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Abstract

We define rewriting over terms with positions of transfinite length.

1 Introduction

During the time the first author of this paper was a Ph.D. student at the Vrije
Universiteit, one of Roel’s international Master students was writing his thesis
on meaningless terms in (infinitary) λ-calculus [2]. At one point Roel suggested
that the student should most certainly consider infinite terms of the form xx · · · ,
consisting of an infinite number of variables and associating to the left as usual
(see Figure 1). Unfortunately, as pointed out soon afterwards by the first author
such a term is not a valid infinite λ-term, as the left-most variables will occur
at infinite depth.

·
��� :::

·
��� ::: x

·
��� ::: x

x x

Figure 1: The infinite term xx · · · .

Inspired by Roel’s suggestion, we will
introduce terms—the so-called transfinite
terms—which allow for variables to occur
at infinite depth. To support the defini-
tion, we will also define positions that are
of arbitrary ordinal length, and not just
of finite length. After having defined the
transfinite terms we will attempt to define
an infinitary rewrite relation over them.

Besides being inspired by Roel, there
are two other reasons for considering terms which allow for variables, and also
function symbols, to occur at infinite depth. Both of these reasons find their
origin in infinitary rewriting and some of its shortcomings.
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The first reason is the lack of confluence in orthogonal infinitary rewriting [9].
The well-known counterexample considers the following orthogonal set of rules:

c→ f(g(c))
f(x)→ x

g(x)→ x

Given these rules, the following two co-initial infinite reductions starting in c
are then considered:

fω · · · ← f(c)← f(g(c))← c→ f(g(c))→ g(c)→ · · · gω .

The reduction to the left alternates between contracting the only occurring
c→ f(g(c))-redex and the only occurring g(x)→ x-redex. The reduction to the
right similarly contracts c→ f(g(c))-redexes and f(x)→ x-redexes. The terms
fω and gω can never be reduced to each other; they reduce only to themselves
(in both finitely and infinitely many steps). To see why this is the case, note that
in both depicted reductions the c → f(g(c))-redex is “pushed down” to depth
ω; the redex is then lost, because such positions are not considered in infinitary
rewriting. In the rewriting format defined in this paper, the c → f(g(c))-
redex will precisely occur at depth ω after ω steps and this will actually restore
confluence in of case of the rules give above. It is our hope that this result
generalises to all orthogonal systems. However, we do not attempt prove this.
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Figure 2: An infinite DAG.

The second reason for studying terms
with positions of arbitrary ordinal length
is related the representation of directed
acyclic graphs (DAGs) as terms with let-
binders, i.e. as terms with subexpressions
of the form let x = s in t. It is folklore
that each finite DAG can be represented
by finite terms with let-binders and vice
versa, see e.g. [3]. Unfortunately, a sim-
ilar relation does not exist between infi-
nite DAGs and infinite terms. Consider
e.g. the DAG depicted in Figure 2, where
pair is a pairing operator and where cons
is the usual list constructor. Intuitively,
and using the usual short-hand notation

for lists, this DAG should correspond to the following infinite term:

let x1 = c1 in let x2 = c2 in · · · pair([x1, x2, . . .], [x1, x2, . . .]) .

However, given the infinite number of let-binders—one to represent each ci-
subgraph of the DAG—it follows that pair([x1, x2, . . .], [x1, x2, . . .]) must occur
at depth ω, and we have moved again beyond the scope of infinitary rewriting.

Outline. In the remainder of the paper we proceed as follows: In Section 2
we define terms in which function symbols and variables may occur at arbitrary
ordinal depth. To this end we also define positions of transfinite length. In
Section 3 we define rewrite rules and rewrite steps over the terms defined in the
previous section. Finally, in Section 4 we attempt to define infinite reductions
and in Section 5 we conclude.
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Notation. Throughout, we assume that Σ is a set of function symbols each
of which has finite arity and that X is a sufficiently large set of variables. We
denote the first infinite ordinal by ω and arbitrary ordinals by α, β, γ, and so on.
Moreover, we denote the first non-denumerable cardinal by ℵ1. The restriction
of a function f with domain S to domain T ⊆ S is denoted by f�T .

2 Transfinite Terms

In infinitary rewriting—and also in finitary rewriting—a term can be defined as
a map from a set of positions to the elements of Σ ∪X [6, 4, 10]. Such a map
must satisfy a number of natural constraints regarding the assumed signature
and the positions in the domain of the map. Here, we extend this definition to
include terms with transfinite positions. Such positions are maps from arbitrary
ordinals to N, this in contrast to the usual positions which are maps from finite
ordinals to the natural numbers, i.e. which are finite strings over N.

Definition 2.1 (Transfinite Positions). A transfinite position p is a map p :
α→ N with α an ordinal. The length of p, denoted |p|, is α.

We denote the unique transfinite position ∅ → N—the root position—by ε.
The transfinite positions fully specified by 1 7→ 1, 1 7→ 2, 1 7→ 3, &c. are denoted
by 1, 2, 3, &c. Arbitrary transfinite positions are denoted by p, q, and so on.

