemma 4.10 Let ϕ be a CS homomor-
phism such that root(ϕ(p)) 6∈ Fd(Rcom) for any
p ∈ Xd \Xd(P). If P ⇒

I
P ′ then ϕ(P) ∪Rcom

⇒
I

ϕ(P ′) ∪Rcom.
(Proof) Suppose P ′ = P ∪ {p(x1, . . . , xn) →

r}. It is easy to see by the definition of CS
homomorphism and the Introduction rule, and
the assumption that root(ϕ(p)) does not occur
in ϕ(P)∪Rcom, that ϕ(p(x1, . . . , xn)) is linear,
and that all the function symbols in ϕ(r) occur
in ϕ(P) ∪Rcom due to r ∈ T (X ∩ Xd). ¤

Lemma 4.11 Let ϕ be a CS homomor-
phism. If P ⇒

A
P ′, then ϕ(P) ∪ Rcom ⇒

A
ϕ(P ′) ∪Rcom.

(Proof) This immediately follows from
Proposition 3.8. ¤

Thus, we arrive at:
Theorem 4.12 Let G and G ′ be sets of

function symbols such that Fc ⊆ G , G ′ ⊆ F .
Let R be a left-linear CS over G , E a set of equa-
tions over G , and R′ a TRS over G ′. Suppose
that R is transformed into a TRS R′ w.r.t. G by
a developed template 〈P,P ′,H〉. Then, CR(R)
∧ SC(R, G) ∧ SC(R′,G ′) imply R 'G∩G ′ R′.

(Proof) By Lemmas 4.10 and 4.11, and The-
orem 4.4. ¤

Example 4.13 We now demonstrate how a
template is developed. Let 〈P,P ′,H〉 be the
transformation template in Example 3.3. We
show there exists an equivalent transformation
from P to P ′ under H.
(1) Let P0 = P.
(2) Let P1 = P0 ∪ {f1(u, v) → g(v, f(u))}.

Here, f1 is a fresh pattern variable. Thus,
P0 ⇒ P1 by the Introduction rule.

(3) Let P2 = P1 ∪ {f(u) → f1(u, b)}. Here,
we have

f(u) ←P1 g(b, f(u))
←P1 f1(u, b).

Vol. 47 No. SIG 16(PRO 31) Program Transformation by Templates: A Rewriting Framework 9

Thus, P1 ⇒ P2 by the Addition rule.

(4) Let P3 = P2 ∪ {f1(a, u) → u}. Here, we
have

f1(a, u) →P2 g(u, f(a))
→P2 g(u, b)
↔H g(b, u)
→P2 u

Thus, we have P2 ⇒ P3 by the Addition
rule.

(5) Let P4 = P3 ∪ {f1(c(u, v), w) →
f1(v, g(w, u))}. Here, we have

f1(c(u, v), w) →P3 g(w, f(c(u, v)))
→P3 g(w, g(u, f(v)))
↔H g(g(w, u), f(v))
←P3 f1(v, g(w, u))

Thus, we have P3 ⇒ P4 by the Addition
rule.

(6) Finally, applying the Elimination rules
three times to P4, we obtain P ′.

Thus, the template 〈P,P ′,H〉 is developed.

5. Program transformation system
RAPT

This section introduces the program transfor-
mation system RAPT (Rewriting-based Automated
Program Transformation system) that imple-
ments our framework3).

The source code for RAPT consists of about
5,000 lines and is written in the Standard ML
of New Jersey, which is an implementation of
the strongly typed functional programming lan-
guage ML.

RAPT transforms a given many-sorted TRS
according to a given transformation template
and output it when the equality between the
input TRS and obtained TRS is verified. Note
that given transformation templates have to
be developed to guarantee the correctness of
transformation. The extension to many-sorted
frameworks is crucial to verifying sufficient
completeness; all of our results in the previous
sections can easily be adapted to many-sorted
frameworks.

Figure 1 shows an example of the input
of RAPT. The FUNCTIONS and RULES sections
describe input many-sorted TRS and INPUT,
OUTPUT and HYPOTHESIS sections give the trans-
formation template. Figure 1 describes the type
information for the Rsum, the TRS Rsum, and
the template that appears in Example 3.3.