Given the above definition, the prefix relation over transfinite positions p
and q, denoted p < q, can be defined as:

p < q ⇐⇒ |p| < |q| and q�|p| = p .

Recall that the lengths of p and q are in fact the domains of the maps p and q.
Hence, as for any two ordinals α and β we have α < β iff α ⊆ β, it follows that
the restriction used to defined the prefix relation is proper. If neither p ≤ q nor
q ≤ p, then p and q are parallel, which we write as p ‖ q.

The concatenation of transfinite positions p and q, denoted p · q, is the
operation with ε as unit element and which for each |p| = α and |q| = β yields
the following map from α+ β to N:

p · q(a) =

{
p(a) if a ≤ α
q(b) if a = α+ b

When restricted to finite ordinals, transfinite positions are isomorphic to
finite strings over the natural numbers. Using this fact, it is easy to show that
the prefix ordering and concatenation as defined above correspond to the usual
(finitary) definitions in case the domain is restricted as such.
Example 2.2. We have that ε, 1, 1 · 1, and 1 · 2 are transfinite positions with
ε < 1 and 1 · 1 ‖ 1 · 2. Let 1α : α → N be such that 1α(a) = 1, where 10 is
assumed to be ε. For each ordinal α the map 1α is a transfinite position. In
addition, 1α < 1β for each α < β and 1γ · 1δ = 1γ+δ for arbitrary γ and δ.

Before we continue to define transfinite terms, we give one more definition
related to positions, which will come of use when defining reductions in Section 4.

Definition 2.3 (Limits of Sequences of Transfinite Positions). Let (pβ)β<α be
a sequence of transfinite positions, with α a limit ordinal. Then, limβ→α pβ = p
for some transfinite position p iff
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1. there exists a κ < α such that pδ = p for all κ < δ < α, or

2. for all q < p there exists a κ < α such that q < pδ < p for all κ < δ < α.

Given the fact that weakly increasing sequences of ordinals have unique
limits in case the sequence has an upper bound, it follows easily that the limit
of a sequence of transfinite positions is unique in case it exists.

We now define transfinite terms as maps from transfinite positions to the
elements of Σ∪X. For the duration of the definition we assume variables to be
nullary function symbols, i.e. constants.

Definition 2.4 (Transfinite Terms). A transfinite term is a map t : P → Σ∪X
with P a non-empty set of transfinite positions such that

• if p ∈ P , then q ∈ P for all q < p,

• if t(p) is a function symbol of arity n, then p · i ∈ P iff 1 ≤ i ≤ n, and

• if p has limit ordinal length and q ∈ P for all q < p, then p ∈ P .

The first and second clause ensure, respectively, that transfinite terms do
not have ‘disconnected’ subterms and that the arity of each function symbol
is factored in. The third clause ensures that we do not have transfinite terms
where, eloquently put, “the bottom falls out” in certain places. In other words,
for any path we can follow from the root of a transfinite term downwards, there
will always be a properly defined position that either coincides with the final
position of the path or that goes beyond any position in the path.

f 0

f 1

f 2

f ω

f ω + 1

f ω + 2

c ω · 2

Figure 3: The transfinite term
fω·2(c) and the depth at which
each of its function symbol occurs.

Remark that the definition of (finite)
terms limits the above definition by re-
quiring P to be finite; this voids the
third clause of the definition. The defi-
nition of infinite terms limits the above
definition by dropping the last clause
and requiring that each position is a
map from a finite ordinal to Σ ∪X.

Example 2.5. Suppose we have the set
P = {1α | α ≤ ω} with 1α as in Ex-
ample 2.2. Moreover, suppose our sig-
nature contains a function symbol f of
arity 1 and a constant c. Mapping 1n

to f for all n ∈ N and mapping 1ω to
c defines a transfinite term. Informally
we write this term as fω(c). In a similar
way, we can define the transfinite term
fω·2(c) (see Figure 3), or even fα(c),
where α is an arbitrary ordinal.

Let t : P → Σ ∪ X be a transfinite
term, we define the set of transfinite po-

sitions of t to be the domain of t and denote it by Pos(t). The set of transfinite
positions at which variables, respectively function symbols, occur is denoted by
PosX(t), respectively PosΣ(t). Moreover, we write root(t) = t(ε), i.e. by root(t)
we denote the function symbol at the root of t. The root symbol always exists,
as P is non-empty and closed under the prefix relation over transfinite positions.
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The transfinite subterm of t at position p ∈ Pos(t), denoted t|p, is the map
with domain {q | p · q ∈ Pos(t)} such that t|p(q) = t(p · q). The replacement of
the transfinite subterm at position p ∈ Pos(t) by the transfinite term s, denoted
t[s]p, is the map with domain

{q | q ∈ Pos(t) and p 6≤ q} ∪ {p · q | q ∈ Pos(s)}

such that:

t[s]p(q) =

{
t(q) if p 6≤ q
s(r) if q = p · r

Given a substitution σ, i.e. a map from a set of variables to a set of transfinite
terms, σ(t) is defined as the map with domain

{p | p ∈ Pos(t) and t(p) 6∈ Dom(σ)}
∪ {p · q | t(p) = x with x ∈ Dom(σ) and q ∈ Pos(σ(x))}

such that:

σ(t)(p) =

{
t(p) if t(p) 6∈ Dom(σ)
σ(x)(r) if p = q · r and t(q) = x with x ∈ Dom(σ)

We call σ a renaming in case σ(x) is a variable for each x.
It is easy to see that taking subterms, replacing subterms, and carrying out

substitutions all yield well-defined transfinite terms. Moreover, the definitions
correspond to the usual ones when we restrict ourselves to finite terms.

To wrap this section up, note that contexts can be defined as usual, i.e. by
extending the signature with a fresh constant �. We denote one-hole contexts by
C[�], D[�], and so on. Replacing the hole in C[�] by a transfinite term t, which
is denoted by C[t], is defined as C[t] = (C[�])[t]p, assuming that (C[�])|p = �.

3 Transfinite Term Rewriting Systems

With the help of the definitions from the previous section it now becomes a
trivial matter to extend the usual definitions of rewrite rules and rewrite steps
to transfinite terms. To keep things straightforward, we will assume that that
both left-hand and right-hand sides of rewrite rules are finite.

Definition 3.1 (Transfinite Rewrite Rules and Term Rewriting Systems). A
transfinite rewrite rule is a pair of transfinite terms (l, r) each with a finite set
of positions and denoted l→ r such that l is not a variable and such that each
variable which occurs in r also occurs in l.

A transfinite Term Rewriting System (tTRS) is a pair (Σ, R) with Σ a sig-
nature each element of which has finite arity and with R a set of transfinite
rewrite rules.

As usual, we call l the left-hand side of the rule l→ r and r the right-hand side.
Example 3.2. Suppose f(x, y), g(y), and x are transfinite terms. Then, the
following are transfinite rewrite rules:

f(x, y)→ g(x)
f(x, y)→ x
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The pair x → x is not a transfinite rewrite rule, as the left-hand side is a
variable. The pair g(y) → f(x, y) is not a transfinite rewrite rule either, as x
occurs right but not left.

We can now define transfinite rewrite steps.

Definition 3.3 (Transfinite Rewrite Steps). A transfinite rewrite step is a pair
of transfinite terms (s, t) denoted s → t and adorned with a one-hole context
C[�], a transfinite rewrite rule l→ r, and a substitution σ such that s = C[σ(l)]
and t = C[σ(r)]. The transfinite term σ(l) is called an l→ r-redex and it occurs
at position p and depth |p| in s, where p is the position of the hole in C[�].

Example 3.4. Suppose we have the following three transfinite rewrite rules:
c→ d

f(x)→ x

g(x, x)→ x

Given the transfinite term fω(c), we have fω(c) → fω(c), contracting any of
the f(x) → x-redexes in fω(c). Note that we do not have fω(c) → fω+1(c)
and that, in fact, for each k > 0 and l ∈ N and rule fk(x) → f l(x) we have
fω(c)→ fω(c) when we contract an arbitrary fk(x)→ f l(x)-redex in fω(c).

Returning to our three rules above, we also have fω(c)→ fω(d), contracting
the c→ d-redex at depth ω. Moreover, g(fα(c), fα(c))→ fα(c) for every ordinal
α, contracting in g(fα(c), fα(c)) the g(x, x)→ x-redex at depth 0.

Finally, for the transfinite rule f(x) → g(x) we have fw(c) → fn(g(fw(c))
when we contract the f(x)→ g(x)-redex at depth n in fω(c). Note that we do
not have fω(c)→ fω(g(c)).

The following is trivial:

Proposition 3.5 (Closure under Contexts and Substitutions). If s → t is a
transfinite rewrite step, then so is C[σ(s)] → C[σ(t)] for arbitrary (transfinite)
contexts C[�] and (transfinite) substitutions σ.

To end this section we define descendants across rewrite steps, we employ
this definition later on when we define reductions of transfinite length.

Definition 3.6 (Descendants). Let u : C[σ(l)] → C[σ(r)] be a transfinite
rewrite step whose redex occurs at position p. If q ∈ Pos(C[σ(l)]), then the
set of descendants of q across u, denoted q/u, is defined as follows:

q/u =


{p · pr · q′ | root(r|pr ) = x} if q = p · pl · q′ and root(l|pl) = x ∈ X
{p} if q = p · pl with root(l|pl) 6∈ X
{q} if p 6≤ q

With the help of the definitions presented at the end of the previous section
it is not difficult to show that descendants across rewrite steps are well-defined.
Moreover, note that any position that occurs in the redex pattern of a contracted
redex descents to the root position of that redex when the redex is contracted.
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4 Transfinite Reductions

Given the above definitions, finite reductions over transfinite terms are easily de-
fined. However, as in infinitary rewriting [5, 9, 8], defining transfinite reductions
is rather more complicated.