The TRS transformation and the verification
of the correctness of the transformation is con-

ducted in RAPT by the following six phases:

(1) Validation of Input TRS
Checking whether the input TRS is a
left-linear constructor system and well-
typed.

(2) Precedence Detection
Verifying whether the input TRS termi-
nates using lexicographic path ordering
via precedence detection10).

(3) Proving Confluence and Sufficient
Completeness
Verifying whether the input TRS is con-
fluent and sufficiently complete. Since
the termination of the input TRS has
already been verified, RAPT only checks
the joinability of critical pairs and quasi-
reducibility of the TRS

(4) TRS Pattern Matching
Finding CS homomorphism from the
TRS pattern to TRS, using the pattern
matching algorithm Match4).

(5) Verification of Hypothesis
Applying the CS homomorphism to the
hypothesis of the template and proving
whether it is inductive consequences of
the input TRS using rewriting induc-
tion14).

(6) Validation of the Output TRS
Checking whether the output TRS termi-
nates, is left-linear, well-typed, and suffi-
ciently complete.

Figure 2 describes the dependencies between
the six phases. If these six phases are success-
fully passed then RAPT produces output TRSs.
The correctness of the transformation is guar-
anteed in the sense of Definition 4.1, provided
that the template is developed.

The following is the output of RAPT for the
run of Figure 1.

[sum(u) -> f1(u, 0()),

f1(nil(), u) -> u,

f1(cons(u, v), w) -> f1(v, +(w, u)),

+(0(), u) -> u,

+(s(v), w) -> s(+(v, w))]

The above TRS corresponds to the output TRS
R′

sum.

6. Examples

This section introduces several developed
templates and describes examples of transfor-
mations obtaind by these templates. Each
transformation can be done in less than 100

10 IPSJ Transactions on Programming 2006

FUNCTIONS
sum: List -> Nat;
cons: Nat * List -> List;
nil: List;
+: Nat * Nat -> Nat;
s: Nat -> Nat;
0: Nat

RULES
sum(nil()) -> 0();
sum(cons(x,ys)) -> +(x,sum(ys));
+(0(), x) -> x;
+(s(x),y) -> s(+(x,y))

INPUT
?f(?a()) -> ?b();
?f(?c(u,v)) -> ?g(u,?f(v));
?g(?b(),u) -> u;
?g(?d(u,v),w) -> ?d(u,?g(v,w))

OUTPUT
?f(u) -> ?f1(u,?b());
?f1(?a(),u) -> u;
?f1(?c(u,v),w) -> ?f1(v,?g(w,u));
?g(?b(),u) -> u;
?g(?d(u,v),w) -> ?d(u,?g(v,w))

HYPOTHESIS
?g(?b(),u) = ?g(u,?b());
?g(?g(u,v),w) = ?g(u,?g(v,w))

Fig. 1 Specification for input TRS and transformation template

R P ′P

Validation of

Input TRS

Precedence

Detection

TRS Pattern

Matching
Instantiation

Proving Confluence and

Sufficient Completeness 5

5Verification of HypothesisH

Validation of Output TRSSort

Output

R′

Fig. 2 Overview of RAPT

msec with RAPT.
6.1 A transformation from recursive

form to iterative form
We considered transformations from recur-

sive programs to iterative in Section 3. The
template 〈P,P ′,H〉 in Example 3.3 is obtained
by generalizing such transformations. We have
seen that the transformation of the TRS Rsum

and Rcat. Let us try to transform other TRSs
using 〈P,P ′,H〉.

Example 6.1 The following TRS Rrev

specifies a program which computes the reverse
of input lists:

Rrev

rev([]) → []
rev(x :xs) → app(rev(xs), x : [])
app([], ys) → ys
app(x :xs, ys)→x : app(xs, ys)

Let Pcom be the the common part of P and
P ′. The TRS pattern P does not match Rrev

even though the TRS pattern P\Pcom matches
the first two rules of Rrev. Hence, the tem-
plate 〈P1,P ′

1,H〉 = 〈P\Pcom ,P ′\Pcom ,H〉 can
be used to transform Rrev into the following
R′

rev :

Vol. 47 No. SIG 16(PRO 31) Program Transformation by Templates: A Rewriting Framework 11

R′
rev

rev(xs) → rev1(xs, [])
rev1([], ys) → ys
rev1(x : xs, ys) → rev1(xs, x : ys)
app([], ys) → ys
app(x :xs, ys) → x : app(xs, ys)

Remember that the templates have to be
developed to guarantee the correctness of
the transformation. In fact, the template
〈P\Pcom ,P ′\Pcom ,H〉 is not developed and it
may produce incorrect transformations. The
situation is that the rules of Pcom are required
to show that the template 〈P,P ′,H〉 is devel-
oped.