Since our definition of terms allows for positions of arbitrary ordinal length,
it seems natural to require from our definition of transfinite reductions that
it offers the ability to “push down” subterms from some finite depth to limit
ordinal depth and the ability to “pull up” subterms from limit ordinal depth to
some lesser depth. Let us illustrate these two concepts.

Suppose we have the transfinite term c and the transfinite rewrite rule c→
f(c). Continuously contracting c→ f(c)-redexes yields the following:

c→ f(c)→ f2(c)→ · · · → fn(c)→ fn+1(c)→ · · · . (1)

Since the subterm c occurs at an increasingly greater depths and since the
function symbol that occurs at every other depth becomes f after a finite number
of steps, it seems natural to require the final term of the above reduction to be
the transfinite term fω(c) from Example 2.5. That is, c is “pushed down” from
finite depth 0 to infinite depth ω in ω steps. After these ω steps the same
procedure can be repeated with regard to the subterm c at position 1ω in fω(c)
which by identical reasoning should yield the transfinite term fω·2(c).1

Now consider the transfinite term gω(c) and the transfinite rewrite rule
g(x)→ x. Continuously contracting root redexes yields the following:

gω(c)→ gω(c)→ · · · → gω(c)→ gω(c)→ · · · . (2)

Intuitively, every g(x) → x-redex in gω(c) will eventually be contracted along
this reduction. Hence, it makes sense to define the final transfinite term of this
reduction to be the only part of gω(c) which is not touched at all along the
reduction, i.e. to define it as c. Hence, we “pull up” c from depth ω to depth 0.

We will now attempt to find a proper definition of transfinite reductions over
transfinite terms that matches the above intuition.

4.1 A Topological Defeat

In ‘ordinary’ infinitary rewriting reductions are essentially continuous maps from
an ordinal equipped with the order topology to the set of infinite terms equipped
with the topology obtained through metric completion of the usual distance
metric on finite terms [5, 9]. Hence, a natural question to ask is, if this definition
can be re-used in the current context to obtain a useful definition reductions
that satisfies both the “push down” and “pull up” property. Jumping the gun:
This turns out not to be the case.

Let us consider why the answer to the above question is negative. To this
end we define a topology over the transfinite terms.2 We do this by means of
defining a base [7], where a base is a family B of subsets of a topological space,
such that for every open set O there is a subset B′ ⊆ B for which

⋃
B∈B′ B = O.

1The complete reduction of length ω · 2 also motivates why we do not limit the ordinals in
Definition 2.1 to be, say, at most ω.

2Technically, there is no set containing all transfinite terms, as the definition is based on
positions of arbitrary ordinal length and as there is no set containing all ordinals. In practice,
however, we are only interested in classes of terms (reductions) that properly form sets.
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Definition 4.1. Let t be a transfinite term and let α either 0 or a successor
ordinal such there is a p ∈ Pos(t) with |p| = α. Define the set Bt,α to be:

{s | ∀q ∈ Pos(t) with |q| ≤ α : q ∈ Pos(s) and s|q = t|q}

and the family B to be:

{Bt,α | for all t and appropriate α} ∪ ∅

Each set Bt,α contains exactly those transfinite terms that a equal to t up to
depth α. Note that Bt,α = {t} in case we have for all p ∈ Pos(t) that |p| ≤ α
with α either 0 or a successor ordinal. Limit ordinals are excluded from the
definition to ensure for each transfinite term such as fω(c) that there always is
some finite term close to it.

For any Bt,α and Bt′,α′ we have either Bt,α∩Bt′,α′ = ∅ or Bt,α∩Bt′,α′ = Bs,β
with s ∈ Bt,α ∩Bt′,α′ and β = max{α, α′}. Hence, there exists a topology over
the transfinite terms with B as base.

Remark 4.2. The above base finds its origins in the usual topology over the
set of infinite terms. Replacing the ordinals in the above definition by natural
numbers, we obtain a base for the infinite terms. It it not difficult to see that the
topology defined as such corresponds to the topology generated by the following
metric:

d(s, t) =

{
0 if s = t

s−k if k = min{|p| | p ∈ Pos(s) ∩ Pos(t) and s|p 6= t|p}

which is the usual metic over infinite terms [1].3

Recall that the order topology over any ordinal α has as its base the set of
all open intervals. That is, the base consists of all of the following sets:

(β, γ) = {κ ∈ α | β < κ < γ}
(β,→) = {κ ∈ α | κ > β}
(←, β) = {κ ∈ α | κ < β}

(←,→) = α

A reduction can now potentially be defined as a continuous map from an
ordinal equipped with the order topology to the transfinite terms equipped
with the topology defined by B above. Unfortunately, there are two issues that
make this definition unusable. First, for any reduction of limit ordinal length
defined as such, it turns out that the final term of the reduction is not uniquely
determined by the previous terms or cannot be the term we want it to be.
Second, the “pull up” property is inherently non-continuous and, hence, not
covered by the definition. We will now illustrate both phenomena.