How can we develop suitable transformation
templates for Rrev? In fact, this can be done
by moving the common part Pcom into a hy-
pothesis like this:

P̃
{

f(a) → b
f(c(u, v)) → g(e(u), f(v))

P̃ ′

f(u) → f1(u, b)
f1(a, u) → u
f1(c(u, v), w) → f1(v, g(w, e(u)))

H̃

g(u, b) ≈ u
g(b, u) ≈ u
g(g(u, v), w) ≈ g(u, g(v, w))

Then, we can easily show that there exists an
equivalent transformation from P̃ to P̃ ′ under
H̃ developing the template 〈P,P ′,H〉 in a simi-
lar way. Thus, the template 〈P̃, P̃ ′, H̃〉 is devel-
oped so that the correctness of transformations
by 〈P̃, P̃ ′, H̃〉 is guaranteed.

Using the template 〈P̃, P̃ ′, H̃〉, Rsum is trans-
formed into R′

sum where Rcom = {+(0, y) →
y, + (s(x), y) → s(+(x, y))}. Also,
Rcat is transformed into R′

cat where Rcom

= {app([], y) → y, app(x:xs, ys) →
x:app(xs, ys)}. The TRS Rrev is trans-
formed into the following R′′

rev where Rcom

= {app([], ys) → ys, app(x:xs, ys) →
x:app(xs, ys)}:

R′′
rev

rev(xs) → rev1(xs, [])
rev1([], ys) → ys
rev1(x : xs, ys)→ rev1(xs, app(x : [], ys))
app([], ys) → ys
app(x : xs, ys) →x : app(xs, ys)

Here, the right-hand side of the third rule of
R′′

rev is not a normal form. By normalizing such
terms, one obtains the preferrd R′

rev.

Example 6.2 The following TRS R∀ spec-
ifies the program that computes a logical mul-
tiplication of all elements of an input boolean
list.

R∀

forall([]) → true
forall(x:ys) → and(x, forall(ys))
and(true, true) → true
and(true, false) → false
and(false, true) → false
and(false, false)→ false

Using the template 〈P̃, P̃ ′, H̃〉, R∀ is trans-
formed to the following TRS R′

∀:

R′
∀

forall(u) → f1(u, true)
f1([], u) → u
f1(u:v, w) → f1(v, and(w, u))
and(true, true) → true
and(true, false) → false
and(false, true) → false
and(false, false) → false

where

Rcom =

and(true, true) → true
and(true, false) → false
and(false, true) → false
and(false, false) → false

6.2 Fusion transformation
Fusion transformation5),19) is one of the most

recognized techniques for transforming pro-
grams.

The following template 〈Pfus1,P ′
fus1,Hfus1〉

describes a simple fusion transformation:

Pfus1

f(u, v, w) → g(h(u, v), w)
g(a, u) → b(u)
g(c(u, v), w) → e(u, g(v, w))
h(a, u) → r(u)
h(c(u, v), w) → c(d(u), h(v, w))

P ′
fus1

f(a, u, v) → g(r(u), v)
f(c(u, v), w, z)→ e(d(u), f(v, w, z))
g(a, u) → b(u)
g(c(u, v), w) → e(u, g(v, w))
h(a, u) → r(u)
h(c(u, v), w) → c(d(u), h(v, w))

Hfus1 = ∅

Note that a hypothesis is not necessary to de-
velop the above template.

We now demonstrate that there exists an
equivalent transformation form Pfus1 to P ′

fus1

under Hfus1, i.e., 〈Pfus1,P ′
fus1,Hfus1〉 is de-

veloped.
(1) Let P0 = Pfus1.

12 IPSJ Transactions on Programming 2006

(2) Let P1 = P0 ∪ {f(a, u, v) → g(r(u), v)}.
Here, we have

f(a, u, v) →P0 g(h(a, u), v)
→P0 g(r(u), v).

Thus, P0 ⇒ P1 by the Addition rule.