Consider the reduction from (1) and recall that a map φ is continuous iff for
every open set O we have that φ−1[O] too is open [7]. As is easy to check, the
map φ(α) = fα(c) with domain ω+1 is continuous and represents the above re-
duction extended with the expected transfinite term fω(c). Unfortunately, this

3This metric does not carry over to transfinite terms, as 2−k is only defined in case k is a
finite ordinal, i.e. a natural number.
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is not the only possible way to extend the reduction when the only requirement
is that the resulting map should be continuous: It is easily checked that any
map ψ will do as long as ψ�ω = φ�ω and ψ(ω) = fω(t) with t either a constant
or a variable. Hence, the extension of the reduction with fω(c) is not unique.

Now consider the transfinite rewrite rule f(x)→ g(f(x)) and the transfinite
term f(hω(c)). We have the following reduction:

f(hω(c))→ g(f(hω(c)))→ g2(f(hω(c)))→ · · ·
→ gn(f(hω(c)))→ gn+1(f(hω(c)))→ · · · . (3)

Taking into account the “push down” property, one would expect the final
transfinite term of this reduction to be gω(f(hω(c))). Unfortunately, the only
continuous maps extending this reduction with one additional term are those
maps φ with φ(α) = gα(f(hω(c))) for all α < ω and φ(ω) = gω(t) such that t is
either a constant or a variable. Obviously, the term gω(f(hω(c))) is not such a
transfinite term.

Although the above issues with the topology and the “push down” prop-
erty might potentially be alleviated by adapting the employed topology, this
is impossible in the case of the “pull up” property. This property interacts
with continuity is a more subtle way. To see this, consider again the reduction
from (2). In case of this reduction we would like the following map with domain
ω + 1 to be only possible continuous map that represents the reduction and
extends it with one additional transfinite term:

φ(α) =

{
gω(c) if α < ω

c if α = ω

Within the current topology, this map is not continuous. In fact, and fatal to
any topological approach based solely on continuous maps, it is clear that in
which ever way we define our topology the map ψ(α) = gω(c) with domain ω+1
will always be continuous too, as for each neighbourhood of gω(c) we have that
gω(c) is in that neighbourhood. Hence, we need to move away from a topological
approach employing continuous maps.

4.2 A Pyrrhic Victory

Topologies out of the picture, what about adapting an alternative definition
of reductions from infinitary rewriting? Such an alternative definition is easily
given both in the case of weakly convergent infinitary rewriting, i.e. the kind
that does not take into account the depths of the contracted redexes, and in
the case of strongly convergent infinitary rewriting, i.e. the kind where at each
depth only finitely many redexes may be contracted.

Definition 4.3 (Infinitary Rewriting). A transfinite reduction over infinite
terms is a sequence of infinite terms (tβ)β<α+1 such that tβ → tβ+1 for all
β < α. The reduction is weakly convergent if for every limit ordinal γ < α + 1
and for all p ∈ Pos(tγ) there exists a κ < γ such that root(tγ |p) = root(tβ |p) for
all κ ≤ β < γ. The reduction is strongly convergent if it is weakly convergent
and if for every limit ordinal γ < α + 1 the depth of the contracted redexes in
(tβ)β<γ tends to infinity.
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The constraint on weakly convergent reductions implies that these reductions
are in fact continuous maps in the context of infinitary rewriting. The additional
constraint on strongly convergent reductions implies that only a finite number of
redexes can be contracted at each depth. Remark that the additional constraint
on strongly convergent reductions can alternatively be formulated as follows: For
every position p ∈ Pos(tγ), eventually all redexes contracted in (tβ)β<γ either
occur parallel to p or strictly below p, i.e. only at (finite) positions q with q 6≤ p.

Below we will attempt to extend the definition of strongly convergent re-
ductions to rewriting with transfinite terms. The reason we do not consider
weakly convergent reductions is that we would also like to obtain a proper no-
tion of descendants and in infinitary rewriting such a notion only exists in the
strongly convergent setting [11]. We have to be careful, though. Consider e.g.
the transfinite rewrite rule f(x)→ g(f(h(x))) and the reduction

f(c)→ g(f(h(c)))→ g2(f(h2(c)))→ · · ·
→ gn(f(hn(c)))→ gn+1(f(hn+1(c)))→ · · · .

Using the “push down” property and given the fact that the subterm start-
ing with f converges to f(hω), it makes sense to define the unique transfinite
term extending this reduction to be gω(f(hω(c))). However, although each h in
gω(f(hω(c))) must descent from a function symbol h created in some step along
the above reduction, it is—by the infinite nature of the reduction—impossible
to tell in which step which h was created. Hence, to obtain a proper notion of
descendants for rewriting with transfinite terms we want to rule out reductions
such as the above.

Remark 4.4. The above reduction is related to certain reductions without a
properly defined limit: Consider the transfinite rewrite rules f(x)→ g(f(h1(x)))
and f(x)→ g(f(h2(x))) (note the subscripts of h). We have the following:

f(c)→ g(f(h1(c)))→ g2(f(h2(h1(c))))→ · · ·
→ g2·n(f((h2h1)n(c)))→ g2·n+1(f(h1((h2h1)n(c)))

→ g2·(n+1)(f((h2h1)n+1(c)))→ · · · .

Although it is obvious that any limit of this reduction must have the form
gω(f(t)) where t consists of an infinite alternation of h1 and h2 followed by c,
we do not know if this alternation starts with either h1 or with h2. Hence, there
is no limit which constitutes a properly defined transfinite term.

We will now attempt to extend the definition of strongly convergent reduc-
tions to transfinite terms, taking into account the “push down” and “pull up”
properties. To start, we define transfinite reductions:

Definition 4.5 (Transfinite Reductions over Transfinite Terms). A transfinite
reduction is a sequence of transfinite terms (tβ)β<α such that tβ → tβ+1 for all
β < α. If α = α′ + 1, then the sequence is closed and of length α′. If α is a
limit ordinal, then the sequence is open and of length α.

Obviously, the above definition alone does not suffice since no relation is
established between the transfinite terms with limit ordinal indices and the
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terms preceding them. As in infinitary rewriting, we want the terms with limit
ordinal indices to be uniquely determined by the terms preceeding them.4

Before we can continue to define strongly convergent reductions, which do
relate limit terms with those terms preceeding them, we need the ability to
track those redex contractions responsible for “pulling up” and “pushing down”
subterms. To this end we define the following:

Definition 4.6 (Outermost Pull-up/Push-down Property). Let (tβ)β<α be a
transfinite reduction and let (pβ)κ≤β<α and (qβ)κ≤β<α be sequences of trans-
finite positions such that pβ , qβ ∈ Pos(tβ) for all κ ≤ β < α. The pair of
sequences satisfies the outermost pull-up/push-down property (outermost pp-
property) for a term s if for each limit ordinal κ < γ < α it holds that
limβ→γ pβ = pγ and if for all κ ≤ β < α it holds that tβ |pβ = σ(s) for some
substitution σ and:

• the l → r-redex contracted in tβ → tβ+1 either occurs parallel to pβ such
that pβ+1 = pβ and qβ+1 = qβ or it occurs at a position pβ · p′β with
qβ 6∈ {pβ · p′β · q | q ∈ PosΣ(l)− {ε}} such that:

– if p′β = ε, then pβ+1 = pβ · p′′β and r|p′′
β

= τ(s) with τ a renaming,

– if p′β 6= ε, then pβ+1 = pβ and p′β 6∈ PosΣ(s),

and if qβ = pβ · q′β · q′′β with q′β ∈ PosX(s), then qβ+1 = pβ+1 · q′β · q′′β , and

• there is a β < δ < α such that tδ → tδ+1 contracts a redex at the transfinite
position pδ.

The redexes contracted at the transfinite positions in (pβ)κ≤β<α will be those
responsible for “pushing down” and “pulling up” the subterm that occurs at
position qκ in tκ, where the requirements on qβ ensure that we can properly talk
about such a subterm. We call the property outermost, because we require—
in the first clause—that each contracted redex tβ → tβ+1 either occurs at a
position parallel to pβ or a position with pβ as prefix.

The function symbols from s are continuously ‘re-created’ along the reduc-
tion. We single out these function symbols, because we want them to re-occur in
the limit of the reduction. This behaviour can already be observed in our exam-
ples: In the reduction from (1), respectively (3), we have that s is c, respectively
f(x). In the reduction from (2) no function symbols are continuously re-created
and s will be a variable. Note that, since eventually a redex is contracted at a
position in (pβ)κ≤β<α, we have that s is uniquely determined by (pβ)κ≤β<α.

The requirement that p′β 6∈ PosΣ(s) in case p′β 6= ε ensures that the function
symbols from s cannot be erased before being re-created. Intuitively, it is unclear
if a function symbol from s should re-occur in the limit of a reduction in case it
is each time being erased before being re-created. Hence, we disallow this.

Finally, the requirement that qβ+1 = pβ+1 ·q′β ·q′′β in case qβ = pβ ·q′β ·q′′β with
q′β ∈ PosX(s), ensures that there is a uniquely determined transfinite position
in the limit of the reduction at which the subterm at qκ will occur. Note that
this requirement avoids problems related to those that cause difficulties with
descendants in weakly convergent infinitary rewriting [9, 11]. With respect to

4Although never stated explicitly in infinitary rewriting, the validity of this property follows
immediately by requiring reductions to be continuous maps in a complete metric space.
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weakly convergent infinitary rewriting, consider the rule f(x, y) → f(y, x) and
recall the following reduction of length ω:

f(c, c)→ f(c, c)→ · · · → f(c, c)→ · · · f(c, c) .

It is unclear which c in the final term of the reduction descends from which c in
the initial term.

Example 4.7. Consider the reductions from (1), (2), and (3). In case of the
reduction from (1), respectively (2), we have that the pair of sequences each of
which is (1β)0≤β<ω, respectively (ε)0≤β<ω, has the outermost pp-property. In
case of the reduction from (3), the sequences (1β)0≤β<ω and (1β · 1)0≤β<ω form
a pair with the outermost pp-property.

We are now in a position to define strongly convergent (and strongly con-
tinuous) reductions over transfinite terms. With regard to the definition, recall
that any transfinite position that occurs in the redex pattern of a contracted
redex descents to the root position of that redex when the redex is contracted.