(3) Let P2 = P1 ∪ {f(c(u, v), w, z) →
e(d(u), f(v, w, z))}. Here, we have

f(c(u, v), w, z)→P1 g(h(c(u, v), w), z)
→P1 g(c(d(u), h(v, w)), z)
→P1 e(d(u), g(h(v, w), z))
←P1 e(d(u), f(v, w, z)).

Thus, P1 ⇒ P2 by the Addition rule.

(4) Applying the Elimination rule, we obtain
P ′

fus1 = P2 \{f(u, v, w) → g(h(u, v), w)}.
Thus, the template 〈Pfus1,P ′

fus1,Hfus1〉 is
developed.

Example 6.3 The following TRS Rlenapp

specifies the program that computes the sum
of the lengths of two lists.

Rlenapp

lenapp(x, y)→ len(app(x, y))
len([]) → 0
len(x:y) → s(len(y))
app([], y) → y
app(x:y, z) →x:app(y, z)

Using the template 〈Pfus1,P ′
fus1,Hfus1〉, the

TRS Rlenapp is transformed into the following
TRS R′

lenapp where Rcom = ∅.

R′
lenapp

lenapp([], u) → len(u)
lenapp(u:v, w)→ s(lenapp(v, w))
len([]) → 0
len(u:v) → s(len(v))
app([], u) →u
app(u:v, w) →u:app(v, w)

Example 6.4 The following TRS Rones+

specifies the program that returns a list whose
elements are all s(0) and its length is the sum
of two given natural numbers.

Rones+

ones+(x, y)→ ones(+(x, y))
ones(0) → []
ones(s(x)) → s(0):ones(x)
+(0, x) →x
+(s(x), y) → s(+(x, y))

Using the template 〈Pfus1,P ′
fus1,Hfus1〉, the

TRS Rones+ is transformed into the following
TRS R′

ones+ where Rcom = ∅.

R′
ones+

ones+(0, u) → ones(u)
ones+(s(v), w)→ s(0):ones+(v, w)
ones(0) → []
ones(s(x)) → s(0):ones(x)
+(0, u) →u
+(s(v), w) → s(+(v, w))

Through the above examples, the template
〈Pfus1,P ′

fus1,Hfus1〉 can produce simple fusion
transformations.

Let us consider another template. The fol-
lowing template 〈Pfus2,P ′

fus2,Hfus2〉 produces
fusion transformations that are slightly more
complicated.

Pfus2

h(u) → f(g(u))
f(a) → b
f(c(u, v)) → d(r(u), f(v))
g(u) → g1(u, a)
g1(b, v) → k(v)
g1(d(u, v), w)→ g1(v, e(p(u), w))

P ′
fus2

h(u) → h1(u, b)
h1(a, v) → k(v)
h1(c(u, v), w) → h1(v, e(p(r(u)), w))
f(a) → b
f(c(u, v)) → d(r(u), f(v))
g(u) → g1(u, a)
g1(b, v) → k(v)
g1(d(u, v), w)→ g1(v, e(p(u), w))

Hfus2

{
f(g1(u, v))≈ g1(f(u), f(v))

We now show that there exists an equivalent
transformation form Pfus1 to P ′

fus1 under Hfus1,
i.e., 〈Pfus2,P ′

fus2,Hfus2〉 is developed.
(1) Let P0 = Pfus2.

(2) Let P1 = P0 ∪ {h1(u, v) → g1(f(u), v)}.
Here, h1 is a fresh pattern variable.
Thus, P0 ⇒ P1 by the Introduction rule.

(3) Let P2 = P1 ∪ {h1(a, v) → k(v)}. Here,
we have

h1(a, v)→P1 g1(f(a), v)
→P1 g1(b, v)
→P1 k(v)

Thus, P1 ⇒ P2 by the Addition rule.

(4) Let P3 = P2 ∪ {h1(c(u, v), w) →
h1(v, e(p(r(u)), w))}. Here, we have

Vol.47 No.SIG16(PRO31) Program Transformation by Templates: A Rewriting Framework 13

h1(c(u, v), w)→P2 g1(f(c(u, v)), w)
→P2 g1(d(r(u), f(v)), w)
→P2 g1(f(v), e(p(r(u)), w))
←P2 h1(v, e(p(r(u)), w))

Thus, P2 ⇒ P3 by the Addition rule.