Definition 4.8 (Strongly Convergent Reductions over Transfinite Terms). Let
(tβ)β<α be a transfinite reduction over transfinite terms. The reduction is
strongly continuous if for every limit ordinal γ < α + 1 and every p ∈ Pos(tγ)
there exists a κ < γ such that exactly one of the following holds:

• all redexes contracted in (tβ)κ≤β<γ occur either parallel or strictly below
p and root(tβ |p) = root(tγ |p), or

• there exists a pair of sequences ((pβ)κ≤β<γ , (qβ)κ≤β<γ) with the outermost
pp-property for a term s such that for every κ ≤ β < γ:

– qδ, is a descendant of qβ for all β < δ < γ, and
– for every p′β with either p′β ≥ pβ if qβ = pβ or qβ > p′β ≥ pβ if qβ > pβ

there exists a β < δ < γ such that pδ is the only descendant of p′β ,

and p = p′ · p′′ with limβ→γ pβ = p′ such that either:

– p′′ ∈ PosΣ(s) and root(tγ |p) = root(s|p′′), or
– p′′ = q′ · q′′ with q′ = q′κ such that q′κ ∈ PosX(s) and qκ = pκ · q′κ ·
q′′κ, and root(tγ |p) = root(sγ′ |q′′) where sγ′ is the final term of the
reduction obtained from (tβ |qβ )β<γ+1 by removing all empty steps.

The reduction is strongly convergent if it is strongly continuous and closed.

We denote a strongly convergent reduction of ordinal length α, respectively
of ordinal length at most α, by s �α t, respectively s �≤α t. A strongly
convergent reduction of arbitrary ordinal length is denoted by s � t.

The first clause of the above definition is directly inherited from strongly
convergent infinitary rewriting. The second clause is new. The first part the
second clause ensures that the positions in (qβ)β<γ actually track a subterm
which is “pulled up” or “pushed down” and that this subterm is an outermost
one with this property relative to (pβ)β<γ .

The second part of the second clause defines which function symbol occurs
at position p. This is either a function symbol from s or it is a symbol that
occurs in a subterm that is “pulled up” or “pushed down”, in which case a
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sub-reduction of (tβ)β<α is considered. Note that we might have to “descend”
through transfinitely many of such sub-reductions before we encounter the one
that is responsible for creating the symbol at position p. It is implicit in the
definition that the number of steps in this “descent” is limited by some ordinal.
Example 4.9. It is easy to see that the reductions in (1), (2), and (3) are
strongly continuous. Extending the reductions with, respectively, fω(c), c, and
gω(f(hω(c))) and employing the pairs of sequences from Example 4.7 we obtain
three strongly convergent reductions.

Consider the transfinite term f(gω(c), gω(d)) and the rule f(g(x), g(y)) →
g(f(x, y)). We have the following strongly continuous reduction:

f(gω(c), gω(d))→ g(f(gω(c), gω(d)))→ · · ·
→ gn(f(gω(c), gω(d)))→ gn+1(f(gω(c), gω(d)))→ · · · .

This reduction has two sequences of positions with the outermost pp-property:
((1β)β<ω, (1β · 1 · 1ω)β<ω) and ((1β)β<ω, (1β · 1 · 2ω)β<ω); both are for the term
s = f(x, y). Since the number of function symbols above each contracted redexes
increases with each step and since these symbols are equal to g, it follows that
gω(f(c, d)) is the only possible transfinite term that extends the reduction into
a strongly convergent one. Note that in the limit we do not have to make a
choice between either c or d occurring, as f will also occur.

Now consider the rule c→ f(c, c) and the reduction

c→ f(c, c)→2 f(f(c, c), f(c, c))

→4 f(f(f(c, c), f(c, c)), f(f(c, c), f(c, c)))→ · · · , (4)

which for each finite depth d contracts all c→ f(c, c)-redexes and then continues
to contract all such redexes at depth d+ 1, &c. Consider the set of positions

{p | |p| ≤ ω and ∀β ∈ |p| : p(β) ∈ {1, 2}}

and define the following map over this set:

t(p) =

{
f if |p| is finite
c if |p| = ω

It is easy to see that t defines a term (see Figure 4). Extending the above
reduction with t yields a strongly convergent reduction. We need ℵ1 pairs
satisfying the outermost pp-property, one for each c in t. For each pair, s = c.

Remark 4.10. Strongly convergent reductions as defined above in general do
not satisfy a compression property, i.e. if s � t, then there might not exist a
reduction s �≤ω t. To see this, consider the reduction from (4) extended with
the term t defined immediately below it and contract one of the c → f(c, c)-
redexes in t. This yields a strongly convergent reduction of length ω + 1. This
reduction is not compressible, as the contracted redex only comes into existence
after ω steps.

The definition of strongly continuous reductions depends on descendants
being defined for strictly shorter reductions than reduction we are considering
at any one point. Hence, both strongly continuous reductions and descendants
need to be defined by mutual transfinite induction. The definition of descendants
is as follows:
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Figure 4: The term t from Example 4.9.