(5) Let P4 = P3 ∪ {h(u) → h1(u, b)}. Here,
we have

h(u) →P3 f(g(u))
→P3 f(g1(u, a))
↔Hfus2

g1(f(u), f(a))
→P3 g1(f(u), b)
←P3 h1(u, b)

Thus, P3 ⇒ P4 by the Addition rule.

(6) Finally, applying the Elimination rules
twice to P4, we obtain P ′

fus2.
Thus, the template 〈Pfus2,P ′

fus2,Hfus2〉 is de-
veloped.

Example 6.5 The following TRS Rmdqr

is transformed into the TRS R′
mdqr by the

template 〈Pfus2,P ′
fus2,Hfus2〉 where Rcom =

{double(0) → 0, double(s(x)) → s(s(double(x)))}.

Rmdqr

mapdoubleqrev(xs)
→ mapdouble(qrev(xs))

mapdouble([]) → []
mapdouble(x:xs)

→ double(x):mapdouble(xs)
double(0) → 0
double(s(x)) → s(s(double(x)))
qrev(xs) → qrev1(xs, [])
qrev1([], ys) → ys
qrev1(x:xs, ys)→ qrev1(xs, x:ys)

R′
mdqr

mapdoubleqrev(u)
→ h1(u, [])

h1([], v) → v
h1(u:v, w) → h1(v, double(u):w)
mapdouble([])→ []
mapdouble(u:v)

→ double(u):mapdouble(v)
qrev(u) → qrev1(u, [])
qrev1([], v) → v
qrev1(u:v, w) → qrev1(v, u:w)
double(0) → 0
double(s(x)) → s(s(double(x)))

Through the example above, the function
mapdoubleqrev is fused by the developed tem-
plate 〈Pfus2,P ′

fus2,Hfus2〉.

7. Conclusion

We presented a rewriting framework for

transforming programs with templates in this
paper. To guarantee the correctness of transfor-
mation within our framework, we introduced a
notion of developed templates which are con-
structed via the step-by-step transformations
of TRS patterns. We then showed that in
any transformation of programs using the de-
veloped templates the correctness of transfor-
mation could be verified automatically.

We also described the RAPT system, which
implements our framework. RAPT transforms
a term rewriting system according to a speci-
fied program transformation template and au-
tomatically verifies the correctness of the trans-
formation. Examples of the developed transfor-
mation templates and their application to the
transformation of program were also given.

Another implementation of program trans-
formation using templates is the MAG sys-
tem, which is based on lambda calculus9),15).
The correctness of transformation in MAG sys-
tem is based on Huet and Lang’s framework11).
MAG supports transformations that include
modifications of expressions and matching with
the help of hypothesis; its target also includes
higher-order programs. RAPT does not han-
dle such refinements, and cannot deal with
most of the transformations presented by de
Moor and Sittampaltam8),15). The difference
between MAG and RAPT, on the other hand,
lies in the approach to verifying the hypothe-
sis. Since such hypotheses are generally differ-
ent in each transformation, one needs to ver-
ify them in all transformations. MAG sys-
tem users usually need to verify the hypoth-
esis by explicit induction in every different
transformation. In contrast to this, RAPT
proves the hypothesis automatically without
needing the help of users. To the best of our
knowledge, the program-transformation sys-
tems based on templates described in the lit-
erature have rarely corporated with automated
theorem-proving techniques in the verification
of hypotheses. RAPT involves an interesting
integration of program-transformation and au-
tomated theorem-proving techniques.

References

1) F.Baader and T.Nipkow. Term Rewriting and
All That. Cambridge University Press, 1998.

2) R.M. Burstall and J. Darlington. A trans-
formation system for developing recursive pro-
grams. Journal of the ACM, 24(1):44–67, 1977.

3) Y. Chiba and T. Aoto. RAPT: A program

14 IPSJ Transactions on Programming 2006

transformation system based on term rewrit-
ing. In Proceedings of the 17th International
Conference on Rewriting Techniques and Ap-
plications, volume 4098 of LNCS, pages 267–
276. Springer-Verlag, 2006.

4) Y.Chiba, T.Aoto, and Y.Toyama. Program
transformation by templates based on term
rewriting. In Proceedings of the 7th ACM-
SIGPLAN International Conference on Princi-
ples and Practice of Declarative Programming
(PPDP 2005), pages 59–69. ACM Press, 2005.

5) W.N. Chin. Safe fusion of functional expres-
sions II: Further improvements. Journal of
Functional Programming, 4(4):515–555, 1994.

6) H. Comon, M. Dauchet, R. Gilleron, F.
Jacquemard, D. Lugiez, S. Tison, and M.
Tommasi. Tree Automata Techniques and
Applications. 1997. http://www.grappa.

univ-lille3.fr/tata.
7) R.Curien, Z.Qian, and H.Shi. Efficient second-

order matching. In Proceedings of the 7th Inter-
national Conference on Rewriting Techniques
and Applications, volume 1103 of LNCS, pages
317–331. Springer-Verlag, 1996.

8) O. de Moor and G. Sittampalam. Generic
program transformation. In Proceedings of
the 3rd International Summer School on Ad-
vanced Functional Programming, volume 1608
of LNCS, pages 116–149. Springer-Verlag,
1999.

9) O.deMoor and G.Sittampalam. Higher-order
matching for program transformation. Theo-
retical Computer Science, 269:135–162, 2001.

10) N.Hirokawa and A.Middeldorp. Tsukuba ter-
mination tool. In Proceedings of the 14th Inter-
national Conference on Rewriting Techniques
and Applications, volume 2706 of LNCS, pages
311–320. Springer-Verlag, 2003.

11) G.Huet and B.Lang. Proving and applying
program transformations expressed with sec-
ond order patterns. Acta Informatica, 11:31–
55, 1978.

12) R. Paige. Future directions in program
transformations. ACM Computing Surveys,
28(4es):170, 1996.

13) H. Partsch and R. Steinbrüggen. Program
transformation systems. ACM Computing Sur-
veys, 15(3):199–236, 1983.

14) U. S. Reddy. Term rewriting induction. In
Proceedings of the 10th International Confer-
ence on Automated Deduction, volume 449 of
LNAI, pages 162–177, 1990.

15) G.Sittampalam. Higher-Order Matching for
Program Transformation. PhD thesis, Mag-
dalen College, 2001.

16) Terese. Term Rewriting Systems. Cambridge
University Press, 2003.

17) Y.Toyama. Commutativity of term rewriting
systems. In The Second France-Japan Artificial
Intelligence and Computer Science Symposium,
1987.

18) Y.Toyama. How to prove equivalence of term
rewriting systems without induction. Theoret-
ical Computer Science, 90:369–390, 1991.

19) P.Wadler. Deforestation: transforming pro-
grams to eliminate trees. Theoretical Computer
Science, 73:231–248, 1990.

20) T. Yokoyama, Z. Hu, and M. Takeichi. De-
terministic second-order patterns. Information
Processing Letters, 89(6):309–314, 2004.

(Received May 02, 2006)
(Accepted August 01, 2006)

Yuki China received his M.S.
from Tohoku University in 2005.
He is currently a doctoral stu-
dent at the same university. He
is a member of JSSST.

Takahito Aoto received his
M.S. and Ph.D. from the Japan
Advanced Institute for Science
and Technology (JAIST). He
was at JAIST from 1997 to 1998
as an associate, at Gunma Uni-
versity from 1998 to 2002 as an

assistant professor, and at Tohoku University
from 2003 to 2004 as a lecturer. He has been at
Tohoku University sice 2004 as an associate pro-
fessor. His current research interests are term
rewriting and non-classical logics. He is a mem-
ber of IPSJ, JSSST, EATCS, and ASL.

Vol. 47 No. SIG 16(PRO 31) Program Transformation by Templates: A Rewriting Framework 15

Yoshihito Toyama received
his B.E. from Niigata University
in 1975, and his M.E. and D.E.
from Tohoku University in 1977
and 1990. He worked as a Re-
search Scientist at NTT Labora-
tories from 1977 to 1993, and as

a Professor at the Japan Advanced Institute of
Science and Technology (JAIST) from 1993 to
2000. Since April 2000, he has a professor at the
Research Institute of Electrical Communication
(RIEC) of Tohoku University. His research in-
terests include term rewriting systems, program
theory, and automated theorem proving. He is
a member of IEICE, IPSJ, JSSST, ACM, and
EATCS.