Definition 4.11 (Descendants). Let t0 �α tα and let P ⊆ Pos(s0). The set of
descendants of P across t0 �α tα, denoted P/(t0 �α tα), is defined as follows:

• if α = 0, then P/(t0 �α tα) = P ,

• if α = 1, then P/(t0 → t1) =
⋃
p∈P p/(t0 → t1) (see Definition 3.6),

• if α = β + 1, then P/(t0 �β+1 tβ+1) = (P/(t0 �β tβ))/(tβ → tβ+1), and

• if α is a limit ordinal, then p ∈ P/(t0 �α tα) if there exist a κ < α
such that for p either the first case from Definition 4.8 applies and p ∈
P/(s0 �β sβ) for all κ ≤ β < α, or the second case applies and there is a
sequence (rβ)κ≤β<α with rβ ∈ Pos(tβ) for all κ ≤ β < α such that:

– rκ ∈ P/(t0 �κ tκ), and
– rβ is a descendant of rγ for all κ ≤ γ < β < α,

and such that there exists a pair ((pβ)κ≤β<γ , (qβ)κ≤β<γ) with the outer-
most pp-property for a term s such that either:

– (rβ)κ≤β<α = (pβ)κ≤β<α with limβ→α pβ = p, or
– (rβ)κ≤β<α = (qβ ·q′β)κ≤β<α for some (q′β)κ≤β<α with p = p′ ·q′ ·q′′ and

limβ→α pβ = p′, and q′ ∈ PosX(s) such that q′′ ∈ {q′κ}/u where u
is the reduction obtained by considering (tβ |qβ )κ≤β≤α and removing
all empty steps.

The first three clauses and the first part of the fourth clause are directly
inherited from strongly convergent infinitary rewriting [8]. The second part of
the fourth clause is new and corresponds to the second clause of Definition 4.8.
In the second part a case distinction is made between p being either a position
of a function symbol of s immediately below limβ→α pβ or p occurring at some
other position.

In case p is the position of function symbol of s immediately below limβ→α pβ ,
the definition degenerates to setting p equal to limβ→α pβ . This corresponds to
the behaviour of descendants across reduction steps, where any position in the
redex pattern of a contracted redex descends to the root position of that redex.
In case p occurs at some other position, we again consider a sub-reduction.

We have the following:

Lemma 4.12 (Closure under Contexts and Substitutions). If (tβ)β<α is a
strongly continuous reduction over transfinite terms, then so is (C[σ(tβ)])β<α
for arbitrary (transfinite) contexts C[�] and (transfinite) substitutions σ.
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Proof. Trivial, using Proposition 3.5 and observing that no reductions occur in
either the context C[�] or the terms that are substituted for variables.

This ends our discussion of reductions over transfinite terms. Unfortunately,
the given definition is mightily complicated and, hence, although we suffered a
topological defeat we now only booked what seems to be a Pyrrhic victory.

5 Conclusion

We have defined rewriting over transfinite terms, having first defined trans-
finite terms and one-step rewriting over these terms. Both the definition of
transfinite terms and the definition of one-step rewriting were easy to come by.
Unfortunately, the same cannot be said of the definition of strongly convergent
reductions. This is especially so since we want to have the ability to “pull up”
subterms from infinite depth to finite depth and to “push down” subterms from
finite depth to infinite depth.

Although the definition of strongly convergent reductions seems to work
quite well for our examples, it is difficult to say—due to its size—whether the
definition fully complies with our intuition or whether it is even correct. To gain
confidence, it would tremendously help if we could present rigid mathematical
evidence, in the form of a number of lemmata, showing that the definition
actually achieves what it is supposed to achieve. Unfortunately, we currently
do no know what this rigid evidence should be.

Besides the above, we want to point out that at least one reduction with a
reasonable limit can be constructed that falls outside the scope of our definition:
Consider the rewrite rules c→ f(c) and f(x)→ g(f(x)). We have the following
strongly continuous reduction:

c→ f(c)→2 g(f(f(c))→3 g2(f(g(f(f(c)))))

→4 g3(f(g2(f(g(f(f(c)))))))→ · · · .

This reduction is constructed by iteratively “marking” all f(x) → g(f(x))-
redexes in a term and contracting all marked copies followed by contracting
the c → f(c)-redex at the bottom. Intuitively, one would expect the limit
of this reduction to be (gωf)ω(c), omitting parenthesis to ease notation. In
fact it easily follows by the definition of strongly convergent reductions that
any possible limit must be of the form (gωf)ω(t) for some t. However, that
t = c does not follow: By the time we reach the position of c in (gωf)ω(c)
by “descending” through sub-reductions as in Definition 4.8, the sub-reduction
will have length 0; the value of κ employed in the definition approaches ω, as κ
depends on the function symbols f that are created along the reduction.

Finally, we have yet to establish if strongly convergent rewriting as defined
by us suffices for orthogonal systems to be confluent in the face of strongly
convergent reductions, which is of course one of the ultimate aims.
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